The Boundary Element Method in Acoustics: A Survey
Abstract
:1. Introduction
2. Acoustic Model
2.1. The Wave Equation and the Helmholtz Equation
2.2. Acoustic Properties
2.3. The Scope of the Boundary Element Method in the Solution of Acoustic/Helmholtz Problems
2.4. Boundary Conditions
3. The Boundary Element Method and the Laplace Equation Stem
3.1. Elementary Integral Equation Formulation for the Interior Problem
3.2. Operator Notation and Further Integral Equations for the Laplace Problem
3.3. Derivation of the Boundary Element Method
3.3.1. Boundary Element Approximation
3.3.2. Solution by Collocation
3.3.3. The Galerkin Method
3.4. Properties and Further Details
3.4.1. Integration
3.4.2. Non-Uniqueness and Its Useful Outcomes
4. The Standard Boundary Element Method in Acoustics
4.1. The Interior Acoustic Problem
4.1.1. Integral Equation Formulation
4.1.2. The Boundary Element Method for the Generalised Boundary Condition
4.1.3. Equations of the First and Second Kind
4.1.4. Derivative and Double-Layer Potential Integral Equations for the Interior Helmholtz Problem
4.2. Interior Acoustic Modal Analysis: The Helmholtz Eigenvalue Problem
4.2.1. The Generalised Non-Linear Eigenvalue Problem from the Boundary Element Method
4.2.2. Solving the Non-linear Eigenvalue Problem
4.3. The Exterior Acoustic Problem
4.3.1. The Integral Equation Formulations of the Exterior Helmholtz Equation and Their Properties
4.3.2. The Derivative and Double Layer Potential Integral Equations
4.3.3. The Schenck Method
4.3.4. The Combined Integral Equation Method
4.3.5. Scattering
5. Extending the Boundary Element Method in Acoustics
5.1. Half-Space Methods
5.1.1. The Rayleigh Integral Method
5.1.2. Developments on Half-Space Problems
5.2. Shell Elements
5.2.1. Derivation of the BEM for Shells
5.2.2. Mixing Opem with Closed Boundaries
5.3. Vibro-Acoustics
5.3.1. Discrete Structural or Acoustic (Finite Element) Model
5.3.2. Coupled Fluid-Structure Interaction
5.4. Aero-Acoustics
5.5. Inverse Problems
5.6. Meshless Methods
6. Areas of Discussion
6.1. Efficiency
6.1.1. The Computational Cost of the Acoustic Boundary Element Method at One Frequency
6.1.2. The Frequency Factor, Multi-Frequency Methods and Wave Boundary Elements
6.1.3. Iterative Methods and Preconditioning
6.2. The Coupling Parameter
7. Concluding Discussion
Acknowledgments
Conflicts of Interest
References
- Crighton, D.G.; Dowling, A.P.; Ffowcs Williams, J.E.; Heckl, M.; Leppington, F.G. Modern Methods in Analytical Acoustics: Lecture Notes; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Springer Handbook of Acoustics, 2nd ed.; Rossing, T.D. (Ed.) Springer Science+Business Media: New York, NY, USA, 2014. [Google Scholar]
- Gulia, P.; Gupta, A. Mathematics and Acoustics. In Mathematics Applied to Engineering; Ram, M., Davin, J.P., Eds.; Academic Press: Cambridge, MA, USA; University of Aveiro: Aveiro, Portugal, 2017; pp. 55–82. [Google Scholar]
- Pinsky, P.M.; Hughes, T.J.R. Research in Computational Methods for Structural Acoustics; Department of the Navy: Washington, DC, USA, 1996.
- Petyt, M.; Jones, C.J.C. Numerical Methods in Acoustics. In Advanced Applications in Acoustics, Noise & Vibration; Fahy, F., Walker, J., Eds.; Spon Press: London, UK, 2004; pp. 53–99. [Google Scholar]
- Bergman, D.R. Computational Acoustics; John Wiley & Sons: Chichester, UK, 2018. [Google Scholar]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Kaltenbacher, M. (Ed.) Computational Acoustics; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Magoules, F. (Ed.) Computational Methods for Acoustics Problems; Saxe-Coburg Publications: Stirlingshire, UK, 2008. [Google Scholar]
- Marburg, S.; Nolte, B. (Eds.) Computational Acoustics of Noise propagation in Fluids; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Tam, C.K.W. Computatonal Aeroacoustics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Richter, T. Fluid-structure Interaction: Models, Analysis and Finite Elements; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Hambric, S.A.; Sung, S.H.; Nefske, D.J. (Eds.) Engineering Vibroacoustic Analysis: Methods and Applications; John Wiley and Sons: Chichester, UK, 2016. [Google Scholar]
- Hansen, C.H. Foundations of Vibroacoustics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Raman, G. (Ed.) Jet Aeroacoustics; Emerald Publishing Ltd.: Hockley, UK, 2008. [Google Scholar]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Wu, J.-S. Analytical and Numerical Methods for Vibration Analyses; John Wiley & Sons: Singapore, 2013. [Google Scholar]
- Palazzolo, A. Vibration Theory and Applications with Finite Elements and Active Vibration Control; John Wiley & Sons: Chichester, UK, 2016. [Google Scholar]
- Zhou, Y.; Lucey, A.D.; Liu, Y.; Huang, L. (Eds.) Fluid-Structure- Sound Interactions and Control. In Proceedings of the 3rd Symposium on Fluid-Structure-Sound Interactions and Control; Springer: Heidelberg, Germany, 2016. [Google Scholar]
- Ross, C.T.F. Finite Element Programs for Structural Vibrations; Springer: London, UK, 2012. [Google Scholar]
- Petyt, M. Introduction to Finite Element Vibration Analysis, 3rd ed.; Cambridge University Pess: New York, NY, USA, 2015. [Google Scholar]
- Thompson, L.L. A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 2006, 119, 1315–1330. [Google Scholar] [CrossRef]
- Liu, G. Formulation of Multifield Finite Element Models for Helmholtz Problems; University of Hong Kong: Hong Kong, China, 2010. [Google Scholar]
- Kirkup, S.M.; Mulla, I.; Ndou, G.; Yazdani, J. Electromagnetic Simulation by the FDTD method in Java. In Proceedings of the WSEAS MAMECTIS 2008, Corfu Island, Greece, 15–17 December 2019; pp. 370–375. [Google Scholar]
- Kunz, K.S.; Luebbers, R.J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House: Boston, MA, USA; London, UK, 2005. [Google Scholar]
- Sheaffer, J.; Fazenda, B. FDTD/K-DWM Simulation of 3D Room Acoustics on General Purpose Graphics Hardware Using Compute Unified Device Architecture (CUDA). Proc. Inst. Acoust. 2010, 32. Available online: http://usir.salford.ac.uk/id/eprint/11568 (accessed on 15 April 2019).
- Hargreaves, J. Time Domain Boundary Element Method for Room Acoustics; University of Salford: Salford, UK, 2007. [Google Scholar]
- Bilbao, S. Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Carvajal, C.S. Time-Domain Numerical Methods in Room Acoustics Simulations; Universitat Pompeu Fabra: Barcelona, Spain, 2009. [Google Scholar]
- Parot, J.; Thirard, C.; Puillet, C. Elimination of a non-oscillatory instability in a retarded potential integral equation. Eng. Anal. Bound. Elem. 2007, 31, 133–151. [Google Scholar] [CrossRef]
- Langer, S.; Schanz, M. Time Domain Boundary Element Method. In Computational Acoustics of Noise Propagation in Fluids; Marburg, S., Nolte, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 495–518. [Google Scholar]
- Chappell, D.J.; Harris, P.J.; Henwood, D.J.; Chakrabarti, R. A stable boundary element method for modeling transient acoustic radiation. J. Acoust. Soc. Am. 2006, 120, 74–80. [Google Scholar] [CrossRef]
- Qiu, T. Time Domain Boundary Integral Equation Methods in Acoustics, Heat Diffusion and Electromagnetism; University of Delaware: Newark, DE, USA, 2016. [Google Scholar]
- Tukac, M.; Vampola, T. Semi-analytic solution to planar Helmholtz equation. Appl. Comput. Mech. 2013, 7, 77–86. [Google Scholar]
- Stewart, J.R.; Hughes, T.J.R. h-adaptive finite element computation of time-harmonic exterior acoustics problems in two dimensions. Comput. Methods Appl. Mech. Eng. 1997, 146, 65–89. [Google Scholar] [CrossRef]
- Stewart, J.R.; Hughes, T.J.R. Adaptive Finite Element Methods for the Helmholtz Equation in Exterior Domains. In Large-sale Structures in Acoustics and Electromagnetics: Proceedings of a Symposium; National Academic Press: Washington, DC, USA, 1996; pp. 122–142. [Google Scholar]
- Solgård, T.A. A Method of Designing Wide Dispersion Waveguides Using Finite Element Analysis. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011. [Google Scholar]
- Kechroud, R.; Soulaimani, A.; Antoine, X. A Performance Study of Plane Wave Finite Element Methods with a Padé-type Artificial Boundary Condition in Acoustic Scattering. Adv. Eng. Softw. 2009, 40, 738–750. [Google Scholar] [CrossRef]
- Harari, I.; Hughes, T.J.R. Finite element methods for the helmholtz equation in an exterior domain: Model problems. Comput. Methods Appl. Mech. Eng. 1991, 87, 59–96. [Google Scholar] [CrossRef]
- Harari, I.; Grosh, K.; Hughes, T.J.R.; Malhotra, M.; Pinsky, P.M.; Stewart, J.R.; Thompson, L.L. Recent developments in finite element methods for structural acoustics. Arch. Comput. Methods Eng. 1996, 3, 131–309. [Google Scholar] [CrossRef]
- Borelli, D.; Schenone, C. A Finite Element Model to Predict Sound Attenuation in Lined and Parallel-baffle Rectangular Ducts. HVAC R Res. 2012, 18, 390–405. [Google Scholar]
- Ihlenburg, F. Finite Element Analysis of Acoustic Scattering; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Wrobel, L.C.; Aliabadi, M.H. The Boundary Element Method, Applications in Thermo-Fluids and Acoustics; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Lindgren, L.E. From Weighted Residual Methods to Finite Element Methods. Available online: https://www.ltu.se/cms_fs/1.47275!/mwr_galerkin_fem.pdf (accessed on 10 April 2019).
- Jumarhon, B.; Amini, S.; Chen, K. On the boundary element dual reciprocity method. Eng. Anal. Bound. Elem. 1997, 20, 205–211. [Google Scholar] [CrossRef]
- Falletta, S.; Monegato, G. Exact Nonreflecting Boundary Conditions for Exterior Wave Equation Problems. Publ. l’Institut Math. 2014, 96, 103–123. [Google Scholar] [CrossRef]
- Falletta, S.; Monegato, G.; Scuderi, L. A Space-time BIE Method for Nonhomogeneous Exterior Wave Equation Problems. The Dirichlet Case. IMA J. Numer. Anal. 2012, 32, 202–226. [Google Scholar] [CrossRef]
- Bergman, D.R. Boundary Element Method in Refractive Media. In Proceedings of the 23rd International Congress on Sound and Vibration, Athens, Greece, 10–14 July 2016; pp. 1–5. [Google Scholar]
- Jones, C.J.C. Finite Element Analysis of Loudspeaker Diaphragm Vibration and Prediction of the Resulting Sound Radiation. Ph.D. Thesis, University of Brighton (Polytechnic), Brighton, UK, 1986. [Google Scholar]
- Feistel, S. Modeling the Radiation of Modern Sound Reinforcement Systems in High Resolution; Logos Verlag: Berlin, Germany, 2014. [Google Scholar]
- Kocbach, J. Finite Element Modeling of Ultrasonic Piezoelectric Transducers. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2000. [Google Scholar]
- Kirkup, S.M.; Tyrell, R.J. Computer-aided analysis of engine noise. Int. J. Veh. Des. 1992, 13, 388–402. [Google Scholar]
- Dowling, A.P. Automotive Noise. In Proceedings of the Mathematics in the Automotive Industry; Smith, J.R., Ed.; Clarenden Press: Oxford, UK, 1992; pp. 95–124. [Google Scholar]
- Augusztinovicz, F. Calculation of Noise Control by Numerical methods—What We Can Do and What We Cannot Do Yet. In Proceedings of the INCE, Budapest, Hungary, 25 August 1997. [Google Scholar]
- French, C.C.J. Advanced techniques for engine research and design. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 1989, 203, 169–183. [Google Scholar] [CrossRef]
- Morris, P.J. Technical Evaluation Report. Available online: https://archive.org/details/DTIC_ADP014092 (accessed on 18 April 2019).
