Automatic Recognition of Personality Profiles Using EEG Functional Connectivity during Emotional Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. AMIGOS Dataset
2.2. Grouping Categorical Variables
2.3. Functional Connectivity and Graph Modeling
2.4. Feature Selection
2.5. Classification
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lisetti, C.L. Book Review: Affective Computing by Rosalind Picard; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Hong, R.Y.; Paunonen, S.V.; Slade, H.P. Big Five personality factors and the prediction of behavior: A multitrait-multimethod approach. Pers. Individ. Differ. 2008, 45, 160–166. [Google Scholar] [CrossRef]
- Liu, L.; Preoţiuc-Pietro, D.; Samani, Z.R.; Moghaddam, M.E.; Ungar, L. Analyzing Personality through Social Media Profile Picture Choice. In Proceedings of the 10th International Conference on Web and Social Media, ICWSM, Cologne, Germany, 17–20 May 2016; AAAI: Palo Alto, CA, USA, 2016. [Google Scholar]
- Youyou, W.; Kosinski, M.; Stillwell, D. Computer-based personality judgments are more accurate than those made by humans. Proc. Natl. Acad. Sci. USA 2015, 112, 1036–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciarelli, A.; Pantic, M.; Bourlard, H. Social signal processing: Survey of an emerging domain. Image Vis. Comput. 2009, 27, 1743–1759. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Friston, K. Structural and functional brain networks: From connections to cognition. Science 2013, 342, 1238411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeYoung, C.G.; Hirsh, J.B.; Shane, M.S.; Papademetris, X.; Rajeevan, N.; Gray, J.R. Testing Predictions from Personality Neuroscience. Psychol. Sci. 2010, 21, 820–828. [Google Scholar] [CrossRef]
- Deyoung, C.G.; Quilty, L.C.; Peterson, J.B.; Gray, J.R. Openness to experience, intellect, and cognitive ability. J. Personal. Assess. 2014, 96, 46–52. [Google Scholar] [CrossRef]
- Denissen, J.J.A.; Penke, L. Motivational individual reaction norms underlying the Five-Factor model of personality: First steps towards a theory-based conceptual framework. J. Res. Pers. 2008, 42, 1285–1302. [Google Scholar] [CrossRef]
- Li, T.; Yan, X.; Li, Y.; Wang, J.; Li, Q.; Li, H.; Li, J. Neuronal Correlates of Individual Differences in the Big Five Personality Traits: Evidences from Cortical Morphology and Functional Homogeneity. Front. Neurosci. 2017, 11, 414. [Google Scholar] [CrossRef]
- Korjus, K.; Uusberg, A.; Uusberg, H.; Kuldkepp, N.; Kreegipuu, K.; Allik, J.; Vicente, R.; Aru, J. Personality cannot be predicted from the power of resting state EEG. Front. Hum. Neurosci. 2015, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Tran, Y.; Craig, A.; McIsaac, P. Extraversion-introversion and 8–13 Hz waves in frontal cortical regions. Pers. Individ. Differ. 2001, 30, 205–215. [Google Scholar] [CrossRef]
- Gale, A.; Edwards, J.; Morris, P.; Moore, R.; Forrester, D. Extraversion-introversion, neuroticism-stability, and EEG indicators of positive and negative empathic mood. Personal. Individ. Differ. 2001, 30, 449–461. [Google Scholar] [CrossRef]
- Tran, Y.; Craig, A.; Boord, P.; Connell, K.; Cooper, N.; Gordon, E. Personality traits and its association with resting regional brain activity. Int. J. Psychophysiol. 2006, 60, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G.; Slobodskaya, H.R. Personality trait of behavioral inhibition is associated with oscillatory systems reciprocal relationships. Int. J. Psychophysiol. 2003, 48, 247–261. [Google Scholar] [CrossRef]
- Kondacs, A.; Szabó, M. Long-term intra-individual variability of the background EEG in normals. Clin. Neurophysiol. 1999, 110, 1708–1716. [Google Scholar] [CrossRef]
- Johannisson, T. Correlations between personality traits and specific groups of alpha waves in the human EEG. PeerJ 2016, 4, e2245. [Google Scholar] [CrossRef] [PubMed]
