Validity and Reliability of a Test Battery to Assess Change of Directions with Ball Dribbling in Para-footballers with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Test #1. Ball Dribbling in a Straight Line
2.2.2. Test #2. Ball Dribbling with Short Slalom CODs
2.2.3. Test #3. Ball Dribbling with Long Slalom CODs
2.2.4. Test #4. Ball Dribbling in a Square
2.3. Procedures
2.3.1. Expert Consultation
2.3.2. COD Performance
2.4. Data Analysis
3. Results
3.1. Content Validity
3.2. Test Reliability and Reproducibility
3.3. Construct Validity
3.4. Between-Group Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Federation of Cerebral Palsy Football (IFCPF). Classification Rules and Regulations. 2018. Available online: https://www.ifcpf.com/about-classification (accessed on 12 December 2019).
- Reina, R.; Iturricastillo, A.; Sabido, R.; Campayo-Piernas, M.; Yanci, J. Vertical and horizontal jump capacity in international cerebral palsy football players. Int. J. Sports Physiol. Perform. 2018, 13, 1–23, 597–603. [Google Scholar] [CrossRef]
- Reina, R.; Sarabia, J.M.; Caballero, C.; Yanci, J. How does the ball influence the performance of change of direction and sprint tests in para-footballers with brain impairments? Implications for evidence-based classification in CP-Football. PLoS ONE 2017, 12, e0187237. [Google Scholar] [CrossRef] [Green Version]
- Reina, R.; Sarabia, J.M.; Yanci, J.; Garcia-Vaquero, M.P.; Campayo-Piernas, M. Change of direction ability performance in cerebral palsy football players according to functional profiles. Front. Physiol. 2015, 6, 409. [Google Scholar] [CrossRef] [Green Version]
- Tweedy, S.M.; Vanlandewijck, Y.C. International Paralympic Committee position stand--background and scientific principles of classification in Paralympic sport. Br. J. Sports Med. 2011, 45, 259–269. [Google Scholar] [CrossRef]
- International Paralympic Committee (IPC). IPC Athlete Classification Code. 2015. Available online: https://www.paralympic.org/classification-code (accessed on 12 December 2019).
- Durstine, J.L.; Moore, G.E.; Painter, P.L.; Roberts, S.O. ACSM´s Exercise Management for Persons with Chronic Diseases and Disabilities, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2009; pp. 343–349. [Google Scholar]
- Reina, R.; Elvira, J.L.L.; Valverde, M.; Roldan, A.; Yanci, J. Kinematic and kinetic analyses of the vertical jump with and without header as performed by para-footballers with cerebral palsy. Sports 2019, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadis, S.; Anogeianaki, A.; Anogianakis, G.; Koutsonikolas, D.; Koutsonikola, P. Real time estimation of physical activity and physiological performance reserves of players during a game of soccer. Stud. Health. Technol. Inform. 2004, 98, 13–15. [Google Scholar]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Deceleration movements performed during FA premier league soccer matches. J. Sports Sci. Med. 2007, 10, 6–11. [Google Scholar]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997, 15, 257–263. [Google Scholar] [CrossRef]
- Wisloeff, U.L.R.I.K.; Helgerud, J.A.N.; Hoff, J.A.N. Strength and endurance of elite soccer players. Med. Sci. Sports Exerc. 1998, 30, 462–467. [Google Scholar] [CrossRef]
- Davids, K.; Lees, A.; Burwitz, L. Understanding and measuring coordination and control in kicking skills in soccer: Implications for talent identification and skill acquisition. J. Sports Sci. 2000, 18, 703–714. [Google Scholar] [CrossRef]