- Dewitte, F.H. V Aircraft Noise Shielding Assessment; Delft University of Technology: Delft, The Netherlands, 2016. [Google Scholar]
- Astley, R.J. Numerical methods for noise propagation in moving flows, with application to turbofan engines. Acoust. Sci. Tech. 2009, 4, 227–239. [Google Scholar] [CrossRef]
- Kirkup, S.M. Boundary Element Method. Available online: www.boundary-element-method.com (accessed on 11 June 2018).
- Kirkup, S.M. The Boundary Element Method in Acoustics; Integrated Sound Software: Hebden Bridge, UK, 1998. [Google Scholar]
- Wu, T.W. Boundary Element Acoustics: Fundamentals and Computer Codes; WIT Press: Southampton, UK, 2000. [Google Scholar]
- von Estorff, O. (Ed.) Boundary Elements in Acoustics: Advances and Applications; WIT Press: Southampton, UK, 2000. [Google Scholar]
- Ciskowski, R.D.; Brebbia, C.A. (Eds.) Boundary Element Methods in Acoustics; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Marburg, S. Boundary Element Method for Time-Harmonic Acoustic Problem. In Computational Acoustics; Kaltenbacher, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–158. [Google Scholar]
- Astley, R.J. Infinite elements for wave problems: a review of current formulations and an assessment of accuracy. Int. J. Numer. Methods Eng. 2000, 49, 951–976. [Google Scholar] [CrossRef]
- Qi, Q.; Geers, T. Evaluation of the Perfectly Matched Layer for Computational Acoustics. J. Comput. Phys. 1998, 139, 166–183. [Google Scholar] [CrossRef]
- Liu, Q.; Tao, J. The perfectly matched layer for acoustic waves. J. Acoust. Soc. Am. 1997, 102, 2072–2082. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Liu, G.R.; Zhang, W. A compact perfectly matched layer algorithm for acoustic simulations in the time domain with smoothed particle hydrodynamic method. J. Acoust. Soc. Am. 2019, 145, 204–214. [Google Scholar] [CrossRef]
- Rayleigh, J.W. Strutt, Lord. In The Theory of Sound; Dover: London, UK, 1945. [Google Scholar]
- Kirkup, S.M. Computational solution of the acoustic field surrounding a baffled panel by the Rayleigh integral method. Appl. Math. Model. 1994, 18, 403–407. [Google Scholar] [CrossRef]
- Wu, T.W.; Wan, G.C. Numerical modeling of acoustic radiation and scattering from thin bodies using a Cauchy principal integral equation. J. Acoust. Soc. Am. 1992, 92, 2900–2906. [Google Scholar] [CrossRef]
- Warham, A.G.P. The Helmholtz Integral Equation for a Thin Shell; National Physical Laboratory: London, UK, 1988. [Google Scholar]
- Koussa, F.; Defrance, J.; Jean, P.; Blanc-benon, P. Acoustic performance of gabions noise barriers: Numerical and experimental approaches. Appl. Acoust. 2013, 74, 189–197. [Google Scholar] [CrossRef]
- Koussa, F.; Defrance, J.; Jean, P.; Blanc-Benon, P. Acoustical efficiency of a sonic crystal assisted noise barrier. Acta Acust. United Acust. 2013, 99, 399–409. [Google Scholar] [CrossRef]
- Fard, S.M.B.; Peters, H.; Marburg, S.; Kessissoglou, N. Acoustic Performance of a Barrier Embedded With Helmholtz Resonators Using a Quasi-Periodic Boundary Element Technique Acoustic Performance of a Barrier Embedded With Helmholtz Resonators Using a Quasi-Periodic Boundary Element Technique. Acta Acust. United Acust. 2017, 103, 444–450. [Google Scholar] [CrossRef]
- Karimi, M.; Croaker, P.; Kessissoglou, N. Boundary element solution for periodic acoustic problems. J. Sound Vib. 2016, 360, 129–139. [Google Scholar] [CrossRef]
- Jean, P.; Defrance, J. Sound Propagation in Rows of Cylinders of Infinite Extent: Application to Sonic Crystals and Thickets Along Roads. Acta Acust. United Acust. 2015, 101, 474–483. [Google Scholar] [CrossRef]
- Karimi, M.; Croaker, P.; Kessissoglou, N. Acoustic scattering for 3D multi-directional periodic structures using the boundary element method. J. Acoust. Soc. Am. 2017, 141, 313–323. [Google Scholar] [CrossRef]
- Ziegelwanger, H. The Three-dimensional Quasi-periodic Boundar Element Method: Implementation, Evaluation, and Use Cases. Int. J. Comput. Methods Exp. Meas. 2017, 5, 404–414. [Google Scholar]
- Fard, S.M.B.; Peters, H.; Kessissoglou, N.; Marburg, S. Three-dimensional analysis of a noise barrier using a quasi-periodic boundary element method. J. Acoust. Soc. Am. 2015, 137, 3107–3114. [Google Scholar] [CrossRef]
- Marburg, S.; Andersson, R. Fluid structure interaction and admittance boundary conditions: Setup of an analytical example. J. Comput. Acoust. 2011, 19, 63–74. [Google Scholar] [CrossRef]
- Kirkup, S.M.; Yazdani, J. A Gentle Introduction to the Boundary Element Method in Matlab/Freemat. In Proceedings of the WSEAS MAMECTIS, Corfu, Greece, 26–28 October 2008. [Google Scholar]
- Kirkup, S.M.; Henwood, D.J. An empirical error analysis of the boundary element method applied to Laplace’s equation. Appl. Math. Model. 1994, 18, 32–38. [Google Scholar] [CrossRef]
- Kirkup, S.M. The boundary and shell element method. Appl. Math. Model. 1994, 18, 418–422. [Google Scholar] [CrossRef]
- Kirkup, S.M. DC Capacitor Simulation by the Boundary Element Method. Commun. Numer. Methods Eng. 2007, 23, 855–869. [Google Scholar] [CrossRef]
- Kirkup, S.M. The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation. World Acad. Sci. Eng. Technol. Int. Sci. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2019, 12, 1605–1613. [Google Scholar]
- Kellogg, O.D. Foundations of Potential Theory; Dover: New York, NY, USA, 1953. [Google Scholar]
- Jaswon, M.A.; Symm, G.T. Integral Equation Methods in Potential Theory and Elastostatics; Academic Press: London, UK, 1977. [Google Scholar]
- Baker, C.T.H. The Numerical Treatment of Integral Equations; Clarendon Press: Oxford, UK, 1977. [Google Scholar]
- Kirkup, S.M. Fortran codes for computing the discrete Helmholtz integral operators. Adv. Comput. Math. 1998, 9, 391–404. [Google Scholar] [CrossRef]
- Salvadori, A. Analytical integrations in 3D BEM for elliptic problems: Evaluation and implementation. Int. J. Numer. Methods Eng. 2010, 84, 505–542. [Google Scholar] [CrossRef]
- Nodes and Weights of Gaussian Quadrature Calculator. Available online: https://keisan.casio.com/exec/system/1329114617 (accessed on 24 August 2018).
- Laursen, M.E.; Gellert, M. Some criteria for numerically integrated matrices and quadrature formulas for triangles. Int. J. Numer. Methods Eng. 1978, 12, 67–76. [Google Scholar] [CrossRef]
- Johnston, B.M.; Johnston, P.R.; Elliott, D. A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method. J. Comput. Appl. Math. 2013, 245, 148–161. [Google Scholar] [CrossRef]
- Sikora, J.; Polakowski, K.; Pańczyk, B. Improper Integrals Calculations for Fourier Boundary Element Method. Appl. Comput. Electromagn. Soc. 2017, 32, 761–768. [Google Scholar]
- Sikora, J.; Pańczyk, B.; Polakowski, K. Numerical calculation of singular integrals for different formulations of boundary element. Prz. Elektrotechniczny 2017, 181–185. [Google Scholar] [CrossRef]
- Gong, J.; Junying, A.; Ma, L.; Xu, H. Numerical quadrature for singular and near-singular integrals of boundary element method and its applications in large-scale acoustic problems. Chinese J. Acoust. 2017, 36, 289–301. [Google Scholar]
- Chen, J.T.; Hong, H.-K. Review of Dual Integral Representations with Emphasis on Hypersingularity and Divergent Series. In Proceedings of the Fifith International Colloquium on Numerical Analysis, Plovdiv, Bulgaria, 18–23 August 1996; pp. 1–22. [Google Scholar]
- do Rego Silva, J.J. Acoustic and Elastic Wave Scattering Using Boundary Elements, 1st ed.; Computational Mechanics Publications: Southampton, UK; Billerica, MA, USA, 1994. [Google Scholar]
- Keuchel, S.; Hagelstein, N.C.; Zaleski, O.; von Estorff, O. Evaluation of hypersingular and nearly singular integrals in the Isogeometric Boundary Element Method for acoustics. Comput. Methods Appl. Mech. Eng. 2017, 325, 488–504. [Google Scholar] [CrossRef]
- Jargstorff, F. Stephen Kirkup’s Acoustic BEM codes written in Python. Available online: https://github.com/fjargsto/AcousticBEM (accessed on 7 September 2018).
