Pharmacoresistant Epilepsy in Childhood: Think of the Cerebral Folate Deficiency, a Treatable Disease
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. List of Genes Analyzed in the NGS Folate Metabolism Panel
References
- Grapp, M.; Just, I.A.; Linnankivi, T.; Wolf, P.; Lücke, T.; Häusler, M.; Gärtner, J.; Steinfeld, R. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 2012, 135, 2022–2031. [Google Scholar] [CrossRef]
- Imbard, A.; Benoist, J.F.; Blom, H.J. Neural tube defects, folic acid and methylation. Int. J. Environ. Res. Public Health 2013, 10, 4352–4389. [Google Scholar] [CrossRef] [Green Version]
- Frewin, R. Biochemical aspects of anaemia. In Clinical Biochemistry: Metabolic and Clinical Aspects: Third Edition; Churchill Livingstone, Elsevier: London, UK, 2014; pp. 515–532. ISBN 9780702054785. [Google Scholar]
- Cario, H.; Smith, D.E.C.; Blom, H.; Blau, N.; Bode, H.; Holzmann, K.; Pannicke, U.; Hopfner, K.P.; Rump, E.M.; Ayric, Z.; et al. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am. J. Hum. Genet. 2011, 88, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Scaglione, F.; Panzavolta, G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 2014, 44, 480–488. [Google Scholar] [CrossRef]
- Pope, S.; Artuch, R.; Heales, S.; Rahman, S. Cerebral folate deficiency: Analytical tests and differential diagnosis. J. Inherit. Metab. Dis. 2019, 42, 655–672. [Google Scholar] [CrossRef]
- Zhao, R.; Aluri, S.; Goldman, I.D. The proton-coupled folate transporter (PCFT-SLC46A1) and the syndrome of systemic and cerebral folate deficiency of infancy: Hereditary folate malabsorption. Mol. Aspects Med. 2017, 53, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Grapp, M.; Wrede, A.; Schweizer, M.; Hüwel, S.; Galla, H.J.; Snaidero, N.; Simons, M.; Bückers, J.; Low, P.S.; Urlaub, H.; et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat. Commun. 2013, 4, 2123. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, A.R.; Naz, N.; Miyan, J.A. Altered folate binding protein expression and folate delivery are associated with congenital hydrocephalus in the hydrocephalic Texas rat. J. Cereb. Blood Flow Metab. 2019, 39, 2061–2073. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Dueñas, B.; Toma, C.; Ormazábal, A.; Muchart, J.; Sanmartí, F.; Bombau, G.; Serrano, M.; García-Cazorla, A.; Cormand, B.; Artuch, R. Progressive ataxia and myoclonic epilepsy in a patient with a homozygous mutation in the FOLR1 gene. J. Inherit. Metab. Dis. 2010, 33, 795–802. [Google Scholar] [CrossRef]
- Gordon, N. Cerebral Folate Deficiency Syndromes. Dev. Med. Child Neurol. 2009, 51, 180–182. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.; Sebat, J.; Iakoucheva, L.; et al. MutPred2: Inferring the molecular and phenotypic impact of amino acid variants. bioRxiv 2017, 134981. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. Mutationtaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct. Funct. Genet. 2006, 62, 1125–1132. [Google Scholar] [CrossRef]
- Parthiban, V.; Gromiha, M.M.; Schomburg, D. CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Res. 2006, 34, W239–W242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masso, M.; Vaisman, I.I. AUTO-MUTE: Web-based tools for predicting stability changes in proteins due to single amino acid replacements. Protein Eng. Des. Sel. 2010, 23, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Worth, C.L.; Preissner, R.; Blundell, T.L. SDM—A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011, 39, W215–W222. [Google Scholar] [CrossRef] [Green Version]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, D.E.V.; Ascher, D.B.; Blundell, T.L. MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014, 30, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Al-Baradie, R.S.; Chaudhary, M.W. Diagnosis and management of cerebral folate deficiency A form of folinic Acid-Responsive seizures. Neurosciences 2014, 19, 312–316. [Google Scholar]
- Steinfeld, R.; Grapp, M.; Kraetzner, R.; Dreha-Kulaczewski, S.; Helms, G.; Dechent, P.; Wevers, R.; Grosso, S.; Gärtner, J. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism. Am. J. Hum. Genet. 2009, 85, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Crystal Structure of Human Folate Receptor Alpha in Complex with Folic Acid ENTRY 4LRH. Available online: https://www.rcsb.org/structure/4LRH (accessed on 25 March 2020).
