Neuroanatomical Changes in Leber’s Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. MRI Acquisition
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Volumetric Differences between Groups
3.3. Associations between Volumetric Results and Clinical Data of LHON Participants
4. Discussion
4.1. Brain Morphological Abnormalities of the LHON Participants
4.2. Associations with Clinical Characteristics
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.S.; Elsas, L.J.; Nikoskelainen, E.K. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988, 242, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Newman, N.J.; Lott, M.T.; Wallace, D.C. The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation. Am. J. Ophthalmol. 1991, 111, 750–762. [Google Scholar] [CrossRef]
- McFarland, R.; Turnbull, D.M. Batteries not included: Diagnosis and management of mitochondrial disease. J. Intern. Med. 2009, 265, 210–228. [Google Scholar] [CrossRef]
- Carelli, V.; Ross-Cisneros, F.N.; Sadun, A.A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 2004, 23, 53–89. [Google Scholar] [CrossRef] [PubMed]
- Tońska, K.; Kodroń, A.; Bartnik, E. Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim. Biophys. Acta 2010, 1797, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Mackey, D.; Howell, N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am. J. Hum. Genet. 1992, 51, 1218–1228. [Google Scholar]
- Yu-Wai-Man, P.; Griffiths, P.G.; Hudson, G.; Chinnery, P.F. Inherited mitochondrial optic neuropathies. J. Med. Genet. 2009, 46, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.W.; Wang, N.; Cai, S.; Fang, Z.; Yu, M.; Wu, Q.; Tang, L.; Guo, B.; Feng, Y.; Jonas, J.B.; et al. Structural brain abnormalities in patients with primary open-angle glaucoma: A study with 3T MR imaging. Investig. Ophthalmol. Vis. Sci. 2013, 54, 545–554. [Google Scholar] [CrossRef]
- Zikou, A.K.; Kitsos, G.; Tzarouchi, L.C.; Astrakas, L.; Alexiou, G.A.; Argyropoulou, M.I. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: A preliminary study. Am. J. Neuroradiol. 2012, 33, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Cai, P.; Shi, L.; Lin, Y.; Zhang, J.; Liu, S.; Xie, B.; Shi, Y.; Yang, H.; Li, S.; et al. Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma. Curr. Eye Res. 2012, 37, 794–802. [Google Scholar] [CrossRef]
- Plank, T.; Frolo, J.; Brandl-Rühle, S.; Renner, A.B.; Hufendiek, K.; Helbig, H.; Greenlee, M.W. Gray matter alterations in visual cortex of patients with loss of central vision due to hereditary retinal dystrophies. Neuroimage 2011, 56, 1556–1565. [Google Scholar] [CrossRef]
- Boucard, C.C.; Hernowo, A.T.; Maguire, R.P.; Jansonius, N.M.; Roerdink, J.B.T.M.; Hooymans, J.M.M.; Cornelissen, F.W. Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 2009, 132, 1898–1906. [Google Scholar] [CrossRef]
- Morrissey, S.P.; Borruat, F.X.; Miller, D.H.; Moseley, I.F.; Sweeney, M.G.; Govan, G.G.; Kelly, M.A.; Francis, D.A.; Harding, A.E.; McDonald, W.I. Bilateral simultaneous optic neuropathy in adults: Clinical, imaging, serological, and genetic studies. J. Neurol. Neurosurg. Psychiatry 1995, 58, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Kermode, A.G.; Moseley, I.F.; Kendall, B.E.; Miller, D.H.; Macmanus, D.G.; McDonald, W.I. Magnetic resonance imaging in Leber’s optic neuropathy. J. Neurol. Neurosurg. Psychiatry 1989, 52, 671–674. [Google Scholar] [CrossRef]