- Zhu, S.; Zhang, Y. A comparative study of the direct boundary element method and the dual reciprocity boundary element method in solving the Helmholtz equation. ANZIAM J. 2007, 49, 131–150. [Google Scholar] [CrossRef]
- Cipriano, R.; Hersberger, R.; Hauser, G.; Noy, D.; Storyk, J. Low Frequency Behavior of Small Rooms. In Proceedings of the Audio Engineering Society, New York, NY, USA, 29 October–1 November 2015. [Google Scholar]
- Chusov, A.A.; Statsenko, L.G.; Anisimov, P.N.; Mirgoronskaya, Y.V.; Cherkasova, N.A.; Bernavskaya, M.V. Computer Simulation of an Arbitrary Acoustical Field in Rooms. In Proceedings of the 2017 Asia Modelling Symposium, Kota Kinabalu, Malaysia, 4–6 December 2017; IEEE: Kota Kinabalu, Malaysia, 2017. [Google Scholar]
- Ferreira, Á.C.; de Morais, M.V.G.; de Albuquerque, E.L.; Campos, L.S. Fast Boundary Element Simulations for for Complex Geometry Bidimensional Enclosures. In Proceedings of the CILAMCE; Avila, S.M., Ed.; ABMEC: Brasilia, Brazil, 2016. [Google Scholar]
- Kuster, M. Inverse Methods in Room Acoustics with Under-Determined Data and Applications to Virtual Acoustics; Queen’s University: Belfast, UK, 2007. [Google Scholar]
- Konkel, F. Sound Field in Small Fitted Enclosures; Technical University of Berlin: Berlin, Germany, 2012. [Google Scholar]
- Stringfellow, N.D.; Smith, R.N.L. The use of exact values at quadrature points in the boundary element method. Trans. Model. Simul. 1999, 24, 239–248. [Google Scholar]
- Wozniak, Z.; Purcell, C. Variable separation in acoustic radiation problems using Chebyshev polynomials. Trans. Model. Simul. 1997, 18, 419–428. [Google Scholar]
- Zhou, S.; Zhang, S. Structural-Acoustic Analysis of Automobile Passenger Compartment. Appl. Mech. Mater. 2012, 236–237, 175–179. [Google Scholar] [CrossRef]
- Acikgoz, S.; Ozer, M.B.; Royston, T.J.; Mansy, H.A.; Sandler, R.H. Experimental and Computational Models for Simulating Sound Propagation Within the Lungs. J. Vib. Acoust. 2008, 130, 021010–021020. [Google Scholar] [CrossRef] [PubMed]
- Ozer, M.B.; Acikgoz, S.; Royston, T.J.; Mansy, H.A.; Sandler, R.H. Boundary element model for simulating sound propagation and source localization within the lungs. J. Acoust. Soc. Am. 2007, 122, 657–671. [Google Scholar] [CrossRef]
- Wijaya, F.B.; Mohapatra, A.R.; Sepehrirahnama, S.; Lim, K.M. Coupled acoustic-shell model for experimental study of cell stiffness under acoustophoresis. Microfluid. Nanofluidics 2016, 20, 1–15. [Google Scholar] [CrossRef]
- Kirkup, S.M. Solving the Linear Systems of Equations in the Generalized Direct Boundary Element Method. In Proceedings of the 1st International Conference on Numerical Modelling in Engineering, Ghent, Belgium, 28–29 August 2018; Springer: Singapore, 2018. [Google Scholar]
- Galkowski, J.; Muller, E.H.; Spence, E.A. Wavenumber-explicit analysis for the Helmholtz h -BEM: Error estimates and iteration counts for the Dirichlet problem. 2019. not yet published. [Google Scholar] [CrossRef]
- Baydoun, S.K.; Marburg, S. Quantification of Numerical Damping in the Acoustic Boundary Element Method for Two-Dimensional Duct Problems. J. Theor. Comput. Acoust. 2018, 26, 1850022. [Google Scholar] [CrossRef]
- Fahnline, J.B. Numerical difficulties with boundary element solutions of interior acoustic problems. J. Sound Vib. 2009, 319, 1083–1096. [Google Scholar] [CrossRef]
- Marburg, S. Numerical Damping in the Acoustic Boundary Element Method. Acta Acust. United Acust. 2016, 102, 415–418. [Google Scholar] [CrossRef]
- Steinbach, O.; Unger, G. Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem. SIAM J. Numer. Anal. 2012, 50, 710–728. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Yay, S.-T. Eigenvalues of the Laplacian through Boundary Integral Equations. SIAM J. Matrix Anal. Appl. 1991, 12, 597–609. [Google Scholar] [CrossRef]
- Unger, G. Analysis of Boundary Element Methods for Laplacian Eigenvalue Problems; Brenn, G., Holzapfel, G.A., Schanz, M., Steinbach, O., Eds.; Monographi.: Graz, Austria, 2009; ISBN 9783851250817. [Google Scholar]
- Zhao, L.; Barnett, A. Robust and efficient solution of the drum problem via Nystrom approximation of the Fredholm determinant. SIAM J. Numer. Anal. 2014, 53, 1–21. [Google Scholar] [CrossRef]
- Barnett, A.H.; Hassell, A. Fast Computation of High Frequency Dirichlet Eigenmodes via the Spectral Flow of the Interior Neumann-to-Dirichlet Map. Commun. Pure Appl. Math. 2014, 67, 351–407. [Google Scholar] [CrossRef]
- Kang, S.W.; Atluri, S.N. Application of Nondimensional Dynamic Influence Function Method for Eigenmode Analysis of Two-Dimensional Acoustic Cavities. Adv. Mech. Eng. 2015. [Google Scholar] [CrossRef]
- Kamiya, N.; Andoh, E.; Nogae, K. A new complex-valued formulation and eigenvalue analysis of the Helmholtz equation by boundary element method. Adv. Eng. Softw. 1996, 26, 219–227. [Google Scholar] [CrossRef]
- Kamiya, N.; Andoh, E.; Nogae, K. Iterative local minimum search for eigenvalue determination of the Helmholtz equation by boundary element formulation. Trans. Built Environ. 1995, 10, 229–236. [Google Scholar]
- Kamiya, N.; Andoh, E. Eigenvalue Analysis Schemes and Boundary Formulations: Recent Developments. Trans. Built Environ. 1995, 10, 489–496. [Google Scholar]
- Ih, J.-G.; Kim, B.-K.; Choo, W.-S. Comparison of Eigenvalue Analysis Techniques in Acoustic Boundary Element Method. In Proceedings of the EuroNoise ’95, Lyon, France, 21–23 March 1995; pp. 591–596. [Google Scholar]
- Iemma, U.; Gennaretti, M. A boundary-field integral equation for analysis of cavity acoustic spectrum. J. Fluids Struct. 2006, 22, 261–272. [Google Scholar] [CrossRef]
- Ghassemi, H.; Kohansal, A.R. Solving the Helmholtz Equation using Direct Boundary Element Method and Dual Reciprocity Boundary Element Method. Int. J. Res. Curr. Dev. 2016, 2, 81–85. [Google Scholar]
- Gao, H.; Matsumoto, T.; Takahashi, T.; Isakari, H. Eigenvalue analysis for acoustic problem in 3D by boundary element method with the block Sakurai-Sugiura method. Eng. Anal. Bound. Elem. 2013, 37, 914–923. [Google Scholar] [CrossRef]
- Effenberger, C.; Kressner, D. Chebyshev interpolation for nonlinear eigenvalue problems. BIT Numer. Math. 2012, 52, 933–951. [Google Scholar] [CrossRef]
- Durán, M.; Nédélec, J.-C.; Ossandón, S. An Efficient Galerkin BEM to Compute High Acoustic Eigenfrequencies. J. Vib. Acoust. 2009, 131, 031001. [Google Scholar] [CrossRef]
- Chen, J.T.; Lin, S.R.; Chen, K.H.; Chen, I.L.; Chyuan, S.W. Eigenanalysis for Membranes with Stringers using Conventional BEM in Conjunction with SVD Technique. Comput. Methods Appl. Mech. Eng. 2003, 192, 1299–1322. [Google Scholar] [CrossRef]
- Chen, J.T.; Huang, C.X.; Chen, K.H. Determination of spurious eigenvalues and multiplicities of true eigenvalues using the real-part dual BEM. Comput. Mech. 1999, 24, 41–51. [Google Scholar] [CrossRef]
- B&W Loudspeakers Ltd. Development of the B&W 800D; Worthing: West Sussex, UK. Available online: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjek72WqtvhAhXWfd4KHacjAFYQFjAAegQIBhAC&url=http%3A%2F%2Fbwgroupsupport.com%2Fdownloads%2Freference%2Fbw%2F800_Development_Paper.pdf&usg=AOvVaw0MuUK5aLTcSXmKx2ph10K6 (accessed on 18 April 2019).
- Ali, A.; Rajakumar, C.; Yunus, S.M. Advances in Acoustic Eigenvalue Analysis using Boundary Element Method. Comput. Struct. 1995, 56, 837–847. [Google Scholar] [CrossRef]
- Ali, A.; Rajakumar, C. The Boundary Element Method: Applications in Sound and Vibration, 1st ed.; A.A. Balkenna: Leiden, The Netherlands, 2004. [Google Scholar]
- Kirkup, S.M.; Amini, S. Solution of the Helmholtz eigenvalue problem via the boundary element method. Int. J. Numer. Methods Eng. 1993, 36, 321–330. [Google Scholar] [CrossRef]
- Kirkup, S.M.; Jones, M.A. Computational methods for the acoustic modal analysis of an enclosed fluid with application to a loudspeaker cabinet. Appl. Acoust. 1996, 48, 275–299. [Google Scholar] [CrossRef]
- Ossandon, S.; Klenner, J.; Reyes, C. Direct Nondestructive Algorithm for Shape Defects Evaluation. J. Vib. Acoust. 2011, 133, 031006. [Google Scholar] [CrossRef]
- Ossandón, S.; Reyes, C.; Reyes, C.M. Neural network solution for an inverse problem associated with the Dirichlet eigenvalue. Comput. Math. Appl. 2016, 72, 1153–1163. [Google Scholar]
- Leblanc, A. A Meshless Method for the Helmholtz Eigenvalue Problem Based on the Taylor Series of the 3-D Green’s Function. Acta Acust. United Acust. 2013, 99, 770–776. [Google Scholar] [CrossRef]
- Leblanc, A.; Lavie, A.; Vanhille, C. An Acoustic Resonance Study of Complex Three-Dimensional Cavities by a Particular Integral Method. Acta Acust. United Acoust. 2005, 91, 873–879. [Google Scholar]
- Xiao, J.; Meng, S.; Zhang, C.; Zheng, C. Contour integral based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems. Comput. Methods Appl. Mech. Eng. 2016, 310, 33–57. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, C.; Huang, T.; Sakurai, T. Solving large-scale nonlinear eigenvalue problems by rational interpolation and resolvent sampling based Rayleigh—Ritz method. Int. J. Numer. Methods Eng. 2017, 110, 776–800. [Google Scholar] [CrossRef]
- Yeih, W.; Chen, J.T.; Chen, K.H.; Wong, F.C. A study on the multiple reciprocity method and complex-valued formulation for the Helmholtz equation. Adv. Eng. Softw. 1998, 29, 1–6. [Google Scholar] [CrossRef]
- Schenck, H.A. Improved Integral Formulation for Acoustic Radiation Problems. J. Acoust. Soc. Am. 1968, 44, 41–58. [Google Scholar] [CrossRef]
- Zaman, S.I. A Comprehensive Review of Boundary Integral Formulations of Acoustic Scattering Problems. Sci. Technol. Spec. Rev. 2000, 281–310. [Google Scholar] [CrossRef]
- Wright, L.; Robinson, S.P.; Humphrey, V.F.; Harris, P.; Hayman, G. The Application of Boundary Element Methods to Near- Field Acoustic Measurements on Cylindrical Surfaces at NPL; National Physical Laboratory: London, UK, 2005.
- Wright, L.; Robinson, S.P.; Humphrey, V.F. Prediction of acoustic radiation from axisymmetric surfaces with arbitrary boundary conditions using the boundary element method on a distributed computing system. J. Acoust. Soc. Am. 2009, 125, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Marburg, S. Conventional boundary element techniques: Recent developments and opportunities. In Proceedings of the Inter-Noise, Hong Kong, China, 27–30 August 2017; pp. 2673–2688. [Google Scholar]
- Christensen, M.J. Using the Boundary Element Method for Prediction of Sound Radiated from an Arbitrarily Shaped Vibrating Body. Mater’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2002. [Google Scholar]
- Burton, A.J. The Solution of Helmholtz Equation in Exterior Domains using Integral Equations; NPL Report NAC30; National Physical Laboratory: London, UK, 1973.
- Augusztinovicz, F. State of the Art of Practical Applications of Numerical Methods in Vibro-Acoustics. Available online: http://last.hit.bme.hu/download/fulop/Publikaciok/Iberoamericano_Statoftheart.pdf (accessed on 18 April 2019).