- Gocheva, G.; Ivanova, N.; Iliev, S.; Petrova, J.; Madjarova, G.; Ivanova, A. Characteristics of a Folate Receptor-α Anchored into a Multilipid Bilayer Obtained from Atomistic Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 749–764. [Google Scholar] [CrossRef]
- Della-Longa, S.; Arcovito, A. Structural and functional insights on folate receptor a (FRa) by homology modeling, ligand docking and molecular dynamics. J. Mol. Graph. Model. 2013, 44, 197–207. [Google Scholar] [CrossRef]
- Karin, I.; Borggraefe, I.; Catarino, C.B.; Kuhm, C.; Hoertnagel, K.; Biskup, S.; Opladen, T.; Blau, N.; Heinen, F.; Klopstock, T. Folinic acid therapy in cerebral folate deficiency: Marked improvement in an adult patient. J. Neurol. 2017, 264, 578–582. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Rothenberg, S.P.; Sequeira, J.M.; Opladen, T.; Blau, N.; Quadros, E.V.; Selhub, J. Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. N. Engl. J. Med. 2005, 352, 1985–1991. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Tohyama, J.; Akiyama, T.; Magara, S.; Kawashima, H.; Akasaka, N.; Nakashima, M.; Saitsu, H.; Matsumoto, N. Severe leukoencephalopathy with cortical involvement and peripheral neuropathy due to FOLR1 deficiency. Brain Dev. 2017, 39, 266–270. [Google Scholar] [CrossRef]
- Delmelle, F.; Thöny, B.; Clapuyt, P.; Blau, N.; Nassogne, M.C. Neurological improvement following intravenous high-dose folinic acid for cerebral folate transporter deficiency caused by FOLR-1 mutation. Eur. J. Paediatr. Neurol. 2016, 20, 709–713. [Google Scholar] [CrossRef]
- Romero, J.; Goldenholz, D.M. Statistical efficiency of patient data in randomized clinical trials of epilepsy treatments. Epilepsia 2020, 1–9. [Google Scholar] [CrossRef]
Parameters | CSF Concentrations in Patient | Reference Range |
---|---|---|
Lactate | 0.40 | <2.20 mmol/L |
Pyruvate | 0.05 | <0.14 mmol/L |
Lactate/pyruvate Ratio | 7.9 | <20 |
Acetoacetic acid | 0.02 | |
Beta-hydroxybutyric acid | <0.01 | |
3-methoxy DOPA | 10.5 | 3–54 nmol//L |
3-methoxy-4-hydroxyphenylglycol | 19.6 | 11–46 nmol/L |
5-hydroxytryptophane | 8.6 | 3–12 nmol/L |
5-hydroxyindolacetic acid (HIAA) | 88 | 63–185 nmol/L |
Homovanillic acid | 231 | 156–410 nmol/L |
Biopterin | 10.8 ↓ | 14–36 nmol/L |
Neopterin | 10.2 | 10–24 nmol/L |
5-methyltetrahydrofolate | 1↓↓↓ | >44 nmol/L |
Alpha-Interferon | <2 | <2 UI/mL |
Software | Version | Score | Prediction |
---|---|---|---|
Sift [13] | From dbNSFP3.5 | 0.02 | Deleterious |
Polyphen2 hvar [14] | From dbNSFP3.5 | 0.999 | Probably Damaging |
CADD phred [15] | 1.4 | 27.5 | Correspond to the top 0.0018% of the most pathogenic variants predicted |
MutPred2 [16] | 2.0 | 0.952 | Damaging |
MutationTaster [17] | From dbNSFP3.5 | 1 | Disease causing |
Software | Version | Prediction |
---|---|---|
MUpro [18] | 1.1 | Decrease stability |
CUPSAT [19] | Release 2018.1 | Destabilising |
AUTO-MUTE [20] | 2.0 | Decrease stability |
Site Directed Mutator (SDM) [21] | Server Access 02/21/2020 | Reduced stability |
I-Mutant2.0 [22] | 2.0 | Decrease |
mCSM [23] | Server Access 02/21/2020 | Destabilising |
Before Treatment | After Treatment (2 Months) | |
---|---|---|
Seizure | ++++ | + |
Myoclonia | +++ |
|
Tremor | +++ | + |
Cognitive functions | Non measurable (due to seizure, myoclonia, fatigue, tremor, language skills, neuromotor skills and limited interaction) |
|
Language skills |
|
|
Motor coordination |
|
|
Neuromotor skills |
|
|
Interaction |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafi, S.; Laroche-Raynaud, C.; Chazelas, P.; Lia, A.-S.; Derouault, P.; Sturtz, F.; Baaj, Y.; Froget, R.; Rio, M.; Benoist, J.-F.; et al. Pharmacoresistant Epilepsy in Childhood: Think of the Cerebral Folate Deficiency, a Treatable Disease. Brain Sci. 2020, 10, 762. https://doi.org/10.3390/brainsci10110762
Mafi S, Laroche-Raynaud C, Chazelas P, Lia A-S, Derouault P, Sturtz F, Baaj Y, Froget R, Rio M, Benoist J-F, et al. Pharmacoresistant Epilepsy in Childhood: Think of the Cerebral Folate Deficiency, a Treatable Disease. Brain Sciences. 2020; 10(11):762. https://doi.org/10.3390/brainsci10110762
Chicago/Turabian StyleMafi, Sarah, Cécile Laroche-Raynaud, Pauline Chazelas, Anne-Sophie Lia, Paco Derouault, Franck Sturtz, Yasser Baaj, Rachel Froget, Marlène Rio, Jean-François Benoist, and et al. 2020. "Pharmacoresistant Epilepsy in Childhood: Think of the Cerebral Folate Deficiency, a Treatable Disease" Brain Sciences 10, no. 11: 762. https://doi.org/10.3390/brainsci10110762
APA StyleMafi, S., Laroche-Raynaud, C., Chazelas, P., Lia, A. -S., Derouault, P., Sturtz, F., Baaj, Y., Froget, R., Rio, M., Benoist, J. -F., Poumeaud, F., Favreau, F., & Faye, P. -A. (2020). Pharmacoresistant Epilepsy in Childhood: Think of the Cerebral Folate Deficiency, a Treatable Disease. Brain Sciences, 10(11), 762. https://doi.org/10.3390/brainsci10110762