- Toschi, N.; Riccelli, R.; Indovina, I.; Terracciano, A.; Passamonti, L. Functional Connectome of the Five-Factor Model of Personality. Personal. Neurosci. 2018, 1, e2. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q. Erratum: Extraversion and neuroticism relate to topological properties of resting-state brain networks. Front. Hum. Neurosci. 2013, 7, 448. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Wang, J.; Xu, C.; Li, H.; Ma, X. Focusing on the Differences of Resting-State Brain Networks, Using a Data-Driven Approach to Explore the Functional Neuroimaging Characteristics of Extraversion Trait. Front. Neurosci. 2018, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Mulders, P.; Llera, A.; Tendolkar, I.; van Eijndhoven, P.; Beckmann, C. Personality Profiles Are Associated with Functional Brain Networks Related to Cognition and Emotion. Sci. Rep. 2018, 8, 13874. [Google Scholar] [CrossRef]
- Bey, K.; Montag, C.; Reuter, M.; Weber, B.; Markett, S. Susceptibility to everyday cognitive failure is reflected in functional network interactions in the resting brain. Neuroimage 2015, 121, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kabbara, A.; Paban, V.; Weill, A.; Modolo, J.; Hassan, M. Brain network dynamics correlates with personality traits. bioRxiv 2019, 702266. [Google Scholar] [CrossRef] [PubMed]
- Tompson, S.H.; Falk, E.B.; Vettel, J.M.; Bassett, D.S. Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience. Personal. Neurosci. 2018, 1, e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corr, P.; Matthews, G. The Cambridge Handbook of Personality Psychology; Cambridge University Press: New York, NY, USA, 2009; ISBN 9780521862189. [Google Scholar]
- Wache, J.; Subramanian, R.; Abadi, M.K.; Vieriu, R.L.; Sebe, N.; Winkler, S. Implicit User-Centric Personality Recognition Based on Physiological Responses to Emotional Videos. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; ACM Press: New York, NY, USA, 2015; pp. 239–246. [Google Scholar]
- Zhao, G.; Ge, Y.; Shen, B.; Wei, X.; Wang, H. Emotion Analysis for Personality Inference from EEG Signals. IEEE Trans. Affect. Comput. 2018, 9, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Miranda Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2018. [Google Scholar] [CrossRef] [Green Version]
- Klados, M.A.; Paraskevopoulos, E.; Pandria, N.; Bamidis, P.D. The Impact of Math Anxiety on Working Memory: A Cortical Activations and Cortical Functional Connectivity EEG Study. IEEE Access 2019, 7, 15027–15039. [Google Scholar] [CrossRef]
- Lithari, C.; Klados, M.A.; Bamidis, P.D. Graph Analysis on Functional Connectivity Networks during an Emotional Paradigm. In Proceedings of the XII Mediterranean Conference on Medical and Biological Engineering and Computing, Chalkidiki, Greece, 27–30 May 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 115–118. [Google Scholar]
- Lithari, C.; Frantzidis, C.A.A.; Papadelis, C.; Klados, M.A.A.; Pappas, C.; Bamidis, P.D.D. Small-World Properties of Brain Functional Connectivity Networks Are Affected by Emotional Stimuli. In Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfu, Greece, 3–5 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Bayrak, Ş.; Margulies, D.; Bamidis, P.; Klados, M.A. Mathematical Anxiety influences the cortical connectivity profiles in lower alpha band during working memory tasks. Front. Hum. Neurosci. 2016, 10. [Google Scholar] [CrossRef]
- Klados, M.A.; Pandria, N.; Micheloyannis, S.; Margulies, D.; Bamidis, P.D. Math anxiety: Brain cortical network changes in anticipation of doing mathematics. Int. J. Psychophysiol. 2017, 122, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Lithari, C.; Frantzidis, C.; Klados, M.A.A.; Bamidis, P.D.D. Does arousal and valence affect ERPs and brain connectivity? A study during an emotional paradigm. Int. J. Psychophysiol. 2010, 77, 266. [Google Scholar] [CrossRef]
- Klados, M.A.; Styliadis, C.; Bamidis, P.D. A Short Review on Emotional Recognition Based on Biosignal Pattern Analysis. In Proceedings of the XIII Mediterranean Conference on Medical and Biological Engineering and Computing, Seville, Spain, 25–28 September 2013; Springer: Cham, Switzerland, 2014; pp. 787–790. [Google Scholar]
- Durgabai, R.P.L.; Ravi Bhusan, Y. Feature Selection using ReliefF Algorithm. Int. J. Adv. Res. Comput. Commun. Eng. 2014. [Google Scholar] [CrossRef]