- Amini, S.; Harris, P.J. A comparison between various boundary integral formulations of the exterior acoustic problem. Comput. Methods Appl. Mech. Eng. 1990, 84, 59–75. [Google Scholar] [CrossRef]
- Margonari, M. The Solution of Exterior Acoustic Problems with Scilab. Available online: http://www.openeering.com/node/54 (accessed on 7 September 2018).
- Fiala, P.; Rucz, P. NiHu: An open source C++ BEM library. Adv. Eng. Softw. 2014, 75, 101–112. [Google Scholar] [CrossRef]
- Esward, T.J.; Lees, K.; Sayers, D.; Wright, L. Testing Continuous Modelling Software: Three Case Studies; National Physical Laboratory: London, UK, 2004.
- Young, K.; Kearney, G.; Tew, A.I. Loudspeaker Positions with Sufficient Natural Channel Separation for Binaural Reproduction. In Proceedings of the 2018 AES International Conference on Spatial Reproduction - Aesthetics and Science, Tokyo, Japan, 7–9 August 2018; p. REB1-9. [Google Scholar]
- Vanderkooy, J. The Acoustic Center: A New Concept for Loudspeakers at Low Frequencies. In Proceedings of the Audio Engineering Society, San Francisco, CA, USA, 5–8 October 2006; pp. 6859–6989. [Google Scholar]
- Thompson, A. Line Array Splay Angle Optimisation. Available online: https://www.researchgate.net/publication/272490480 (accessed on 18 April 2019).
- Sanalatii, M.; Herzog, P.; Melon, M.; Guillermin, R.; Le Roux, J.-C.; Poulain, N. Measurement of the Frequency and Angular Responses of Loudspeaker Systems Using Radiation Modes. In Proceedings of the Audio Engineering Society Convention 141, Los Angeles, CA, USA, 29 October–1 November 2016; Audio Engineering Society: New York, NY, USA, 2016; p. 9615. [Google Scholar]
- Morgans, R.C. Optimisation Techniques for Horn Loaded Loudspeakers. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2005. [Google Scholar]
- Kolbrek, B.; Svensson, U.P. Using mode matching methods and edge diffraction in horn loudspeaker simulation. Acta Acust. United Acust. 2015, 101, 760–774. [Google Scholar] [CrossRef]
- Kolbrek, B. Using Mode Matching Methods in Horn Loudspeaker Simulation. In Proceedings of the Forum Acousticum, Krakow, Poland, 8–12 September 2014. [Google Scholar]
- Kolbrek, B. Extensions to the Mode Matching Method for Horn Loudspeaker Simulation. Ph.D. Thesis, Norwegian University of Science and Technology, Trodheim, Norway, 2016. [Google Scholar]
- Kirkup, S.M.; Thompson, A.; Kolbrek, B.; Yazdani, J. Simulation of the acoustic field of a horn loudspeaker by the boundary element-Rayleigh integral method. J. Comput. Acoust. 2013, 21, 1250020. [Google Scholar] [CrossRef]
- Henwood, D.J.; Vanderkooy, J. Polar Plots for Low Frequencies: The Acoustic Centre. In Proceedings of the Audio Engineering Society Convention 120, Paris, France, 20–23 May 2006. [Google Scholar]
- Henwood, D.J. The Boundary Element Method and Horn Design. J. Audio Eng. Soc. 1993, 41, 486–496. [Google Scholar]
- Hacihabiboǧlu, H.; De Sena, E.; Cvetković, Z.; Johnston, J.; Smith, J.O. Perceptual Spatial Audio Recording, Simulation, and Rendering: An overview of spatial-audio techniques based on psychoacoustics. IEEE Signal Process. Mag. 2017, 34, 36–54. [Google Scholar] [CrossRef]
- Grande, E.F. Sound Radiation from a Loudspeaker Cabinet using the Boundary Element Method; Technical University of Denmark: Copenhagen, Denmark, 2008. [Google Scholar]
- Geaves, G.P.; Moore, J.P.; Henwood, D.J.; Fryer, P.A. Verification of an Approach for Transient Structural Simulation of Loudspeakers Incorporating Damping. In Proceedings of the Audio Engineering Society 100th Convention, Amsterdam, The Netherlands, 12–15 May 2001. [Google Scholar]
- Fryer, P.A.; Henwood, D.; Moore, J.; Geaves, G. Verification of an Approach for Transient Structural Simulation of Loudspeakers Incorporating Damping; AES Convention Paper 5320; Audio Engineering Society: New York, NY, USA, 2001. [Google Scholar]
- Feistel, S.; Thompson, A.; Ahnert, W. Methods and Limitations of Line Source Simulation. In Proceedings of the AES Convention 125, San Francisco, CA, USA, 2–5 October 2008; p. 7524. [Google Scholar]
- Candy, J. Accurate Calculation of Radiation and Diffraction from Loudspeaker Enclosures at Low Frequency. AES J. Audio Eng. Soc. 2013, 61, 356–365. [Google Scholar]
- Bastyr, K.J.; Capone, D.E. On the Acoustic Radiation from a Loudspeaker’s Cabinet. J. Audio Eng. Soc. 2003, 51, 234–243. [Google Scholar]
- Xu, Y.; Xu, L.; Li, X. The sound field analysis of piezoelectric micromachined ultrasound transducer array. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changechun, China, 9–12 August 2009. [Google Scholar]
- Teng, D.; Chen, H.; Zhu, N. Computer Simulation of Sound Field Formed around Transducer Source Used in Underwater Acoustic Communication. In Proceedings of the ICACTE 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, 20–22 August 2010; pp. 144–148. [Google Scholar]
- Kurowski, A.; Kotus, J.; Kostef, B.; Czyzewski, A. Numerical Modeling of Sound Intensity Distributions around Acoustic Transducer. In Audio Engineering Society Convention 140; Audio Engineering Society: Paris, France, 2016; p. 9525. [Google Scholar]
- Kapuria, S.; Sengupta, S.; Dumir, P.C. Three-dimensional solution for simply-supported piezoelectric cylindrical shell for axisymmetric load. Comput. Methods Appl. Mech. Eng. 1997, 140, 139–155. [Google Scholar] [CrossRef]
- Amini, S.; Harris, P.J.; Wilton, D.T. Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem; Springer: Berlin, Germany, 1992; Volume 77, ISBN 978-3-540-55562-9. [Google Scholar]
- Christensen, R. Acoustic Modeling Of Hearing Aid Components. Ph.D. Thesis, University of Southern Denmark, Odense, Denmark, 2010. [Google Scholar]
- Lock, A. Development of a 2D Boundary Element Method to model Schroeder Acoustic Diffusers. Bachelor’s Thesis, University of Tasmania, Tasmania, Australia, 2014. [Google Scholar]
- Döşemeciler, A. A Study on Number Theoretic Construction and Prediction of Two Dimensional Acoustic Diffusers for Architectural Applications. Ph.D. Thesis, Izmir Institute of Technology, Izmir, Turkey, 2011. [Google Scholar]
- Takane, S.; Matsuhashi, T.; Sone, T. Numerical estimation of individual HRTFs by using BEM. In Proceedings of the International Congress on Acoustics, Kyoto, Japan, 4–9 April 2004; pp. 1439–1440. [Google Scholar]
- Jackson, P.J.B.; Desiraju, N. Use of 3D Head Shape for Personalized Binaural Audio. In Proceedings of the Audio Engineering Society Conference: 49th International Conference Audio for Games, London, UK, 6–8 February 2013; pp. 1–6. [Google Scholar]
- Garcia, D.P.; Roozen, B.; Glorieux, C. Calculation of Human Echolocation Cues by Means of the Boundary Element Method. In Proceedings of the 19th International Conference on Auditory Display (ICAD2013), Lodz, Poland, 6–9 July 2013; pp. 253–259. [Google Scholar]
- Betcke, T.; van ’t Wout, E.; Gélat, P. Computationally Efficient Boundary Element Methods for High-Frequency Helmholtz Problems in Unbounded Domains. In Modern Solvers for Helmholtz Problems; Domenico, L., Tang, J., Vuik, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-28832-1. [Google Scholar]
- Wu, S.J.; Kuo, I.; Shung, K.K. Boundary element simulation of backscattering properties for red blood with high frequency ultrasonic transducers. Ultrasonics 2005, 43, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, L.; Chen, J. Acoustic Analysis of a Structure Subjected to Stochastic Excitation Using Statistical Wave Superposition Approach. In Proceedings of the 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; IEEE: Tianjin, China, 2009; pp. 1–5. [Google Scholar]
- Tillema, H.G. Noise Reduction of Rotating Machinery by Viscoelastic Bearing Supports; University of Twente: Enschede, The Netherlands, 2003. [Google Scholar]
- Sorensen, J.D.; Frangopol, D.M. Advances in Reliability and Optimization of Structural Systems; Taylor & Francis: London, UK, 2006. [Google Scholar]
- Saad, A.; El-Sebai, N. Combustion Noise Prediction Inside Diesel Engine. SAE Trans. 1999, 108, 2866–2872. [Google Scholar]
- Roivainen, J. Unit-wave response-based modeling of electromechanical noise and vibration of electrical machines. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2009. [Google Scholar]
- Nijhuis, M.O. Analysis Tool for the Design of Active Structural Acoustic Control Systems. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2003. [Google Scholar]
- Mocsai, T.; Diwoky, F.; Hepberger, A.; Priebsch, H.-H.; Augusztinovicz, F. Application and analysis of an adaptive wave-based technique based on a boundary error indicator for the sound radiation simulation of a combustion engine model. Comput. Assist. Methods Eng. Sci. 2015, 22, 3–30. [Google Scholar]
- Marburg, S. Developments in Structural – Acoustic Optimization for Passive Noise Control. Arch. Comput. Methods Eng. 2002, 9, 291–370. [Google Scholar] [CrossRef]
- Lummer, M.; Akkermans, R.A.; Richter, C.; Pröber, C.; Delfs, J. Validation of a model for open rotor noise predictions and calculation of shielding effects using a fast BEM. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013; p. 2096. [Google Scholar]
- Johnson, O.; Smith, A.V.; Morel, T. The Application of Advanced Analysis Methods to the Reduction of Noise from Air Compressors. In Proceedings of the International Compressor Engineering Conference, West Lafayette, IN, USA, 17–20 July 1990; p. 774. [Google Scholar]
- Jaswon, M.A.; Zaman, S.I. A new BEM Formulation of Acoustic Scattering Problems. Trans. Model. Simul. 1993, 1, 11–21. [Google Scholar]
- Fritze, D.; Marburg, S.; Hardtke, H.J. Estimation of radiated sound power: A case study on common approximation methods. Acta Acust. United Acust. 2009, 95, 833–842. [Google Scholar] [CrossRef]
- Friot, E. Limites et outils d’optimisation du contrôle acoustique actif, CNRS; Laboratoire de Mécanique et d’Acoustique: Marseille, France, 2007. [Google Scholar]
- Chauvicourt, F. Vibro-Acoustics of Rotating Electric Machines Prediction, Validation and Solution; Universite Libre de Bruxelles: Brussels, Belgium, 2018. [Google Scholar]
- Bies, D.A.; Hansen, C.H. Engineering Noise Control Theory and Practice, 4th ed.; CRC Press: Abingdon, UK, 2009. [Google Scholar]
