Clinical Characterization of Oculomotricity in Children with and without Specific Learning Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- Control group (CG): included 15 healthy children recruited from various schools in the province of Huesca. The inclusion criteria for this group were emmetropic children achieving an uncorrected distance visual acuity (UDVA) of 0.00 logMAR (20/20 Snellen).
- Group of healthy children with oculomotor abnormalities (OAG): included 18 children that attended the Optometry Unit of Policlínica Alto Aragón Polyclinic (Huesca, Spain). Inclusion criteria for this group were children aged from 6 to 14 years old, wearing their refractive correction if needed for more than 6 months, absence of strabismus or non-strabismic binocular or accommodative disorders, and presence of an oculomotor anomaly. This anomaly was detected using the DEM (Developmental Eye Movement) test and its normative data [23].
- Group of children diagnosed with a specific learning disorder (LDG): 15 of them showed dyslexia, 6 showed a development coordination disorder (DCD) or dyspraxia, and 5 of them showed an attention deficit/hyperactivity disorder (ADHD). A speech therapist, a psychologist and a pediatrician evaluated the conditions of these children and performed a diagnosis according to the DSM-5 diagnostic criteria [24]. According to previous studies, these children are expected to show oculomotor abnormalities in most of cases [17,18,19,20,25,26,27,28,29].
2.2. Visual Examination
2.3. Clinical Analysis of Oculomotricity
- Ability. Can the individual take the assigned test?
- Accuracy. What is the quality of execution?
- The level of head movement the patient uses to perform the task. Is head movement spontaneous when doing the task?
- The level of body movement used.
- Smooth pursuits:
- ○
- Patient’s ability of performing two rotations (ability): cannot complete half rotation (1 point); half rotation completed (2 points); rotation completed in each direction (3 points); two rotations completed in one direction (4 points); and two rotations completed (5 points).
- ○
- Patient’s ability of performing two rotations without refixations (accuracy): more than 10 refixations (1 point); 5 to 10 (2 points); 3–4 (3 points); 2 refixations or fewer (4 points); and no refixations (5 points).
- ○
- Patient’s ability of performing two rotations without head or body movements: exaggerated body or head movement (1 point); large or moderate movement (2 points); slight movements but constant (3 points); slight movements but intermittent (4 points); and no head or body movements (5 points).
- Saccades:
- ○
- Patient’s ability of performing 5 cycles of change of fixation between the two stimuli presented (ability): 1 cycle or no ability (1 point); 2 cycles (2 points); 3 cycles (3 points); 4 cycles (4 points); and 5 cycles (5 points).
- ○
- Patient’s ability of performing 5 cycles of change of fixation without correcting refixations (accuracy): very significant hyper- or hypometric movements (1 point); large to moderate hyper- or hypometric movements (2 points); slight hyper or hypometric movements but constant (3 points); slight hyper or hypometric movements but intermittent (4 points); and no correcting refixations (5 points).
- ○
- Patient’s ability of performing 5 cycles of change of fixation without head or body movements: same scoring as for smooth pursuits.
- Type 1: No oculomotor dysfunction. This occurs when the vertical and horizontal test times are within the normal range.
- Type 2: Oculomotor dysfunction. The vertical time is within the normal range, but the horizontal time is below the normal range according to the patient’s age.
- Type 3: Automaticity dysfunction. Vertical and horizontal times are long but of similar magnitude, giving a ratio below the normal range.