- Barcella, V.; Rocca, M.A.; Bianchi-Marzoli, S.; Milesi, J.; Melzi, L.; Falini, A.; Pierro, L.; Filippi, M. Evidence for retrochiasmatic tissue loss in Leber’s hereditary optic neuropathy. Hum. Brain Mapp. 2010, 31, 1900–1906. [Google Scholar] [CrossRef]
- Milesi, J.; Rocca, M.A.; Bianchi-Marzoli, S.; Petrolini, M.; Pagani, E.; Falini, A.; Comi, G.; Filippi, M. Patterns of white matter diffusivity abnormalities in Leber’s hereditary optic neuropathy: A tract-based spatial statistics study. J. Neurol. 2012, 259, 1801–1807. [Google Scholar] [CrossRef]
- Takemura, H.; Ogawa, S.; Mezer, A.A.; Horiguchi, H.; Miyazaki, A.; Matsumoto, K.; Shikishima, K.; Nakano, T.; Masuda, Y. Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. NeuroImage Clin. 2019, 23, 101826. [Google Scholar] [CrossRef]
- Long, M.; Wang, L.; Tian, Q.; Ding, H.; Qin, W.; Shi, D.; Yu, C. Brain white matter changes in asymptomatic carriers of Leber’s hereditary optic neuropathy. J. Neurol. 2019, 266, 1474–1480. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, J.; Friston, K.J. Why Voxel-based morphometry should be used. Neuroimage 2001, 14, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Riccelli, R.; Toschi, N.; Nigro, S.; Terracciano, A.; Passamonti, L. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Soc. Cogn. Affect. Neurosci. 2017, 12, 671–684. [Google Scholar] [CrossRef]
- Busatto, G.F.; Diniz, B.S.; Zanetti, M.V. Voxel-based morphometry in Alzheimer’s disease. Expert Rev. Neurother. 2008, 8, 1691–1702. [Google Scholar] [CrossRef]
- Yasuda, C.L.; Betting, L.E.; Cendes, F. Voxel-based morphometry and epilepsy. Expert Rev. Neurother. 2010, 10, 975–984. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, W.; Shi, F.; Liu, Y.; Li, J.; Qin, W.; Li, K.; Yu, C.; Jiang, T. Thick visual cortex in the early blind. J. Neurosci. 2009, 29, 2205–2211. [Google Scholar] [CrossRef] [Green Version]
- Voss, P.; Pike, B.G.; Zatorre, R.J. Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. Brain 2014, 137, 1224–1240. [Google Scholar] [CrossRef] [Green Version]
- Hernowo, A.T.; Prins, D.; Baseler, H.A.; Plank, T.; Gouws, A.D.; Hooymans, J.M.M.; Morland, A.B.; Greenlee, M.W.; Cornelissen, F.W. Morphometric analyses of the visual pathways inmacular degeneration. Cortex 2014, 56, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, H.; Wei, S.; Qiu, H.; Gong, Y.; Li, H.; Dai, Y.; Jiang, Z.; Liu, Z. Characterization of retinal nerve fiber layer thickness changes associated with leber’s hereditary optic neuropathy by optical coherence tomography. Exp. Ther. Med. 2014, 7, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.A.; Valsasina, P.; Pagani, E.; Bianchi-Marzoli, S.; Milesi, J.; Falini, A.; Comi, G.; Filippi, M. Extra-visual functional and structural connection abnormalities in Leber’s hereditary optic neuropathy. PLoS ONE 2011, 6, e17081. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Ma, L. Surface-Based Morphometry of Human Brain: Intra-individual Comparison Between 3T and 7T High Resolution Structural MR Imaging. Chin. Med. Sci. J. 2017, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Seiger, R.; Hahn, A.; Hummer, A.; Kranz, G.S.; Ganger, S.; Küblböck, M.; Kraus, C.; Sladky, R.; Kasper, S.; Windischberger, C.; et al. Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data. Neuroimage 2015, 113, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Duyn, J.H.; Van Gelderen, P.; Li, T.Q.; De Zwart, J.A.; Koretsky, A.P.; Fukunaga, M. High-field MRI of brain cortical substructure based on signal phase. Proc. Natl. Acad. Sci. USA 2007, 104, 11796–11801. [Google Scholar] [CrossRef] [Green Version]
- Van Der Kolk, A.G.; Hendrikse, J.; Zwanenburg, J.J.M.; Visser, F.; Luijten, P.R. Clinical applications of 7 T MRI in the brain. Eur. J. Radiol. 2013, 82, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Zaretskaya, N.; Fischl, B.; Reuter, M.; Renvall, V.; Polimeni, J.R. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE. Neuroimage 2018, 165, 11–26. [Google Scholar] [CrossRef]
- Kollia, K.; Maderwald, S.; Putzki, N.; Schlamann, M.; Theysohn, J.M.; Kraff, O.; Ladd, M.E.; Forsting, M.; Wanke, I. First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: Comparison of 1.5T and 7T. Am. J. Neuroradiol. 2009, 30, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Nakada, T.; Matsuzawa, H.; Igarashi, H.; Fujii, Y.; Kwee, I.L. In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by mr microscopy on a 7T system. J. Neuroimaging 2008, 18, 125–129. [Google Scholar] [CrossRef]
- Stüber, C.; Morawski, M.; Schäfer, A.; Labadie, C.; Wähnert, M.; Leuze, C.; Streicher, M.; Barapatre, N.; Reimann, K.; Geyer, S.; et al. Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. Neuroimage 2014, 93, 95–106. [Google Scholar] [CrossRef]
- Keuken, M.C.; Bazin, P.L.; Backhouse, K.; Beekhuizen, S.; Himmer, L.; Kandola, A.; Lafeber, J.J.; Prochazkova, L.; Trutti, A.; Schäfer, A.; et al. Effects of aging on T1, T2∗, and QSM MRI values in the subcortex. Brain Struct. Funct. 2017, 222, 2487–2505. [Google Scholar] [CrossRef] [Green Version]
- Uludağ, K.; Blinder, P. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage 2018, 168, 279–295. [Google Scholar] [CrossRef]
- Vergani, L.; Martinuzzi, A.; Carelli, V.; Cortelli, P.; Montagna, P.; Schievano, G.; Carrozzo, R.; Angelini, C.; Lugaresi, E. MtDNA mutations associated with leber’s hereditary optic neuropathy: Studies on cytoplasmic hybrid (cybrid) cells. Biochem. Biophys. Res. Commun. 1995, 210, 880–888. [Google Scholar] [CrossRef]
- Klivenyi, P.; Karg, E.; Rozsa, C.; Horvath, R.; Komoly, S.; Nemeth, I.; Turi, S.; Vecsei, L. α-tocopherol/lipid ratio in blood is decreased in patients with Leber’s hereditary optic neuropathy and asymptomatic carriers of the 11778 mtDNA mutation. J. Neurol. Neurosurg. Psychiatry 2001, 70, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Lodi, R. ‘Secondary’ 4216/ND1 and 13708/ND5 Leber’s hereditary optic neuropathy mitochondrial DNA mutations do not further impair in vivo mitochondrial oxidative metabolism when associated with the 11778/ND4 mitochondrial DNA mutation. Brain 2000, 123, 1896–1902. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Takemura, H.; Horiguchi, H.; Terao, M.; Haji, T.; Pestilli, F.; Yeatman, J.D.; Tsuneoka, H.; Wandell, B.A.; Masuda, Y. White matter consequences of retinal receptor and ganglion cell damage. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6976–6986. [Google Scholar] [CrossRef] [Green Version]