- Ambrogio, M. Virtual Acoustics for Product Design and Prototpying Process; Polytecnico di Milano: Milan, Italy, 2012. [Google Scholar]
- Nuraini, A.A.; Mohd Ihsan, A.K.A.; Nor, M.J.M.; Jamaluddin, N. Vibro-acoustic Analysis of Free Piston Engine Structure using Finite Element and Boundary Element Methods. J. Mech. Sci. Technol. 2012, 26, 2405–2411. [Google Scholar] [CrossRef]
- Rossignol, K.; Lummer, M.; Delfs, J. Validation of DLR’s sound shielding prediction tool using a novel sound source. In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), Miami, FL, USA, 11–13 May 2009. AIAA 2009-3329. [Google Scholar]
- Vlahopoulos, N.; Raveendra, S.T.; Vallance, C.; Messer, S. Numerical implementation and applications of a coupling algorithm for structural–acoustic models with unequal discretization and partially interfacing surfaces. Finite Elem. Anal. Des. 1999, 32, 257–277. [Google Scholar] [CrossRef]
- Vlahopoulos, N.; Stark, R.D. Numerical Approach for Computing Noise-Induced Vibration from Launch Environments. J. Spacecr. Rockets 1998, 35, 355–360. [Google Scholar] [CrossRef]
- Yeh, F.; Chang, X.; Sung, Y. Numerical and Experimental Study on Vibration and Noise of Embedded Rail System. J. Appl. Math. Phys. 2017, 5, 1629–1637. [Google Scholar] [CrossRef]
- Prego-Borges, J.L. Lamb: a Simulation Tool for Air-Coupled Lamb Wave based Ultrasonic NDE Systems. Ph.D. Thesis, Polytechnic University of Catalonia, Barcelona, Splain, 2010. [Google Scholar]
- Cao-Duc, T.; Nguyen-Dang, H. Inverse technique for detection of discontinuous geometry under acoustic field using boundary element method. In Computation and Modeling in Structural adh Mechanical Engineering; Ton Duc Thang University: Ho Chi Minh City, Vietnam, 2012. [Google Scholar]
- Yan, N. Numerical Modelling and Condition Assessment of Timber Utility Poles using Stress Wave Techniques. Ph.D. Thesis, University of Tchnology, Sydney, Australia, 2015. [Google Scholar]
- Grubeša, S.; Domitrović, H.; Jambrošić, K. Performance of Traffic Noise Barriers with Varying Cross-Section. PROMET Traffic Transp. 2011, 23, 161–168. [Google Scholar]
- Hothersall, D.C.; Chandler-Wilde, S.N.; Hajmirzae, M.N. Efficiency of single noise barriers. J. Sound Vib. 1991, 146, 303–322. [Google Scholar] [CrossRef]
- Georgiou, F. Modeling for auralization of urban environments: incorporation of directivity in sound propagation and analysis of a framework for auralizing a car pass-by. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlaands, 2018. [Google Scholar]
- Hargreaves, J.; Rendell, L.; Lam, Y.W. Simulation of acoustic environments for binaural reproduction using a combination of geometrical acoustics and Boundary Element Method. J. Acoust. Soc. Am. 2017, 141, 3783. [Google Scholar] [CrossRef]
- Vuylsteke, X. Development of a reference method based on the fast multipole boundary element method for sound propagation problems in urban environments: formalism, optimizations & applications; Universite Paris-est: Paris, France, 2014. [Google Scholar]
- Davis, D. A review of prediction methods for ground-borne noise due to tunnel construction activities. In Proceedings of the 14th Australasian Tunnelling Conference 2011: Development of Underground Space, Sydney, Australia, 8–10 March 2011; pp. 39–51. [Google Scholar]
- Davis, D. A Review of Prediction Methods for Ground-Borne Noise due to Construction Activities. In Proceedings of the Proceedings of the 20th International Congress on Acoustics, Sydney, Australia, 23–27 August 2010; pp. 23–27. [Google Scholar]
- Chandler-Wilde, S.N. The Boundary Element Method in Outdoor Noise Propagation. Proc. Inst. Acoustcs 1997, 19, 27–50. [Google Scholar]
- Camargo, H.E.; Azman, A.S.; Peterson, J.S. Engineered Noise Controls for Miner Safety and Environmental Responsibility. In Advances in Productive, Safe and Responsible Coal Mining; Hirschi, J., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; pp. 215–244. [Google Scholar]
- Choi, J.-W.; Kim, K.-J. A New Sound Reception System using a Symmetrical Microphone Array and its Numerical Simulation. J. Sh. Ocean Technol. 2004, 8, 18–25. [Google Scholar]
- Hunter, A.J. Underwater Acoustic Modelling for Synthetic Aperture Sonar. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2006. [Google Scholar]
- Wagenhoffer, N.; Moored, K.W.; Jaworski, J.W. Method and the Noise Generation of an Idealized School of Fish. In Proceedings of the International Conference on Flow Induced Noise and Vibration Issues and Aspects, Hong Kong, China, 27–28 April 2017; Ciappi, E., Ed.; Springer: Cham, Switzerland, 2017; pp. 157–178. [Google Scholar]
- Mookerjee, A. Coherent Backscatter Enhancement from Finite Sized Aggregations of Scatterers. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2017. [Google Scholar]
- Dimon, M.N.; Ula, M.; Hashim, A.W.I.M.; Hamid, S.Z.A.; Baharom, A.; Ahmad, A.H. The Study of Normal Incidence Sound Absorption Coefficience (Sound Absorption) of Wood Circular Perforated Panel (CPP) Using Numerical Modelling Technique; University of Malaysia: Kuala Lumpur, Malaysia, 2006. [Google Scholar]
- Amini, S.; Kirkup, S.M. Solution of Helmholtz equation in the exterior domain by elementary boundary integral methods. J. Comput. Phys. 1995, 118, 208–221. [Google Scholar] [CrossRef]
- Hall, W.S.; Robertson, W.H. Boundary element methods for acoustic wave scattering. In Proceedings of the Boundary Elements X, Southampton, UK, 6–9 September 1988; Computational Mechanics Publications: Southampton, UK, 1988; Volume 4, pp. 301–315. [Google Scholar]
- Seybert, A.F.; Rengarajan, T.K. The use of CHIEF to obtain unique solutions for Acoustic Radiation using Boundary Integral Equations. J. Acoust. Soc. Am. 1987, 81, 1299–1306. [Google Scholar] [CrossRef]
- Cutanda-Henriquez, V.; Juhl, P.M. OpenBEM - An open source Boundary Element Method software in Acoustics. In Proceedings of the Internoise, Lisbon, Portugal, 13–16 June 2010; pp. 1–10. [Google Scholar]
- Mohsen, A.A.K.; Ochmann, M. Numerical experiments using CHIEF to treat the nonuniqueness in solving acoustic axisymmetric exterior problems via boundary integral equations. J. Adv. Res. 2010, 1, 227–232. [Google Scholar] [CrossRef]
- Juhl, P.M. The Boundary Element Method for Sound Field Calculations; Technical University of Denmark: Copenhagen, Denmark, 1993. [Google Scholar]
- Marburg, S.; Wu, T.W. Treating the Phenomenon of Irregular Frequencies. In Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods; Marburg, S., Nolte, B., Eds.; Springer: Berlin, Germany, 2008; pp. 411–434. [Google Scholar]
- Visser, R. A Boundary Element Approach to Acoustic Radiation and Source Identification. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2004. [Google Scholar]
- Marburg, S.; Amini, S. Cat’s Eye Radiation with Boundary Elements: Comparative Study on the Treatment of Irregular Frequencies. J. Comput. Acoust. 2005, 13, 21–45. [Google Scholar] [CrossRef]
- Brakhage, H.; Werner, P. Ueber das Dirichletsche Au enraumproblem fuer die Helmholtzsche Schwingungsgleichung. Arch. Math. 1965, 16, 325–329. [Google Scholar] [CrossRef]
- Leis, R. Zur Dirichletschen Randwertaufgabe des Auenraums der Schwingungsgleichung. Math. Z. 1965, 90, 205–211. [Google Scholar] [CrossRef]
- Panich, O.I. On the Question of the Solvability of the Exterior Boundary Problem for the Wave Equation and Maxwell’s Equation. Uspeki Mat. Nauk 1965, 20, 211–226. [Google Scholar]
- Kussmaul, R. Ein numeriches Verfahren zur Losung des Neumannschen Au enraumproblems fuer die Helmholtsche Schwingungsgleichung. Computing 1979, 4, 246–273. [Google Scholar] [CrossRef]
- Burton, A.J.; Miller, G.F. The Application of Integral Equations to the Numerical Solution of Some Exterior Boundary-Value Problems. Proc. Roy. Soc. Lond. 1971, 323, 201–210. [Google Scholar] [CrossRef]
- Nowak, L.J.; Zielinski, T.G. Determination of the Free-Field Acoustic Radiation Characteristics of the Vibrating Plate Structures With Arbitrary Boundary Conditions. J. Vib. Acoust. 2015, 137, 051001. [Google Scholar] [CrossRef]
- Kirkup, S.M. Fortran Codes for Computing the Acoustic Field Surrounding a Vibrating Plate by the Rayleigh Integral Method. In Proceedings of the Mathematical Methods, Computational Techniques, Non-Linerat Systems, Intelligent Systems, Corfu, Greece, 26–28 October 2008; pp. 364–369. [Google Scholar]
- Khorshidi, K.; Akbari, F.; Ghadirian, H. Experimental and analytical modal studies of vibrating rectangular plates in contact with a bounded fluid. Ocean Eng. 2017, 140, 146–154. [Google Scholar] [CrossRef]
- Hoernig, R.O.H. Green’s Functions and Integral Equations for the Laplace and Helmholtz Operators in Impedance Half-Spaces. Ph.D. Thesis, Ecole Polytechnique, Paris, France, 2010. [Google Scholar]
- Bose, T.; Mohanty, A.R. Sound Radiation Response of a Rectangular Plate Having a Side Crack of Arbitrary Length, Orientation, and Position. J. Vib. Acoust. 2015, 137, 021019. [Google Scholar] [CrossRef]
- Arenas, J.P.; Ramis, J.; Alba, J. Estimation of the Sound Pressure Field of a Baffled Uniform Elliptically Shaped Transducer. Appl. Acoust. 2010, 71, 128–133. [Google Scholar] [CrossRef]
- Arenas, J.P. Numerical Computation of the Sound Radiation From a Planar Baffled Vibrating Surface. J. Comput. Acoust. 2008, 16, 321–341. [Google Scholar] [CrossRef]
- Arenas, J.P. Matrix Method for Estimating the Sound Power Radiated from a Vibrating Plate for Noise Control Engineering Applications. Lat. Am. Appl. Res. 2009, 39, 345–352. [Google Scholar]
- Alia, A.; Soulie, Y. Simulation of Acoustical Response Using Rayleigh Method. In Proceedings of the Pressure Vessels and Piping/ICPVT-11 Conference, Vancouver, BC, Canada, 23–27 July 2006. [Google Scholar]
- Liao, C.; Ma, C. Vibration characteristics of rectangular plate in compressible inviscid fluid. J. Sound Vib. 2016, 362, 228–251. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, W.; Liu, Y. Analyzing acoustic radiation modes of baffled plates with a fast multipole Boundary Element Method. J. Vib. Acoust. 2013, 135, 11007. [Google Scholar] [CrossRef]
- Li, S. Modal models for vibro-acoustic response analysis of fluid-loaded plates. J. Vib. Control 2010, 17, 1540–1546. [Google Scholar]