- Bangsbo, J.; Norregaard, L.; Thorso, F. Activity profile of competition soccer. Can. J. Sport Sci. 1991, 16, 110–116. [Google Scholar]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport: A review of resistance training studies. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Spinks, C.D. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J. Strength Cond. Res. 2003, 17, 760–767. [Google Scholar]
- Dawson, B.; Hopkinson, R.; Appleby, B.; Stewart, G.; Roberts, C. Player movement patterns and game activities in the Australian Football League. J. Sci. Med. Sport 2004, 7, 278–291. [Google Scholar] [CrossRef]
- Yanci, J.; Castillo, D.; Iturricastillo, A.; Reina, R. Evaluation of the official match external load in soccer players with cerebral palsy. J. Strength Cond. Res. 2019, 33, 866–873. [Google Scholar] [CrossRef]
- Yanci, J.; Castillo, D.; Iturricastillo, A.; Urbán, T.; Reina, R. External match loads of footballers with cerebral palsy: A comparison among sport classes. Int. J. Sports Physiol. Perform. 2018, 13, 590–596. [Google Scholar] [CrossRef]
- Reina, R.; Iturricastillo, A.; Castillo, D.; Urban, T.; Yanci, J. Activity limitation and match load in para-footballers with cerebral palsy: An approach for evidence-based classification. Scand. J. Med. Sci. Sports 2019. [Google Scholar] [CrossRef]
- Tweedy, S.M.; Mann, D.L.; Vanlandewijck, Y.C. Research needs for the development of evidence-based systems of classification for physical, vision and intellectual impairments. In Training and coaching the Paralympic athlete; Vanlandewijck, Y.C., Thompson, W.R., Eds.; John Wiley & Sons, Ltd.: London, UK, 2016; pp. 122–149. [Google Scholar]
- Martins, F.M. Proposição e validação de uma bateria de testes para avaliar as habilidades técnicas em jovens jogadores de futebol. Doctoral Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, June 2012. [Google Scholar]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Rattray, B. Warm-up strategies for sport and exercise: Mechanisms and applications. Sports Med. 2015, 45, 1523–1546. [Google Scholar] [CrossRef]
- Bishop, D. Warm up I. Sports Med. 2003, 33, 439–454. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Prinster, J.L.; Ware, J.S.; Zimmer, D.L.; Arabas, J.R.; Bemben, M.G. Muscular endurance repetitions to predict bench press strength in men of different training levels. J. Sports Med. Phys. Fitness 1995, 35, 108–113. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Portney, L.; Watkins, M. Foundations of Clinical Research: Applications to Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Nunnally, J.; Bernstein, L. Psychometric Theory; McGraw-Hill Higher, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Tweedy, S.M.; Beckman, E.M.; Connick, M.J. Paralympic classification: conceptual basis, current methods, and research update. PM & R 2014, 6, S11–S17. [Google Scholar]
- Boyd, C.; Barnes, C.; Eaves, S.J.; Morse, C.I.; Roach, N.; Williams, A.G. A time-motion analysis of Paralympic football for athletes with cerebral palsy. Int. J. Sports Sci. Coach 2016, 11, 552–556. [Google Scholar] [CrossRef]
- Antunes, D.; Rossato, M.; Kons, R.L.; Sakugawa, R.L.; Fischer, G. Neuromuscular features in sprinters with cerebral palsy: Case studies based on paralympic classification. J. Exerc. Rehabil. 2017, 13, 716–721. [Google Scholar] [CrossRef]