- Type 4: Automaticity dysfunction and oculomotor dysfunction. A combination of a long vertical time and an extremely long horizontal time [30].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dodge, R. Five types of eye movement in the horizontal meridian plane of the field of regard. Am. J. Physiol. Content 1903, 8, 307–329. [Google Scholar] [CrossRef]
- Baird-Gunning, J.J.D.; Lueck, C.J. Central control of eye movements. Curr. Opin. Neurol. 2018, 31, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Piñero, D.P. Oculomotor dysfunctions: Evidence-based practice. J. Optom. 2020, 13, 137–138. [Google Scholar] [CrossRef]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.S.; McNamara, J.O.; Williams, S.M. (Eds.) Types of eye movements and their functions. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Doettl, S.M.; McCaslin, D.L. Oculomotor assessment in children. Semin. Hear. 2018, 39, 275–287. [Google Scholar]
- Anderson, T.J.; MacAskill, M.R. Eye movements in patients with neurodegenerative disorders. Nat. Rev. Neurol. 2013, 9, 74–85. [Google Scholar] [CrossRef]
- Seassau, M.; Bucci, M.P. Reading and visual search: A developmental study in normal children. PLoS ONE 2013, 8, e70261. [Google Scholar] [CrossRef] [Green Version]
- Dowiasch, S.; Marx, S.; Einhäuser, W.; Bremmer, F. Effects of aging on eye movements in the real world. Front. Hum. Neurosci. 2015, 9, 46. [Google Scholar] [CrossRef]
- Fransson, P.A.; Modig, F.; Patel, M.; Gomez, S.; Magnusson, M. Oculomotor deficits caused by 0.06% and 0.10% blood alcohol concentrations and relationship to subjective perception of drunkenness. Clin. Neurophysiol. 2010, 121, 2134–2142. [Google Scholar] [CrossRef]
- Wang, C.; Tong, J.; Sun, F. Effects of diazepam on the latency of saccades for luminance and binocular disparity defined stimuli. Exp. Brain Res. 2005, 163, 246–251. [Google Scholar] [CrossRef]
- Gorges, M.; Pinkhardt, E.H.; Kassubek, J. Alterations of eye movement control in neurodegenerative movement disorders. J. Ophthalmol. 2014, 2014, 658243. [Google Scholar] [CrossRef] [Green Version]
- Stone, L.S.; Tyson, T.L.; Cravalho, P.F.; Feick, N.H.; Flynn-Evans, E.E. Distinct pattern of oculomotor impairment associated with acute sleep loss and circadian misalignment. J. Physiol. 2019, 597, 4643–4660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blignaut, P.; van Rensburg, E.J.; Oberholzer, M. Visualization and quantification of eye tracking data for the evaluation of oculomotor function. Heliyon 2019, 5, e01127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, K.C.; Anderson, J.H.; Soechting, J.F. Similarity in the response of smooth pursuit and manual tracking to a change in the direction of target motion. J. Neurophysiol. 2000, 84, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Zaccara, G.; Gangemi, P.F.; Muscas, G.C.; Paganini, M.; Pallanti, S.; Parigi, A.; Messori, A.; Arnetoli, G. Smooth-pursuit eye movements: Alterations in Alzheimer’s disease. J. Neurol. Sci. 1992, 112, 81–89. [Google Scholar] [CrossRef]
- Bilbao, C.; Piñero, D.P. Diagnosis of oculomotor anomalies in children with learning disorders. Clin. Exp. Optom. 2020, 103, 597–609. [Google Scholar] [CrossRef]