- Partha, B.; Atanu, S.; Arup, N.; Michael, R. A Novel FE_BE Approach for Free Field Vibro-acoustic Problem. In Proceedings of the Acoustics 2013 New Delhi, New Delhi, India, 10–15 November 2013; pp. 1367–1372. [Google Scholar]
- Basten, T.G.H. Noise Reduction by Viscothermal Acousto-elastic Interaction in Double Wall Panels. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2001. [Google Scholar]
- Arunkumar, M.P.; Pitchaimani, J.; Gangadharan, K.V.; Lenin Babu, M.C. Effect of Core Topology on Vibro-acoustic Characteristics of Truss Core Sandwich Panels. Procedia Eng. 2016, 144, 1397–1402. [Google Scholar] [CrossRef]
- Arunkumar, M.P.; Pitchaimani, J.; Gangadharan, K.V.; Lenin Babu, M.C. Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures. Aerosp. Sci. Technol. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Arunkumar, M.P.; Pitchaimani, J.; Gangadharan, K.V.; Lenin Babu, M.C. Sound transmission loss characteristics of sandwich aircraft panels: Influence of nature of core. J. Sandw. Struct. Mater. 2017, 19, 26–48. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Petrone, G.; Franco, F.; De Rosa, S. A Review of the Vibroacoustics of Sandwich Panels: Models and Experiments. J. Sandw. Struct. Mater. 2013, 15, 541–582. [Google Scholar] [CrossRef]
- Denli, H.; Sun, J.Q. Structural-acoustic Optimization of Composite Sandwich Structures: A Review. Shock Vib. Dig. 2007, 39, 189–200. [Google Scholar] [CrossRef]
- Galgalikar, R.; Thompson, L.L. Design Optimization of Honeycomb Core Sandwich Panels for Maximum Sound Transmission Loss. J. Vib. Acoust. 2016, 138, VIB-15-1339. [Google Scholar] [CrossRef]
- Chiang, H.-Y.; Huang, Y.-H. Vibration and sound radiation of an electrostatic speaker based on circular diaphragm. J. Acoust. Soc. Am. 2015, 137, 1714–1721. [Google Scholar] [CrossRef] [PubMed]
- Nowak, L.J.; Zielinski, T.G.; Meissner, M. Active vibroacoustic control of plate structures with arbitrary boundary conditions. IPPT Reports Fundam. Technol. Res. 2013, 4, 5–9. [Google Scholar]
- Hasheminejad, S.M.; Keshavarzpour, H. Robust active sound radiation control of a piezo-laminated composite circular plate of arbitrary thickness based on the exact 3D elasticity model. J. Low Freq. Noise Vib. Act. Control 2016, 35, 101–127. [Google Scholar] [CrossRef]
- Diwan, G.C. Partition of Unity Boundary Element and Finite Element Method: Overcoming Non-uniqueness and Coupling for Acoustic Scattering in Heterogeneous Media. Ph.D. Thesis, Durham University, Durham, UK, 2014. [Google Scholar]
- Brick, H.; Ochmann, M. A Half-space BEM for the Simulation of Sound Propagation above an Impedance Plane. J. Acoust. Soc. Am. 2008, 123, 3418. [Google Scholar] [CrossRef]
- Li, Y.L.; White, M.J.; Hwang, M.H. Green’s Function for Wave Propagation above an Impedance Ground. J. Acoust. Soc. Am. 1994, 96, 2485–2490. [Google Scholar] [CrossRef]
- Piscoya, R.; Ochmann, M. Acoustical Green’s Function and Boundary Element Techniques for 3D Half-Space Problems. J. Theor. Comput. Acoust. 2017, 25, 1730001. [Google Scholar] [CrossRef]
- Hwang, L.S.; Tuck, E.O. On the oscillations of harbours of arbitrary shape. J. Fluid Mech. 1970, 42, 447–464. [Google Scholar] [CrossRef]
- Lee, J. Wave-induced oscillations in harbours of arbitrary geometry. J. Fluid Mech. 1971, 45, 375–394. [Google Scholar] [CrossRef]
- Chandler-Wilde, S.N.; Peplow, A.T. A Boundary Integral Equation Formulation for the Helmholtz Equation in a Locally Perturbed Half-plane. ZAMM J. Appl. Math. Mech. 2005, 85, 79–88. [Google Scholar] [CrossRef]
- Krishnasamy, G.; Schmer, L.W.; Rudolphi, T.J.; Rizzo, F.J. Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering. J. Appl. Mech. 1990, 57, 404–414. [Google Scholar] [CrossRef]
- Gray, L.J. Boundary element method for regions with thin internal cavities. Eng. Anal. Bound. Elem. 1989, 6, 180–184. [Google Scholar] [CrossRef]
- Terai, T. On calculation of sound fields around three dimensional objects by integral equation methods. J. Sound Vib. 1980, 69, 71–100. [Google Scholar] [CrossRef]
- Martin, P.A.; Rizzo, F.J. On boundary integral equations for crack problems. Proc. R. Soc. London, Ser. A-Mathematical Phys. Eng. Sci. 1989, 421, 341–355. [Google Scholar] [CrossRef]
- Kirkup, S.M. The Computational Modelling of Acoustic Shields by the Boundary and Shell Element Method. Comput. Struct. 1991, 40, 1177–1183. [Google Scholar] [CrossRef]
- Kirkup, S.M. Solution of discontinuous interior Helmholtz problems by the boundary and shell element method. Comput. Methods Appl. Mech. Eng. 1997, 140, 393–404. [Google Scholar] [CrossRef]
- Sedaghatjoo, Z.; Dehghan, M.; Hosseinzadeh, H. On uniqueness of numerical solution of boundary integral equations with 3-times monotone radial kernels. J. Comput. Appl. Math. 2017, 311, 664–681. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Ih, J.-G.; Lee, B.-C. A Guideline for Using the Multi-Domain BEM for Analyzing the Interior Acoustic Field. J. Comput. Acoust. 2003, 11, 403. [Google Scholar] [CrossRef]
- Gennaretti, M.; Giordani, A.; Morino, L. A third-order boundary element method for exterior acoustics with applications to scattering by rigid and elastic shells. J. Sound Vib. 1999, 222, 699–722. [Google Scholar] [CrossRef]
- Fahnline, J.B. Boundary-Element Analysis. In Engineering Vibroacoustic Analysis: Methods and Applications; Hambric, S.A., Sung, S.H., Nefske, D.J., Eds.; John Wiley & Sons: Chichester, UK, 2016; Chapter 7. [Google Scholar]
- Wilkes, D.; Alexander, P.; Duncan, A. FMBEM analysis of sound scattering from a damping plate in the near field of a hydrophone. In Proceedings of the Proceedings of Acoustics, Fremantle, Australia, 21–23 November2012; pp. 1–8. [Google Scholar]
- Poblet-Puig, J. Numerical Modelling of Sound Transmission in Lightweight Structures; Universitat Politecnica de Catalunyu: Catalan, Spain, 2008. [Google Scholar]
- Lee, J.-S.; Ih, J.-G. Reactive characteristics of partial screens for a sound source mounted in an infinite baffle. J. Acoust. Soc. Am. 1995, 98, 1008–1016. [Google Scholar] [CrossRef]
- Wilkes, D.R. The Development of a Fast Multipole Boundary Element Method for Coupled Acoustic and Elastic Problems. Ph.D. Thesis, Curtin University, Perth, Australia, 2014. [Google Scholar]
- Qian, Z.-H.; Yamanaka, H. An efficient approach for simulating seismoacoustic scattering due to an irregular fluid-solid interface in multilayered media. Geophys. J. Int. 2012, 189, 524–540. [Google Scholar] [CrossRef]
- Zhou-Bowers, S.; Rizos, D.C. B-Spline Impulse Response Functions of Rigid Bodies for Fluid-Structure Interaction Analysis. Hindawi Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef]
- Zheng, C.-J.; Gao, H.F.; Du, L.; Chen, H.B.; Zhang, C. An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method. J. Comput. Phys. 2016, 305, 677–699. [Google Scholar] [CrossRef]
- Qin, H.; Zheng, H.; Qin, W.; Zhang, Z. Lateral vibration control of a shafting-hull coupled system with electromagnetic bearings. J. Low Freq. Noise, Vib. Act. Control 2018, 146134841881151. [Google Scholar] [CrossRef]
- Pluymers, B.; Desmet, W.; Vanderpitte, D.; Sas, P. On the use of a wave based prediction technique for steady-state structural-acoustic radiation analysis. CMES 2005, 7, 173–183. [Google Scholar]
- Pluymers, B. Wave based Modelling Methods for Steady-State Vibro-acoustics; Katholieke Universiteit Leuven: Leuven, Belgium, 2006. [Google Scholar]
- Pluymers, B.; Desmet, W.; Vandepitte, D.; Sas, P. Application of an efficient wave-based prediction technique for the analysis of vibro-acoustic radiation problems. J. Comput. Appl. Math. 2004, 168, 353–364. [Google Scholar] [CrossRef]
- Peters, H.; Kessissoglou, N.; Marburg, S. Modal decomposition of exterior acoustic-structure interaction. J. Acoust. Soc. Am. 2013, 133, 2668–2677. [Google Scholar] [CrossRef]
- Peters, H.; Kessissoglou, N.; Marburg, S. Modal contributions to sound radiated from a fluid loaded cylinder. J. Acoust. Soc. Am. 2013, 133, 2668–2677. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Wang, J.; Xiao, J.; Wen, L. Coupled BE–FE based vibroacoustic modal analysis and frequency sweep using a generalized resolvent sampling method. Comput. Methods Appl. Mech. Eng. 2019, 345, 518–538. [Google Scholar] [CrossRef]
- Lanzerath, H.; Waller, H. Computation of the time-history response of dynamic problems using the boundary element method and modal techniques. Int. J. Numer. Methods Eng. 1999, 45, 841–864. [Google Scholar] [CrossRef]
- Kirkup, S.M.; Amini, S. Modal analysis of acoustically-loaded structures via integral equation methods. Comput. Struct. 1991, 40, 1279–1285. [Google Scholar] [CrossRef]
- Jung, B.K.; Ryue, J.; Hong, C.; Jeong, W.B.; Shin, K.K. Estimation of dispersion curves of water-loaded structures by using approximated acoustic mass. Ultrasonics 2018, 85, 39–48. [Google Scholar] [CrossRef]
- Brennan, D.P.; Chemuka, M.W. Enhancements to AVAST; National Defence, Research and Development Branch: Halifax, NS, Canada, 1996. [Google Scholar]
- Prisacariu, V. CFD Analysis of UAV Flying Wing. INCAS Bull. 2016, 8, 65–72. [Google Scholar]
- Colonius, T.; Lele, S.K. Computational aeroacoustics: Progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 2004, 40, 345–416. [Google Scholar] [CrossRef]
- Alléon, G.; Champagneux, S.; Chevalier, G.; Giraud, L.; Sylvand, G. Parallel distributed numerical simulations in aeronautic applications. Appl. Math. Model. 2006, 30, 714–730. [Google Scholar] [CrossRef]
- Shahbazi, M.; Mansourzadeh, S.; Pishevar, A.R. Hydrodynamic Analysis of Autonomous Underwater Vehicle ( AUV ) Flow Through Boundary Element Method and Computing Added-Mass Coefficients. Int. J. Artif. Intell. Mechatron. 2015, 3, 212–217. [Google Scholar]
- Seol, H.; Pyo, S.; Suh, J.-C.; Lee, S. Numerical study of non-cavitating underwater propeller noise. Noise Vib. Worldw. 2004, 11–26. [Google Scholar] [CrossRef]
- Casenave, F.; Ern, A.; Sylvand, G. Coupled BEM – FEM for the Convected Helmholtz Equation with Non-uniform Flow in a Bounded Domain. J. Comput. Phys. 2014, 257, 627–644. [Google Scholar] [CrossRef]
- Morfey, C.L.; Powles, C.J.; Wright, C.M. Green’s Functions in Computational Aeroacoustics. Int. J. Aeroacoustics 2011, 10, 117–159. [Google Scholar] [CrossRef]