- Manners, D.N.; Rizzo, G.; Morgia, C.L.; Tonon, C.; Testa, C.; Barboni, P.; Malucelli, E.; Valentino, M.L.; Caporali, L.; Strobbe, D.; et al. Diffusion tensor imaging mapping of brain white matter pathology in mitochondrial optic neuropathies. Am. J. Neuroradiol. 2015, 36, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Yang, L.; Jiang, H.; Peng, J.; Shang, J.; Wang, J.; Zhang, X. Clinical Features of Chinese Sporadic Leber Hereditary Optic Neuropathy Caused by Rare Primary mtDNA Mutations. J. Neuroophthalmol. 2020, 40, 30–36. [Google Scholar] [CrossRef]
- Borrelli, E.; Triolo, G.; Cascavilla, M.L.; Morgia, C.L.; Rizzo, G.; Savini, G.; Balducci, N.; Nucci, P.; Giglio, R.; Darvizeh, F.; et al. Changes in Choroidal Thickness follow the RNFL Changes in Leber’s Hereditary Optic Neuropathy. Sci. Rep. 2016, 6, 37332. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fan, K.; Zhang, Y.; Chen, Y.; Tian, Q.; Shi, D. Quantitative assessment of optic nerve in patients with Leber’s hereditary optic neuropathy using reduced field-of-view diffusion tensor imaging. Eur. J. Radiol. 2017, 93, 24–29. [Google Scholar] [CrossRef]
- Wang, M.; Guo, H.; Li, S.; Wang, G.; Long, Y.; Meng, X.; Liu, B.; Liu, Y.; Robson, A.G.; Yin, Z.Q. Electrophysiological and Structural Changes in Chinese Patients with LHON. J. Ophthalmol. 2020, 2020, 4734276–4734279. [Google Scholar] [CrossRef] [Green Version]
- Ott, B.R.; Cohen, R.A.; Gongvatana, A.; Okonkwo, O.C.; Johanson, C.E.; Stopa, E.G.; Donahue, J.E.; Silverberg, G.D. Brain ventricular volume and cerebrospinal fluid biomarkers of alzheimer’s disease. J. Alzheimer’s Dis. 2010, 20, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Camicioli, R.; Sabino, J.; Gee, M.; Bouchard, T.; Fisher, N.; Hanstock, C.; Emery, D.; Martin, W.R.W. Ventricular dilatation and brain atrophy in patients with Parkinson’s disease with incipient dementia. Mov. Disord. 2011, 26, 1443–1450. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Reilmann, R.; Roos, R.A.C.; Durr, A.; Leavitt, B.; Owen, G.; Jones, R.; Johnson, H.; Craufurd, D.; Hicks, S.L.; et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: Analysis of 24 month observational data. Lancet Neurol. 2012, 11, 42–53. [Google Scholar] [CrossRef]
- Blatter, D.D.; Bigler, E.D.; Gale, S.D.; Johnson, S.C.; Anderson, C.V.; Burnett, B.M.; Ryser, D.; Macnamara, S.E.; Bailey, B.J. MR-based brain and cerebrospinal fluid measurement after traumatic brain injury: Correlation with neuropsychologicai outcome. Am. J. Neuroradiol. 1997, 18, 1–10. [Google Scholar] [PubMed]
LHON (n = 15) M (SD) | HC (n = 15) M (SD) | z Value or χ2 | p | |
---|---|---|---|---|
Age (years) | 36.21 (14.41) | 32.53 (7.42) | 0.024 | 0.981 |
Education (years) | 15.33 (1.98) | 16 (1.55) | −1.823 | 0.674 |
Sex (% male) | 86 | 66 | 1.671 | 0.192 |
Duration of illness (months) | 132 (144.32) | |||
Education (years) | 15.33 (1.98) | 16 (1.55) | −1.823 | 0.674 |
Sex (% male) | 86 | 66 | 1.671 | 0.192 |
Duration of illness (months) | 132 (144.32) | |||