- Mahone, E.M.; Mostofsky, S.H.; Lasker, A.G.; Zee, D.; Denckla, M.B. Oculomotor anomalies in attention-deficit/hyperactivity disorder: Evidence for deficits in response preparation and inhibition. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Loe, I.M.; Feldman, H.M.; Yasui, E.; Luna, B. Oculomotor performance identifies underlying cognitive deficits in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Bucci, M.P.; Brémond-Gignac, D.; Kapoula, Z. Poor binocular coordination of saccades in dyslexic children. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 417–428. [Google Scholar] [CrossRef]
- Kapoula, Z.; Bucci, M.P.; Jurion, F.; Ayoun, J.; Afkhami, F.; Brémond-Gignac, D. Evidence for frequent divergence impairment in french dyslexic children: Deficit of convergence relaxation or of divergence per se? Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 931–936. [Google Scholar] [CrossRef]
- Hammill, D.D.; Leigh, J.E.; McNutt, G.; Larsen, S.C. A new definition of learning disabilities. J. Learn. Disabil. 1987, 20, 109–113. [Google Scholar] [CrossRef]
- Palomo-Álvarez, C.; Puell, M.C. Relationship between oculomotor scanning determined by the DEM test and a contextual reading test in schoolchildren with reading difficulties. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Velazquez, F.J.; Fernandez-Fidalgo, M.J. Do DEM test scores change with respect to the language? Norms for Spanish-speaking population. Optom. Vis. Sci. 1995, 72, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, O.; Carugno, P. Learning Disability; StatPearls Publishing: Treasure Island, CA, USA, 2020. [Google Scholar]
- Sumner, E.; Hutton, S.B.; Kuhn, G.; Hill, E.L. Oculomotor atypicalities in developmental coordination disorder. Dev. Sci. 2018, 21, e12501. [Google Scholar] [CrossRef] [PubMed]
- Tiadi, A.; Seassau, M.; Gerard, C.L.; Bucci, M.P. Differences between dyslexic and non-dyslexic children in the performance of phonological visual-auditory recognition tasks: An eye-tracking study. PLoS ONE 2016, 11, e0159190. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Watanabe, M.; Taniike, M.; Mohri, I.; Kobashi, S.; Tachibana, M.; Kobayashi, Y.; Kitamura, Y. Gap effect abnormalities during a visually guided Pro-Saccade task in children with attention deficit hyperactivity disorder. PLoS ONE 2015, 10, e0125573. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, D.; Pienaar, A.E. The effect of visual therapy on the ocular motor control of seven- to eight-year-old children with Developmental Coordination Disorder (DCD). Res. Dev. Disabil. 2013, 34, 4073–4084. [Google Scholar] [CrossRef]
- Jones, M.W.; Obregón, M.; Louise Kelly, M.; Branigan, H.P. Elucidating the component processes involved in dyslexic and non-dyslexic reading fluency: An eye-tracking study. Cognition 2008, 109, 389–407. [Google Scholar] [CrossRef]
- Facchin, A.; Maffioletti, S. The reliability of the DEM test in the clinical environment. Front. Psychol. 2018, 9, 1279. [Google Scholar] [CrossRef]
- Maples, W.C.; Ficklin, T.W. Interrater and test-retest reliability of pursuits and saccades. J. Am. Optom. Assoc. 1988, 59, 549–552. [Google Scholar]
- Maples, W.C.; Atchley, J.; Ficklin, T. Northeastern State University College of Optometry’s Oculomotor Norms. J. Behav. Optom. 1992, 3, 143–150. [Google Scholar]
- Gené-Sampedro, A.; Richman, J.E.; Pardo, M.S. The Adult Developmental Eye Movement Test (A–DEM). J. Behav. Optom. 2003, 14, 101–105. [Google Scholar]