- Citron, F.M.M.; Gray, M.A.; Critchley, H.D.; Weekes, B.S.; Ferstl, E.C. Emotional valence and arousal affect reading in an interactive way: Neuroimaging evidence for an approach-withdrawal framework. Neuropsychologia 2014, 56, 79–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozer, D.J.; Benet-Martínez, V. Personality and the prediction of consequential outcomes. Annu. Rev. Psychol. 2006, 57, 401–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciarelli, A.; Mohammadi, G. More Personality in Personality Computing. IEEE Trans. Affect. Comput. 2014, 5, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Herwig, U.; Satrapi, P.; Schönfeldt-Lecuona, C. Using the International 10–20 EEG System for Positioning of Transcranial Magnetic Stimulation. Brain Topogr. 2003, 16, 95–99. [Google Scholar] [CrossRef]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; Mckeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
- Klados, M.A.; Papadelis, C.; Braun, C.; Bamidis, P.D. REG-ICA: A hybrid methodology combining Blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomed. Signal. Process. Control. 2011, 6, 291–300. [Google Scholar] [CrossRef]
- Klados, M.A.; Papadelis, C.L.; Bamidis, P.D. REG-ICA: A new hybrid method for EOG Artifact Rejection. In Proceedings of the 2009 9th International Conference on Information Technology and Applications in Biomedicine, Larnaca, Cyprus, 5–7 November 2009; pp. 1–4. [Google Scholar]
- MacCallum, R.C.; Zhang, S.; Preacher, K.J.; Rucker, D.D. On the practice of dichotomization of quantitative variables. Psychol. Methods 2002, 7, 19–40. [Google Scholar] [CrossRef]
- McClelland, G.H.; Lynch, J.G.; Irwin, J.R.; Spiller, S.A.; Fitzsimons, G.J. Median splits, Type II errors, and false–positive consumer psychology: Don’t fight the power. J. Consum. Psychol. 2015, 25, 679–689. [Google Scholar] [CrossRef]
- Nolte, G.; Bai, O.; Wheaton, L.; Mari, Z.; Vorbach, S.; Hallett, M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 2004, 115, 2292–2307. [Google Scholar] [CrossRef]
- Pezoulas, V.C.; Athanasiou, A.; Nolte, G.; Zervakis, M.; Fratini, A.; Fotiadis, D.I.; Klados, M.A. FCLAB: An EEGLAB module for performing functional connectivity analysis on single-subject EEG data. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; pp. 96–99. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Mathworks. Machine Learning Challenges: Choosing the Best Model and Avoiding Overfitting. Available online: https://www.mathworks.com/campaigns/offers/common-machine-learning-challenges.html (accessed on 26 October 2019).
- Wei, W.; Jia, Q. Weighted Feature Gaussian Kernel SVM for Emotion Recognition. Comput. Intell. Neurosci. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischetti, M. Fast training of Support Vector Machines with Gaussian kernel. Discret. Optim. 2016, 22, 183–194. [Google Scholar] [CrossRef]
- McCrae, R.R. Openness to Experience: Expanding the boundaries of Factor V. Eur. J. Pers. 1994, 8, 251–272. [Google Scholar] [CrossRef] [Green Version]
- Canli, T.; Desmond, J.E.; Zhao, Z.; Glover, G.; Gabrieli, J.D. Hemispheric asymmetry for emotional stimuli detected with fMRI. Neuroreport 1998, 9, 3233–3239. [Google Scholar] [CrossRef] [PubMed]
- Lithari, C.; Frantzidis, C.A.; Papadelis, C.; Vivas, A.B.; Klados, M.A.; Kourtidou-Papadeli, C.; Pappas, C.; Ioannides, A.A.; Bamidis, P.D. Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions. Brain Topogr. 2010, 23, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Klados, M.A.; Frantzidis, C.; Vivas, A.B.; Papadelis, C.; Lithari, C.; Pappas, C.; Bamidis, P.D. A Framework Combining Delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to Study Emotional Processing. Comput. Intell. Neurosci. 2009, 2009, 1–16. [Google Scholar] [CrossRef]
- Frantzidis, C.A.; Bratsas, C.; Klados, M.A.; Konstantinidis, E.; Lithari, C.D.; Vivas, A.B.; Papadelis, C.L.; Kaldoudi, E.; Pappas, C.; Bamidis, P.D. On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-mining-based approach for healthcare applications. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 309–318. [Google Scholar] [CrossRef]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual; Tech Rep A-8; University of Florida: Gainesville, FL, USA, 2008. [Google Scholar]