- Mancini, S. Boundary Integral Methods for Sound Propagation with Subsonic Potential Mean Flows; University of Southampton: Southampton, UK, 2017. [Google Scholar]
- Harwood, A.R.G. Numerical Evaluation of Acoustic Green’s Functions; University of Manchester: Manchester, UK, 2014. [Google Scholar]
- Andesen, P.R.; Cutanda-Henriquez, V.; Aage, N.; Marburg, S. A Two-Dimensional Acoustic Tangential Derivative Boundary Element Method Including Viscous and Thermal Losses Publication date: A Two-Dimensional Acoustic Tangential Derivative Boundary. J. Theor. Comput. Acoust. 2018, 26, 1850036. [Google Scholar] [CrossRef]
- Cutanda-Henriquez, V.; Anderson, P.R.; Jensen, J.S.; Juhl, P.M.; Sanchez-Dehesa, J. A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses. J. Comput. Acoust. 2017, 25, 1750006. [Google Scholar] [CrossRef]
- Cutanda-Henriquez, V.; Juhl, P.M. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses. J. Acoust. Soc. Am. 2013, 134, 3409–3418. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Snellen, M.; Simons, D.G. Assessment of Engine Noise Shielding By the Wings of Current Turbofan Aircraft. In Proceedings of the 24th International Conference on Sound and Vibration, London, UK, 23–27 July 2017; pp. 1–8. [Google Scholar]
- Salin, M.B.; Dosaev, A.S.; Konkov, A.I.; Salin, B.M. Numerical Simulation of Bragg Scattering of Sound by Surface Roughness for Different Values of the Rayleigh Parameter. Acoust. Phys. 2014, 60, 442–454. [Google Scholar] [CrossRef]
- Mimani, A.; Croaker, P.; Karimi, M.; Doolan, C.J.; Kessissoglou, N. Hybrid CFD-BEM and Time-Reversal techniques applied to localise flow-induced noise sources generated by a flat-plate. In Proceedings of the 2nd Australasian Acoustical Societies Conference, ACOUSTICS 2016, Brisbane, Australia, 9–11 November 2016. [Google Scholar]
- Martínez-lera, P.; Schram, C.; Bériot, H.; Hallez, R. An approach to aerodynamic sound prediction based on incompressible-flow pressure. J. Sound Vib. 2014, 333, 132–143. [Google Scholar] [CrossRef]
- Kucukcoskun, K. Prediction of Free and Scattered Acoustic Fields of Low-Speed Fans; Ecole Central de Lyon: Lyon, France, 2012. [Google Scholar]
- Heffernon, T.; Angland, D.; Zhang, X.; Smith, M. The Effect of Flow Circulation on the Scattering of Landing Gear Noise. In Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference, Southampton, UK, 22–26 June 2015; University of Southampon: Southampton, UK, 2015; pp. 1–14. [Google Scholar]
- Dürrwächter, L.; Kesslaer, M.; Kraemer, E. Numerical Assessment of CROR Noise Shielding with a Coupled Möhring Analogy and BEM Approach. In Proceedings of the A/AA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 25–29 June 2018; p. 2822. [Google Scholar]
- Croaker, P.; Mimani, A.; Doolan, C.; Kessissoglou, N. A computational flow-induced noise and time-reversal technique for analysing aeroacoustic sources. J. Acoust. Soc. Am. 2018, 143, 2301–2312. [Google Scholar] [CrossRef] [PubMed]
- Croaker, P.; Kessissoglou, N.; Marburg, S. Aeroacoustic Scattering Using a Particle Accelerated Computational Fluid Dynamics/Boundary Element Technique. AIAA J. 2016, 54, 1–18. [Google Scholar] [CrossRef]
- Barhoumi, B. An improved axisymmetric convected boundary element method formulation with uniform flow. Mech. Ind. 2017, 18, 313. [Google Scholar] [CrossRef]
- Sundkvist, E. A High-Order Accurate, Collocated Boundary Element Method for Wave Propagation in Layered Media; Uppsala University: Uppsala, Sweden, 2011. [Google Scholar]
- Croaker, P.; Kessissoglou, N.; Marburg, S. Strongly singular and hypersingular integrals for aeroacoustic incident fields. Int. J. Numer. Methods Fluids 2015, 7, 274–318. [Google Scholar] [CrossRef]
- Croaker, P.; Kessissoglou, N.; Kinns, R.; Marburg, S. Fast Low-Storage Method for Evaluating Lighthill’s Volume Quadrupoles. AIAA J. 2013, 51, 867–884. [Google Scholar] [CrossRef]
- Blondel, P.; Dobbins, P.F.; Jayasundere, N.; Cosci, M. High-frequency Bistatic Scattering Experiments using Proud and Buried Targets. In Acoustic Sensing Techniques for the Shallow Water Environment: Inversion Methods and Experiments; Caiti, A., Chapman, N.R., Hermand, J.-P., Jesus, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 155–170. ISBN 1402043724. [Google Scholar]
- Kirkup, S.M.; Wadsworth, M. Solution of Inverse Diffusion Problems by Operator-splitting Methods. Appl. Math. Model. 2002, 26, 1003–1018. [Google Scholar] [CrossRef]
- Schuhmacher, A.; Hald, J.; Rasmussen, K.B.; Hansen, P.C. Sound source reconstruction using inverse boundary element calculations. J. Acoust. Soc. Am. 2003, 113, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.; Lee, S.-Y. Enhancing the Reconsruction of Acoustic Source Field using Wavelet Transformation. J. Mech. Sci. Technol. 2005, 19, 680–686. [Google Scholar] [CrossRef]
- Kim, G.T.; Lee, B.H. 3-D Source Reconstruction and Field Reprediction using the Helmholtz Integral Equation. J. Sound Vib. 2001, 112, 2645–2655. [Google Scholar] [CrossRef]
- Bustamante, F.O.; Rodríguez, F.L.; Lopez, A.P. Experimental analysis of laptop fan noise radiation by acoustic source decomposition and inverse boundary element methods. In Proceedings of the NOISE-CON, Detroit, MI, USA, 28–31 July 2008. [Google Scholar]
- Bai, M.R. Application of the BEM (Boundary Element Method)- based Acoustic Holography to Radiation Analysis of Sound Sources with Arbitrarily Shaped Geometries. J. Acoust. Soc. Am. 1992, 92, 533–549. [Google Scholar] [CrossRef]
- van Wijngaarden, H.C.J. Prediction of Propeller-Induced Hull-Pressure Fluctuations Proefschrift, Delft. Ph.D. Thesis, Technische Universiteit, Delft, The Netherlands, 2011. [Google Scholar]
- Nava, G.P. Inverse sound rendering: In-situ estimation of surface acoustic impedance for acoustic simulation and design of real indoor environments; University of Tokyo: Tokyo, Japan, 2006. [Google Scholar]
- Piechowicz, J.; Czajka, I. Estimation of Acoustic Impedance for Surfaces Delimiting the Volume of an Enclosed Space. Arch. Acoust. 2012, 37, 97–102. [Google Scholar] [CrossRef]
- Lee, S. Review: The Use of Equivalent Source Method in Computational Acoustics. J. Comput. Acoust. 2017, 25, 1630001. [Google Scholar] [CrossRef]
- Fu, Z.J.; Chen, W.; Chen, J.T.; Qu, W.Z. Singular boundary method: Three regularization approaches and exterior wave applications. Comput. Model. Eng. Sci. 2014, 99, 417–443. [Google Scholar]
- Fu, Z.J.; Chen, W.; Gu, Y. Burton-Miller-type singular boundary method for acoustic radiation and scattering. J. Sound Vib. 2014, 333, 3776–3793. [Google Scholar] [CrossRef]
- Fu, Z.J.; Chen, W.; Qu, W. Numerical investigation on three treatments for eliminating the singularities of acoustic fundamental solutions in the singular boundary method. WIT Trans. Model. Simul. 2014, 56, 15–26. [Google Scholar]
- Liu, L. Single layer regularized meshless method for three dimensional exterior acoustic problem. Eng. Anal. Bound. Elem. 2017, 77, 138–144. [Google Scholar] [CrossRef]
- Treeby, B.E.; Pan, J. A practical examination of the errors arising in the direct collocation boundary element method for acoustic scattering. Eng. Anal. Bound. Elem. 2009, 33, 1302–1315. [Google Scholar] [CrossRef]
- Juhl, P.M. A note on the convergence of the direct collocation boundary element method. J. Sound Vib. 1998, 212, 703–719. [Google Scholar] [CrossRef]
- Menin, O.H.; Rolnik, V. Relation between accuracy and computational time for boundary element method applied to Laplace equation. J. Comput. Interdiscip. Sci. 2013, 4, 1–6. [Google Scholar]
- Ramirez, I.H. Multilevel Multi-Integration Algorithm for Acoustics. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2005. [Google Scholar]
- Gumerov, N.A.; Duraiswami, R. A Broadband Fast Multipole Accelerated Boundary Element Method for the Three Dimensional Helmholtz Equation. J. Acoust. Soc. Am. 2009, 125, 191–205. [Google Scholar] [CrossRef]
- Falletta, S.; Sauter, S.A. The panel-clustering method for the wave equation in two spatial dimensions. J. Comput. Phys. 2016, 305, 217–243. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Y.; Qi, D.; Gu, Y. An Improved Series Expansion Method to Accelerate the Multi-Frequency Acoustic Radiation Prediction. J. Comput. Acoust. 2015, 23, 1450015. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.G.; Liu, Z.X.; Huang, Q.B. A method for multi-frequency calculation of boundary integral equation in acoustics based on series expansion. Appl. Acoust. 2009, 70, 459–468. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Zhang, J. An efficient boundary integral equation method for multi-frequency acoustics analysis. Eng. Anal. Bound. Elem. 2015, 61, 282–286. [Google Scholar] [CrossRef]
- Schenck, H.A.; Benthien, G. The Application of a Coupled Finite-Element Boundary-Element technique to Large-Scale Structural Acoustic Problems. In Proceedings of the Eleventh International Conference on Boundary Element Methods, Advances in Boundary Elements, Vol. 2: Field and Fluid Flow; Brebbia, C.A., Connor, J.J., Eds.; Computational Mechanics Publications: Cambridge, MA, USA, 1989; pp. 309–318. [Google Scholar]
- Lefteriu, S.; Souza Lenzi, M.; Bériot, H.; Tournour, M.; Desmet, W. Fast frequency sweep method for indirect boundary element models arising in acoustics. Eng. Anal. Bound. Elem. 2016, 69, 32–45. [Google Scholar] [CrossRef]
- Kirkup, S.M.; Henwood, D.J. Methods for speeding up the boundary element solution of acoustic radiation problems. J. Vib. Acoust. Trans. ASME 1992, 114, 374–380. [Google Scholar] [CrossRef]
- Amini, S. An Iterative Method for the Boundary Element Solution of the Exterior Acoustic Problem. J. Comput. Appl. Math. 1987, 20, 109–117. [Google Scholar] [CrossRef]
- Coyette, J.-P.; Lecomte, C.; Migeot, J.-L.; Blanche, J.; Rochette, M.; Mirkovic, G. Calculation of Vibro-Acoustic Frequency Response Functions Using a Single Frequency Boundary Element Solution and a Padé Expansion. Acta Acust. United Acust. 1999, 85, 371–377. [Google Scholar]
- Marburg, S. Discretization Requirements: How many Elements per Wavelength are Necessary? In Computational Acoustics of Noise Propagation in Fluids: Finite and Boundary Element Methods; Marburg, S., Nolte, B., Eds.; Springer: Berlin, Germany, 2010; Chapter 11. [Google Scholar]