- Bezodis, I.N.; Cowburn, J.; Brazil, A.; Richardson, R.; Wilson, C.; Exell, T.A.; Irwin, G. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters. Sports Biomech. 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.L.; Ilharreborde, B.; Megrot, F.; Mallet, C.; Azarpira, R.; Mazda, K.; Penneçot, G.F. A descriptive study of lower limb torsional kinematic profiles in children with spastic diplegia. J. Pediatr. Orthop. 2015, 35, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Unnithan, V.B.; Clifford, C.; Bar-Or, O. Evaluation by exercise testing of the child with cerebral palsy. Sports Med. 1998, 26, 239–251. [Google Scholar] [CrossRef]
Bilateral Spasticity or Diplegia | Dyskinesia or Ataxia | Unilateral Spasticity or Hemiplegia | Mild Impairment | |
---|---|---|---|---|
Sport Class | FT5 | FT6 | FT7 | FT8 |
N | 5 | 8 | 19 | 3 |
Age (years) | 21.6 ± 2.8 | 24.5 ± 4.0 | 25.2 ± 7.3 | 28.0 ± 11.1 |
Height (cm) | 175.3 ± 7.3 | 170.6 ± 8.1 | 175.8 ± 7.8 | 172.9 ± 8.7 |
Body Mass (kg) | 67.4 ± 9.5 | 60.6 ± 5.3 | 69.7 ± 12.9 | 72.3 ± 5.0 |
BMI (kg/m2) | 21.8 ± 2.2 | 21.0 ± 1.7 | 22.8 ± 3.3 | 24.4 ± 2.4 |
Session 1 | Session 2 | ICC1–2 | SEM (%) | IC (95%) | α | t | p | |
---|---|---|---|---|---|---|---|---|
Test #1 (s) | 4.8 ± 1.3 | 4.6 ± 1.2 | 0.95 | 0.29 (6.3) | 0.91–0.97 | 0.95 | 3.03 | 0.005 |
Test #2 (s) | 8.3 ± 2.5 | 7.5 ± 2.0 | 0.86 | 0.85 (10.8) | 0.73–0.92 | 0.86 | 3.56 | 0.001 |
Test #3 (s) | 20.0 ± 5.0 | 19.2 ± 4.6 | 0.96 | 0.98 (5.0) | 0.93–0.98 | 0.96 | 3.20 | 0.003 |
Test #4 (s) | 10.5 ± 2.6 | 10.2 ± 2.4 | 0.97 | 0.47 (4.6) | 0.94–0.98 | 0.97 | 2.32 | 0.026 |
Test #1 s2 | Test #2 s1 | Test #2 s2 | Test #3 s1 | Test #3 s2 | Test #4 s1 | Test #4 s2 | |
---|---|---|---|---|---|---|---|
Test #1 s1 | 0.950** | 0.846** | 0.780** | 0.942** | 0.928** | 0.898** | 0.885** |
Test #1 s2 | 0.766** | 0.715** | 0.894** | 0.882** | 0.832** | 0.815** | |
Test #2 s1 | 0.877** | 0.887** | 0.925** | 0.919** | 0.902** | ||
Test #2 s2 | 0.813** | 0.854** | 0.815** | 0.852** | |||
Test #3 s1 | 0.963** | 0.942** | 0.937** | ||||
Test #3 s2 | 0.954** | 0.934** | |||||
Test #4 s1 | 0.966** |
Test | Class | M ± SD | F | p | Pair Comparisons (dg) | |||
---|---|---|---|---|---|---|---|---|
FT5 | FT6 | FT7 | FT8 | |||||
#1 | FT5 | 4.5 ± 0.9 | 1.46 | 0.246 | -- | −0.50 | -- | 0.99 |
FT6 | 5.2 ± 1.5 | -- | 0.55 | 1.08 | ||||
FT7 | 4.5 ± 1.1 | -- | 0.82 | |||||
FT8 | 3.6 ± 0.5 | -- | ||||||
#2 | FT5 | 7.5 ± 2.6 | 3.31 | 0.033 | -- | −0.49 | 0.11 | 1.02 |
FT6 | 8.8 ± 2.4 | -- | 0.83 | 1.64 * | ||||
FT7 | 7.3 ± 1.4 | -- | 1.66 | |||||
FT8 | 5.0 ± 0.1 | -- | ||||||
#3 | FT5 | 20.6 ± 5.1 | 1.58 | 0.214 | -- | −0.11 | 0.36 | 1.15 |
FT6 | 21.1 ± 4.0 | -- | 0.50 | 1.58 | ||||
FT7 | 18.8 ± 4.7 | -- | 0.82 | |||||
FT8 | 15.0 ± 1.3 | -- | ||||||
#4 | FT5 | 10.8 ± 2.9 | 1.63 | 0.202 | -- | −0.12 | 0.27 | 1.13 |
FT6 | 11.1 ± 2.0 | -- | 0.42 | 1.75 | ||||
FT7 | 10.1 ± 2.4 | -- | 1.01 | |||||
FT8 | 7.7 ± 0.4 | -- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniel, L.F.; Reina, R.; Gorla, J.I.; Bastos, T.; Roldan, A. Validity and Reliability of a Test Battery to Assess Change of Directions with Ball Dribbling in Para-footballers with Cerebral Palsy. Brain Sci. 2020, 10, 74. https://doi.org/10.3390/brainsci10020074
Daniel LF, Reina R, Gorla JI, Bastos T, Roldan A. Validity and Reliability of a Test Battery to Assess Change of Directions with Ball Dribbling in Para-footballers with Cerebral Palsy. Brain Sciences. 2020; 10(2):74. https://doi.org/10.3390/brainsci10020074
Chicago/Turabian StyleDaniel, Lucas Felippe, Raúl Reina, José Irineu Gorla, Tânia Bastos, and Alba Roldan. 2020. "Validity and Reliability of a Test Battery to Assess Change of Directions with Ball Dribbling in Para-footballers with Cerebral Palsy" Brain Sciences 10, no. 2: 74. https://doi.org/10.3390/brainsci10020074