- Feizabadi, M.; Jafarzadehpur, E.; Akrami, M. Accommodation, convergence, and stereopsis in dyslexic schoolchildren. Middle East Afr. J. Ophthalmol. 2018, 25, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Di Noto, P.; Uta, S.; De Souza, J.F. Eye exercises enhance accuracy and letter recognition, but not reaction time, in a modified rapid serial visual presentation task. PLoS ONE 2013, 8, e59244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschini, S.; Gori, S.; Ruffino, M.; Viola, S.; Molteni, M.; Facoetti, A. Action video games make dyslexic children read better. Curr. Biol. 2013, 23, 462–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.M.; Black, A.A.; Hopkins, S.; White, S.L.J. Vision and academic performance in primary school children. Ophthalmic Physiol. Opt. 2018, 38, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Medland, C.; Walter, H.; Woodhouse, M.J. Eye movements and poor reading: Does the Developmental Eye Movement test measure cause or effect? Ophthalmic Physiol. Opt. 2010, 30, 740–747. [Google Scholar] [CrossRef]
- Tassinari, J.T.; DeLand, P. Developmental Eye Movement Test: Reliability and symptomatology. Optometry 2005, 76, 387–399. [Google Scholar] [CrossRef]
- Webber, A.; Wood, J.; Gole, G.; Brown, B. DEM test, visagraph eye movement recordings, and reading ability in children. Optom. Vis. Sci. 2011, 88, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Orlansky, G.; Hopkins, K.B.; Mitchell, G.L.; Huang, K.; Frazier, M.; Heyman, C.; Scheiman, M. Reliability of the developmental eye movement test. Optom. Vis. Sci. 2011, 88, 1507–1519. [Google Scholar] [CrossRef]
- Walker, K.; Redman-Bentley, D.; Remick-Waltman, K.; Armstrong, D.C. Differences in oculomotor function between children with sensory processing disorder and typical development. Optom. Vis. Sci. 2019, 96, 172–179. [Google Scholar] [CrossRef]
- Moiroud, L.; Gerard, C.L.; Peyre, H.; Bucci, M.P. Developmental Eye Movement test and dyslexic children: A pilot study with eye movement recordings. PLoS ONE 2018, 13, e200907. [Google Scholar] [CrossRef] [PubMed]
- Ayton, L.N.; Abel, L.A.; Fricke, T.R.; McBrien, N.A. Developmental eye movement test: What is it really measuring? Optom. Vis. Sci. 2009, 86, 722–730. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) Median (Range) | CG (15) | OAG (18) | LDG (26) | p-Value |
---|---|---|---|---|
Age (years) | 8.8 (1.6) 9.0 (6.0 to 11.0) | 7.9 (1.3) 8.0 (6.0 to 11.0) | 8.7 (2.1) 9.0 (6.0 to 13.0) | 0.271 |
Sphere RE (D) | 0.00 (0.00) 0.00 (0.00 to 0.00) | 0.05 (0.24) 0.00 (0.00 to 1.00) | 0.20 (0.89) 0.00 (−1.75 to 4.00) | 0.191 |
Cylinder RE (D) | 0.00 (0.00) 0.00 (0.00 to 0.00) | −0.03 (0.11) 0.00 (−0.50 to 0.00) | −0.32 (0.94) 0.00 (−4.00 to 0.00) | 0.201 |
Sphere LE (D) | 0.00 (0.00) 0.00 (0.00 to 0.00) | 0.04 (0.18) 0.00 (0.00 to 0.75) | 0.04 (1.20) 0.00 (−4.00 to 4.00) | 0.571 |
Cylinder LE (D) | 0.00 (0.00) 0.00 (0.00 to 0.00) | −0.01 (0.06) 0.00 (−0.25 to 0.00) | −0.21 (0.67) 0.00 (−3.00 to 0.00) | 0.346 |
LogMAR CDVA RE | 0.00 (0.01) 0.00 (0.00 to 0.05) | −0.04 (0.07) 0.00 (−0.20 to 0.05) | −0.02 (0.18) 0.00 (−0.05 to 0.30) | 0.067 |
LogMAR CDVA LE | 0.00 (0.03) 0.00 (0.00 to 0.10) | −0.04 (0.07) 0.00 (-0.20 to 0.05) | 0.00 (0.06) 0.00 (-0.08 to 0.30) | 0.050 |
Binocular LogMAR CDVA | 0.0 (0.00) 0.00 (0.00 to 0.00) | −0.04 (0.07) 0.00 (−0.20 to 0.00) | −0.02 (0.05) 0.00 (−0.20 to 0.00) | 0.057 |
Near cover test (Δ) | 0.00 (0.00) 0.00 (0.00 to 0.00) | −1.67 (4.40) 0.00 (−8.00 to 10.00) | −2.73 (4.05) 0.00 (−10.00 to 4.00) | 0.047 CG-OAG 0.534 CG-LDG 0.043 OAG-LDG 0.508 |
NPC break (cm) | 4.27 (3.58) 5.00 (0.00 to 10.00) | 4.17 (5.37) 0.00 (0.00 to 15.00) | 6.58 (4.99) 5.50 (0.00 to 20.00) | 0.200 |
NPC recovery (cm) | 6.07 (4.80) 8.00 (0.00 to 14.00) | 5.00 (6.15) 0.00 (0.00 to 16.00) | 7.38 (6.56) 7.00 (3.00 to 25.00) | 0.593 |