- Marburg, S. Six Boundary Elements per Wavelength: Is that Enough? J. Comput. Acoust. 2002, 10, 25–51. [Google Scholar] [CrossRef]
- Marburg, S.; Schneider, S. Influence of Element Types on Numeric Error for Acoustic Boundary Elements. J. Comput. Acoust. 2003, 11, 363–386. [Google Scholar] [CrossRef]
- Sun, Y.; Trevelyan, J.; Li, S. Evaluation of discontinuity in IGABEM modelling of 3D acoustic field. In Proceedings of the Eleventh UK Conference on Boundary Integral Methods (UKBIM 11), Nottingham, UK, 10–11 July 2017; Chappell, D.J., Ed.; Nottingham Trent University Publications: Nottingham, UK, 2017; pp. 177–185. [Google Scholar]
- Amini, S.; Wilton, D.T. An investigation of boundary element methods for the exterior acoustic problem. Comput. Methods Appl. Mech. Eng. 1986, 54, 49–65. [Google Scholar] [CrossRef]
- Zieniuk, E.; Szerszeń, K. Triangular B é zier Patches in Modelling Smooth Boundary Surface in exterior Helmholtz Problems Solved by the PIES. Arch. Acoust. 2009, 34, 51–61. [Google Scholar]
- Zieniuk, E.; Szerszeń, K. A solution of 3D Helmholtz equation for boundary geometry modeled by Coons patches using the Parametric Integral Equation System. Arch. Acoust. 2006, 31, 99–111. [Google Scholar]
- Zieniuk, E.; Boltuc, A. Bezier Curves in the Modeling of Boundary Gemetry for 2D Boundary Problems Defined by Helmholtz Equation. J. Comput. Acoust. 2006, 14, 353–367. [Google Scholar] [CrossRef]
- Peake, M.J.; Trevelyan, J.; Coates, G. Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems. Comp. Meth. Appl. Mech. Eng. 2015, 284, 0762–780. [Google Scholar] [CrossRef]
- Peake, M.J.; Trevelyan, J.; Coates, G. Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problem. Comp. Meth. Appl. Mech. Eng. 2013, 259, 93–163. [Google Scholar] [CrossRef]
- Liu, Z.; Majeed, M.; Cirak, F.; Simpson, R.N. Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces. Int. J. Numer. Methods Eng. 2018, 113, 1507–1530. [Google Scholar] [CrossRef]
- Coox, L.; Atak, O.; Vanderpitte, D.; Desmet, W. An isogeometric indirect boundary element method for solving acoustic problems in open-boundary domains. Comput. Methods Appl. Mech. Eng. 2017, 316, 186–208. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zhao, W.; Liu, L. An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution. Comput. Methods Appl. Mech. Eng. 2018, 336, 507–532. [Google Scholar] [CrossRef]
- Khaki, H.; Trevelyan, J.; Hattori, G. Towards Isogeometric Boundary Element Method Based on Adaptive Hierarchical Refinement of NURBS for 3D Geometries. In Proceedings of the Boundary Integral Methods (UKBIM 11), Nottingham, UK, 10–11 July 2017; Chappell, D.J., Ed.; Nottingham Trent University Publications: Nottingham, UK, 2017; pp. 109–116. [Google Scholar]
- Simpson, R.N.; Scott, M.A.; Taus, M.; Thomas, D. Acoustic isogeometric boundary element analysis. Comput. Methods Appl. Mech. Eng. 2014, 269, 265–290. [Google Scholar] [CrossRef]
- Peake, M.J. Enriched and Isogeometric Boundary Element Methods for Acoustic Wave Scattering; Durham University: Durham, UK, 2014. [Google Scholar]
- Melenk, J.M.; Babuška, I. The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 289–314. [Google Scholar] [CrossRef]
- Perrey-Debain, E.; Trevelyan, J.; Bettess, P. Use of wave boundary elements for acoustic computations. J. Comput. Acoust. 2003, 11, 305–321. [Google Scholar] [CrossRef]
- Perrey-Debain, E.; Trevelyan, J.; Bettess, P. Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: Numerical aspects and applications. J. Sound Vib. 2003, 261, 839–858. [Google Scholar] [CrossRef]
- Amini, S.; Chen, K. Conjugate gradient method for second kind integral equations - applications to the exterior acoustic problem. Eng. Anal. Bound. Elem. 1993, 6, 72–77. [Google Scholar] [CrossRef]
- Pocock, M.D. Integral Equation Methods for Harmonic Wave Propagation; University of London: London, UK, 1995. [Google Scholar]
- Amini, S.; Maines, N.D.N. Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. Int. J. Numer. Methods Eng. 1998, 41, 875–898. [Google Scholar] [CrossRef]
- Chen, K.; Harris, P.J. Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 2001, 36, 475–489. [Google Scholar] [CrossRef]
- Marburg, S.; Schneider, S. Performance of iterative solvers for acoustic problems. Part I. Solvers and effect of diagonal preconditioning. Eng. Anal. Bound. Elem. 2003, 27, 727–750. [Google Scholar] [CrossRef]
- Carpentieri, B.; Duff, I.S.; Giraud, L. Experiments with sparse preconditioning of dense problems from electromagnetic applications; CERFACS: Toulouse, France, 2000. [Google Scholar]
- Chen, K. Matrix Preconditioning Techniques and Applications, 1st ed.; Cambridge Univessity Press: Cambridge, UK, 2005. [Google Scholar]
- Nedelec, J.C. Acoustic and Electromagnetic Equations; Springer: New York, NY, USA, 2001. [Google Scholar]
- Steinbach, O. Numerical approximation methods for elliptic boundary value problems; Springer Science & Business Media: New York, NY, USA, 2008; ISBN 0190-535X. [Google Scholar]
- Antoine, X.; Boubendir, Y. An Integral Preconditioner for Solving the Two-dimensional Scattering Transmission Problem using Integral Equations. Int. J. Comput. Math. 2008, 85, 1473–1490. [Google Scholar] [CrossRef]
- Antoine, X.; Darbas, M. Integral equations and iterative schemes for acoustic scattering problems. Numerical Methods for Acoustics Problems; Magoules, F., Ed.; Saxe-Coburg Publications, 2016. Available online: http://microwave.math.cnrs.fr/publications/files/chapterVersionFinale.pdf (accessed on 12 April 2019).
- Antoine, X.; Darbas, M. Alternative Integral Equations for the Iterative Solution of Acoustic Scattering Problems. Q. J. Mech. Appl. Math. 1999, 58, 107–128. [Google Scholar] [CrossRef]
- Antoine, X.; Darbas, M. Generalized Combined Field Integral Equations for te Iterative Solution of the Three-Dimensional Helmholtz Equation. ESAIM Math. Model. Numer. Anal. 2007, 41, 147–167. [Google Scholar] [CrossRef]
- Darbas, M.; Darrigrand, E.; Lafranche, Y. Combining Analytic Preconditioner and Fast Multipole Method for the 3-D Helmholtz Equation. J. Comput. Phys. 2013, 236, 289–316. [Google Scholar] [CrossRef]
- Langou, J. Solving large linear systems with multiple right-hand sides; L’Institut National des Sciences Appliquees de Toulouse: Toulouse, France, 2004. [Google Scholar]
- Saad, Y. ILUT: A Dual Threshold Incomplete LU Factorization. Numer. Linear Algebr. Appl. 1994, 1, 387–402. [Google Scholar] [CrossRef]
- Schneider, S.; Marburg, S. Performance of iterative solvers for acoustic problems. Part II. Acceleration by ILU-type preconditioner. Eng. Anal. Bound. Elem. 2003, 27, 751–757. [Google Scholar] [CrossRef]
- Antoine, X. Advances in the On-Surface Radiation Condition Method: Theory, Numerics and Applications. In Computational Methods for Acoustic Problems; Magoules, F., Ed.; Saxe-Coburg Publications: Stirlingshire, UK, 2008. [Google Scholar]
- Calvo, D.C. A wide-angle on-surface radiation condition applied to scattering by spheroids. J. Acoust. Soc. Am. 2004, 116, 1549. [Google Scholar] [CrossRef]
- Chniti, C.; Eisa Ali Alhazmi, S.; Altoum, S.H.; Toujani, M. DtN and NtD surface radiation conditions for two-dimensional acoustic scattering: Formal derivation and numerical validation. Appl. Numer. Math. 2016, 101, 53–70. [Google Scholar] [CrossRef]
- Kress, R. On the Condition Number of Boundary Integral Operators in Scattering Theory. In Classsical Scattering; Roach, G.F., Ed.; Shiva: Nantwich, UK, 1984. [Google Scholar]
- Kress, R. Minimising the Condition Number of Boundary Integral Operators in Acoustic and Electromagnetic Scattering. Q. J. Mech. Appl. Math. 1985, 38, 324–342. [Google Scholar] [CrossRef]
- Kress, R. On the Condition Number of Boundary Integal Equations in Acoustic Scattering using Combined Double- and Single- Layer Potentials. Int. Ser. Numer. Math. 1985, 73, 194–200. [Google Scholar]
- Kress, R.; Spassov, W.T. On the condition number of boundary integral operators for the exterior Dirichlet problem for the Helmholtz equation. Numer. Math. 1983, 95, 77–95. [Google Scholar] [CrossRef]
- Amini, S. Boundary integral solution of the exterior Helmholtz problem. Comput. Mech. 1993, 13, 2–11. [Google Scholar]
- Zheng, C.J.; Chen, H.B.; Gao, H.F.; Du, L. Du Is the Burton – Miller formulation really free of fictitious eigenfrequencies? Eng. Anal. Bound. Elem. 2015, 59, 43–51. [Google Scholar] [CrossRef]
- Marburg, S. The Burton and Miller Method: Unlocking Another Mystery of Its Coupling Parameter. J. Comput. Acoust. 2016, 24, 1550016. [Google Scholar] [CrossRef]
- Kirkup, S.M. The influence of the weighting parameter on the improved boundary element solution of the exterior Helmholtz equation. Wave Motion 1992, 15, 93–101. [Google Scholar] [CrossRef]
- Juhl, P.M. A numerical study of the coefficient matrix of the boundary element method near characteristic frequencies. J. Sound Vib. 1994, 175, 39–50. [Google Scholar] [CrossRef]
- Dijkstra, W.; Mattheij, R.M.M. Condition Number of the BEM Matrix arising from the Stokes Equations in 2D. Eng. Anal. Bound. Elem. 2008, 32, 736–746. [Google Scholar] [CrossRef]
- Hornikx, M.; Kaltenbacher, M.; Marburg, S. A platform for benchmark cases in computational acoustics. Acta Acust. United Acust. 2015, 101, 811–820. [Google Scholar] [CrossRef]
- Harris, P.J.; Amini, S. On the Burton and Miller Boundary Integral Formulation of the Exterior Acoustic Problem. ASME J. Vib. Acoust. Stress Reliab. Des. 1992, 114, 540–546. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkup, S. The Boundary Element Method in Acoustics: A Survey. Appl. Sci. 2019, 9, 1642. https://doi.org/10.3390/app9081642
Kirkup S. The Boundary Element Method in Acoustics: A Survey. Applied Sciences. 2019; 9(8):1642. https://doi.org/10.3390/app9081642
Chicago/Turabian StyleKirkup, Stephen. 2019. "The Boundary Element Method in Acoustics: A Survey" Applied Sciences 9, no. 8: 1642. https://doi.org/10.3390/app9081642
APA StyleKirkup, S. (2019). The Boundary Element Method in Acoustics: A Survey. Applied Sciences, 9(8), 1642. https://doi.org/10.3390/app9081642