- Barrett, L.F. Solving the emotion paradox: Categorization and the experience of emotion. Personal. Soc. Psychol. Rev. 2006, 10, 20–46. [Google Scholar] [CrossRef] [Green Version]
- Eysenck, H.J. Dimensions of Personality; Transaction Publishers: Piscataway, NJ, USA, 1950. [Google Scholar]
- Subramanian, R.; Wache, J.; Abadi, M.K.; Vieriu, R.L.; Winkler, S.; Sebe, N. ASCERTAIN: Emotion and Personality Recognition using Commercial Sensors. IEEE Trans. Affect. Comput. 2018, 9, 147–160. [Google Scholar] [CrossRef]
- Ng, W. Clarifying the relation between neuroticism and positive emotions. Personal. Individ. Differ. 2009, 47, 69–72. [Google Scholar] [CrossRef]
- Wilt, J.; Revelle, W. Handbook of Individual Differences in Social Behavior; Leary, M.R., Hoyle, R.H., Eds.; The Guilford Press: New York, NY, USA, 2009; ISBN 978-1-59385-647-2. [Google Scholar]
- Zillig, L.M.P.; Hemenover, S.H.; Dienstbier, R.A. What do we assess when we assess a Big 5 trait? A content analysis of the affective, behavioral, and cognitive processes represented in Big 5 personality inventories. Personal. Soc. Psychol. Bull. 2002, 28, 848–858. [Google Scholar] [CrossRef]
- Revelle, W. The Contribution of Reinforcement Sensitivity Theory to Personality Theory. In The Reinforcement Sensitivity Theory of Personality; Corr, P., Ed.; Cambridge University Press: Cambridge, UK, 2008; ISBN 9780511819384. [Google Scholar]
- Ortony, A.; Norman, D.A.; Revelle, N. The Role of Affect and Proto-Affect in Effective Functioning. In Who Needs Emotions? The Brain Meets the Machine; Fellous, J., Arbib, M., Eds.; Oxford University Press: New York, NY, USA, 2005; pp. 173–202. ISBN 978-0195166194. [Google Scholar]
- Akiskal, H.S.; Hirschfeld, R.M.; Yerevanian, B.I. The relationship of personality to affective disorders. Arch. Gen. Psychiatry 1983, 40, 801–810. [Google Scholar] [CrossRef] [PubMed]
k-Means | Mean | |||
---|---|---|---|---|
Dimension | Low | High | Low | High |
Extroversion | 20 | 17 | 20 | 17 |
Agreeableness | 18 | 19 | 19 | 18 |
Conscientiousness | 16 | 21 | 17 | 20 |
Neuroticism | 17 | 20 | 12 | 25 |
Openness | 27 | 10 | 26 | 11 |
Dimension | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
Extroversion | 83.8% | 0.82 | 0.85 | 0.86 |
Openness | 64.9% | 0 | 0.89 | 0.67 |
Neuroticism | 78.4% | 0.92 | 0.54 | 0.84 |
Agreeableness | 75.7% | 0.90 | 0.56 | 0.82 |
Conscientiousness | 67.6% | 0.15 | 0.96 | 0.73 |
Dimension | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
Extroversion | 56.8% | 0.47 | 0.65 | 0.55 |
Openness | 73% | 0 | 1 | 0.71 |
Neuroticism | 64.9% | 0.96 | 0.08 | 0.64 |
Agreeableness | 70.3% | 0.81 | 0.56 | 0.71 |
Conscientiousness | 62.2% | 0.31 | 0.79 | 0.72 |
Dimension | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
Extroversion | 83.8% | 0.82 | 0.85 | 0.86 |
Openness | 73% | 0.1 | 0.96 | 0.74 |
Neuroticism | 83.8% | 0.92 | 0.69 | 0.89 |
Agreeableness | 86.5% | 0.90 | 0.81 | 0.92 |
Conscientiousness | 83.8% | 0.6 | 0.88 | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klados, M.A.; Konstantinidi, P.; Dacosta-Aguayo, R.; Kostaridou, V.-D.; Vinciarelli, A.; Zervakis, M. Automatic Recognition of Personality Profiles Using EEG Functional Connectivity during Emotional Processing. Brain Sci. 2020, 10, 278. https://doi.org/10.3390/brainsci10050278
Klados MA, Konstantinidi P, Dacosta-Aguayo R, Kostaridou V-D, Vinciarelli A, Zervakis M. Automatic Recognition of Personality Profiles Using EEG Functional Connectivity during Emotional Processing. Brain Sciences. 2020; 10(5):278. https://doi.org/10.3390/brainsci10050278
Chicago/Turabian StyleKlados, Manousos A., Panagiota Konstantinidi, Rosalia Dacosta-Aguayo, Vasiliki-Despoina Kostaridou, Alessandro Vinciarelli, and Michalis Zervakis. 2020. "Automatic Recognition of Personality Profiles Using EEG Functional Connectivity during Emotional Processing" Brain Sciences 10, no. 5: 278. https://doi.org/10.3390/brainsci10050278
APA StyleKlados, M. A., Konstantinidi, P., Dacosta-Aguayo, R., Kostaridou, V.-D., Vinciarelli, A., & Zervakis, M. (2020). Automatic Recognition of Personality Profiles Using EEG Functional Connectivity during Emotional Processing. Brain Sciences, 10(5), 278. https://doi.org/10.3390/brainsci10050278