Stereopsis (sec arc) | 20.0 (0.0) 20.0 (20.0 to 20.0) | 31.9 (1.9) 32.0 (20.0 to 100.0) | 64.4 (7.3) 40.0 (20.0 to 400.0) | <0.001 CG-OAG 0.018 CG-LDG <0.001 OAG-LDG 0.003 |
Mean (SD) Median (Range) | CG (15) | OAG (18) | LDG (26) | p-Value |
---|---|---|---|---|
Smooth pursuits | ||||
Ability | 4.3 (1.1) 5.0 (2.0 to 5.0) | 2.2 (1.3) 2.0 (1.0 to 5.0) | 2.3 (1.3) 2.0 (1.0 to 5.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.999 |
Precision | 4.1 (1.1) 4.0 (2.0 to 5.0) | 2.3 (1.2) 2.0 (1.0 to 5.0) | 2.3 (1.3) 2.0 (1.0 to 5.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.999 |
Movement head/body | 4.2 (1.2) 5.0 (2.0 to 5.0) | 2.1 (1.2) 2.0 (1.0 to 5.0) | 1.5 (0.6) 1.0 (1.0 to 3.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.141 |
Saccades | ||||
Ability | 4.3 (1.0) 5.0 (2.0 to 5.0) | 2.3 (1.2) 2.0 (1.0 to 5.0) | 2.2 (0.9) 2.0 (1.0 to 4.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.999 |
Precision | 4.3 (1.0) 5.0 (2.0 to 5.0) | 2.2 (1.2) 2.0 (1.0 to 5.0) | 2.4 (1.1) 2.0 (1.0 to 5.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.999 |
Movement head/body | 4.2 (1.2) 5.0 (2.0 to 5.0) | 2.1 (1.2) 2.0 (1.0 to 5.0) | 1.6 (0.6) 1.5 (1.0 to 3.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.609 |
Mean (SD) Median (Range) | CG (15) | OAG (18) | LDG (26) | p-Value |
---|---|---|---|---|
Time sheet A (s) | 21.9 (6.5) 19.0 (16.0 to 38.0) | 25.1 (7.1) 24.0 (17.0 to 43.0) | 26.8 (8.6) 25.0 (11.3 to 42.8) | 0.092 |
Time sheet B (s) | 22.1 (6.1) 22.0 (15.0 to 37.0) | 26.7 (7.1) 25.5 (19.0 to 47.0) | 28.0 (8.6) 26.0 (11.4 to 44.0) | 0.024 CG-OAG 0.075 CG-LDG 0.049 OAG-LDG 0.999 |
Time sheet C (s) | 57.5 (23.1) 47.0 (38.4 to 107.0) | 106.6 (50.2) 78.5 (46.0 to 240.0) | 117.0 (62.8) 99.5 (30.3 to 247.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.999 |
DEM ratio | 1.3 (0.3) 1.3 (1.0 to 2.0) | 2.1 (1.0) 1.6 (1.0 to 4.7) | 2.2 (1.1) 1.7 (1.0 to 5.1) | <0.001 CG-OAG 0.003 CG-LDG <0.001 OAG-LDG 0.999 |
Number of errors | 4.7 (5.9) 4.0 (0.0 to 20.0) | 5.4 (6.1) 2.5 (0.0 to 20.0) | 11.2 (13.3) 5.0 (0.0 to 45.0) | 0.631 |
Type of DEM pattern | 1.0 (0.0) 1.0 (1.0 to 1.0) | 2.4 (0.8) 2.0 (2.0 to 4.0) | 2.5 (1.1) 2.0 (1.0 to 4.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.999 |
DEM percentile vertical times | 52.3 (19.7) 52.0 (12.0 to 85.0) | 44.6 (33.0) 35.0 (1.0 to 98.0) | 33.6 (30.8) 23.5 (1.0 to 99.0) | 0.385 |
DEM percentile horizontal time | 51.7 (27.6) 55.0 (2.0 to 93.0) | 14.7 (19.9) 10.5 (1.0 to 89.0) | 17.0 (26.1) 2.0 (1.0 to 90.0) | <0.001 CG-OAG <0.001 CG-LDG <0.001 OAG-LDG 0.540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilbao, C.; Piñero, D.P. Clinical Characterization of Oculomotricity in Children with and without Specific Learning Disorders. Brain Sci. 2020, 10, 836. https://doi.org/10.3390/brainsci10110836
Bilbao C, Piñero DP. Clinical Characterization of Oculomotricity in Children with and without Specific Learning Disorders. Brain Sciences. 2020; 10(11):836. https://doi.org/10.3390/brainsci10110836
Chicago/Turabian StyleBilbao, Carmen, and David P. Piñero. 2020. "Clinical Characterization of Oculomotricity in Children with and without Specific Learning Disorders" Brain Sciences 10, no. 11: 836. https://doi.org/10.3390/brainsci10110836
APA StyleBilbao, C., & Piñero, D. P. (2020). Clinical Characterization of Oculomotricity in Children with and without Specific Learning Disorders. Brain Sciences, 10(11), 836. https://doi.org/10.3390/brainsci10110836