Mitochondrial mutation 11778G > A (%) | 100 |
LHON (N = 15) | HC (N = 15) | |||
---|---|---|---|---|
M | M | Z | p | |
Left lateral ventricle | 10,246 | 6646 | 2.115 | 0.035 * |
Temporal horn of left lat-vent | 567 | 289 | 2.406 | 0.016 * |
Left Cerebellum WM | 20,581 | 19,375 | 0.249 | 0.804 |
Left Cerebellum Cortex | 52,479 | 53,110 | 0.415 | 0.678 |
Left Thalamus | 7507 | 7205 | −0.249 | 0.804 |
Left Caudate | 3786 | 3942 | −0.124 | 0.901 |
Left Putamen | 5616 | 5262 | 0.539 | 0.590 |
Left Pallidum | 1509 | 1727 | −2.281 | 0.023 * |
3rd Ventricle | 1628 | 1314 | 2.489 | 0.013 * |
4th Ventricle | 2931 | 1996 | 3.069 | 0.002 * |
Left Hippocampus | 3944 | 3989 | 0.249 | 0.804 |
Left Amygdala | 1364 | 1412 | −0.332 | 0.740 |
Cerebrospinal fluid | 1789 | 1488 | 0.747 | 0.455 |
Left Accumbens area | 553 | 499 | 0.664 | 0.507 |
Left Choroid plexus | 384 | 335 | 0.830 | 0.407 |
Right lateral ventricle | 8276 | 6179 | 2.323 | 0.020 * |
Temporal horn of right lat-vent | 414 | 305 | 2.115 | 0.034 * |
Right Cerebellum WM | 1,9727 | 1,7227 | 1.078 | 0.281 |
Right Cerebellum Cortex | 5,2944 | 5,1682 | 0.249 | 0.804 |
Right Thalamus | 7119 | 7378 | −0.041 | 0.967 |
Right Caudate | 4064 | 3864 | 0.995 | 0.320 |
Right Putamen | 5875 | 5542 | 0.788 | 0.431 |
Right Pallidum | 1236 | 1531 | −2.364 | 0.018 * |
Right Hippocampus | 3992 | 3761 | 1.908 | 0.056 |
Right Amygdala | 1666 | 1666 | 0.041 | 0.967 |
Right Accumbens area | 555 | 711 | −2.696 | 0.007 * |
Right Choroid plexus | 414 | 381 | 0.664 | 0.508 |
Optic Chiasm | 96 | 158 | −2.530 | 0.011 * |
CC Posterior | 573 | 671 | −0.456 | 0.648 |
CC Mid Posterior | 548 | 477 | −0.166 | 0.868 |
CC Central | 506 | 476 | −0.166 | 0.868 |
CC Mid Anterior | 524 | 520 | −0.083 | 0.934 |
CC Anterior | 921 | 823 | 0.290 | 0.772 |
Left Cortex | 251,888 | 248,114 | 0.456 | 0.648 |
Right Cortex | 255,895 | 244,263 | 0.539 | 0.590 |
Cortex | 506,176 | 496,939 | 0.581 | 0.561 |
Left Cerebral WM | 228,307 | 239,037 | −0.373 | 0.709 |
Right Cerebral WM | 238,648 | 248,453 | −0.083 | 0.934 |
WM | 459,714 | 487,491 | −0.332 | 0.740 |
Sub-cortical GM | 57,462 | 57,970 | −0.166 | 0.868 |
Total GM | 670,972 | 664,681 | 0.456 | 0.648 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonak, K.; Krukow, P.; Symms, M.; Maciejewski, R.; Grochowski, C. Neuroanatomical Changes in Leber’s Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry. Brain Sci. 2020, 10, 359. https://doi.org/10.3390/brainsci10060359
Jonak K, Krukow P, Symms M, Maciejewski R, Grochowski C. Neuroanatomical Changes in Leber’s Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry. Brain Sciences. 2020; 10(6):359. https://doi.org/10.3390/brainsci10060359
Chicago/Turabian StyleJonak, Kamil, Paweł Krukow, Mark Symms, Ryszard Maciejewski, and Cezary Grochowski. 2020. "Neuroanatomical Changes in Leber’s Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry" Brain Sciences 10, no. 6: 359. https://doi.org/10.3390/brainsci10060359
APA StyleJonak, K., Krukow, P., Symms, M., Maciejewski, R., & Grochowski, C. (2020). Neuroanatomical Changes in Leber’s Hereditary Optic Neuropathy: Clinical Application of 7T MRI Submillimeter Morphometry. Brain Sciences, 10(6), 359. https://doi.org/10.3390/brainsci10060359