Investigating Gait, Movement, and Coordination in Children with Neurodevelopmental Disorders: Is There a Role for Motor Abnormalities in Atypical Neurodevelopment?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. General Assessment
2.3. Motor Functioning
2.3.1. Spatiotemporal Gait Organization
2.3.2. Movement
2.3.3. Coordination
2.4. Data Analysis
2.5. Ethics
3. Results
3.1. Socio-Demographic and Clinical Characteristics
3.2. Predictors of Case-Control Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morris-Rosendahl, D.; Crocq, M. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar]
- Kern, J.K.; Geier, D.A.; King, P.G.; Sykes, L.K.; Mehta, J.A.; Geier, M.R. Shared Brain Connectivity Issues, Symptoms, and Comorbidities in Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorder, and Tourette Syndrome. Brain Connect. 2015, 5, 321–335. [Google Scholar] [CrossRef]
- Sokolova, E.; Oerlemans, A.M.; Rommelse, N.N.; Groot, P.; Hartman, C.A.; Glennon, J.C.; Claassen, T.; Heskes, T.; Buitelaar, J.K. A Causal and Mediation Analysis of the Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). J. Autism. Dev. Disord. 2017, 47, 1595–1604. [Google Scholar] [CrossRef] [Green Version]
- Hattori, J.; Ogino, T.; Abiru, K.; Nakano, K.; Oka, M.; Ohtsuka, Y. Are pervasive developmental disorders and attention-deficit/hyperactivity disorder distinct disorders? Brain Dev. 2006, 28, 371–374. [Google Scholar] [CrossRef]
- Cohen, S.C.; Leckman, J.F.; Bloch, M.H. Clinical assessment of Tourette syndrome and tic disorders. Neurosci. Biobehav. Rev. 2013, 37, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J. Auditory-motor interactions in pediatric motor speech disorders: Neurocomputational modeling of disordered development. J. Commun. Disord. 2014, 47, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Grzadzinski, R.; Di Martino, A.; Brady, E.; Mairena, M.A.; O’Neale, M.; Petkova, E.; Lord, C.; Castellanos, F.X. Examining autistic traits in children with ADHD: Does the autism spectrum extend to ADHD? J. Autism Dev. Disord. 2011, 41, 1178–1191. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E. Sleep and tics: Problems associated with ADHD. J. Am. Acad. Child. Adolesc. Psychiatry 2009, 48, 877–878. [Google Scholar] [CrossRef]
- Tomasi, D.; Volkow, N.D. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2012, 71, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Wass, S. Distortions and disconnections: Disrupted brain connectivity in autism. Brain Cogn. 2011, 75, 18–28. [Google Scholar] [CrossRef]
- Church, J.A.; Fair, D.A.; Dosenbach, N.U.; Cohen, A.L.; Miezin, F.M.; Petersen, S.E.; Schlaggar, B.L. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 2009, 132, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Bradstreet, J.J.; Smith, S.; Baral, M.; Rossignol, D.A. Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern. Med. Rev. 2010, 15, 15–32. [Google Scholar] [PubMed]
- First, M.B.; Williams, J.B.W.; Karg, R.S.; Spitzer, R.L. Structured Clinical Interview for DSM-5 Disorders, Clinician Version (SCID-5-CV); American Psychiatric Association: Arlington, VA, USA, 2015. [Google Scholar]
- Taurines, R.; Schmitt, J.; Renner, T.; Conner, A.C.; Warnke, A.; Romanos, M. Developmental comorbidity in attention-deficit/hyperactivity disorder. Atten. Deficit Hyperact. Disord. 2010, 2, 267–289. [Google Scholar] [CrossRef]
- Lee, M.Y.; Wang, H.S.; Chen, C.J.; Lee, M.H. Social adjustment experiences of adolescents with Tourette syndrome. J. Clin. Nurs. 2019, 28, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banaschewski, T.; Poustka, L.; Holtmann, M. Autism and ADHD across the life span Differential diagnoses or comorbidity? Nervenarzt 2011, 82, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Ozsivadjian, A.; Hibberd, C.; Hollocks, M.J. Brief report: The use of self-report measures in young people with autism spectrum disorder to access symptoms of anxiety, depression and negative thoughts. J. Autism Dev. Disord. 2014, 44, 969–974. [Google Scholar] [CrossRef]
- Yüce, M.; Zoroglu, S.S.; Ceylan, M.F.; Kandemir, H.; Karabekiroglu, K. Psychiatric comorbidity distribution and diversities in children and adolescents with attention deficit/hyperactivity disorder: A study from Turkey. Neuropsychiatr. Dis. Treat. 2013, 9, 1791–1799. [Google Scholar] [CrossRef] [Green Version]
- Hodge, D.; Carollo, T.M.; Lewin, M.; Hoffman, C.D.; Sweeney, D.P. Sleep patterns in children with and without autism spectrum disorders: Developmental comparisons. Res. Dev. Disabil. 2014, 35, 1631–1638. [Google Scholar] [CrossRef]
- Hvolby, A. Associations of sleep disturbance with ADHD: Implications for treatment. Atten. Deficit Hyperact. Disord. 2015, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Rajan, P.V.; Das, D.; Datta, P.; Rothner, A.D.; Erenberg, G. Sleep disorders in children with Tourette syndrome. Pediatr. Neurol. 2014, 51, 31–35. [Google Scholar] [CrossRef]
- Peralta, V.; Cuesta, M.J. Motor Abnormalities: From Neurodevelopmental to Neurodegenerative through “Functional” (Neuro) Psychiatric Disorders. Schizophr. Bull. 2017, 43, 956–971. [Google Scholar] [CrossRef] [Green Version]
- Ungvari, G.; Caroff, S.; Gerevich, J. The Catatonia Conundrum: Evidence of Psychomotor Phenomena as a Symptom Dimension in Psychotic Disorders. Schizophr. Bull. 2010, 36, 231–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, A.L.; O’Driscoll, G.A. Motor deficits and schizophrenia: The evidence from neuroleptic-naïve patients and populations at risk. J. Psychiatry Neurosci. 1999, 24, 304–314. [Google Scholar]
- McNeil, T.F.; Cantor-Graae, E. Neuromotor markers of risk for schizophrenia. Aust. N. Z. J. Psychiatry 2000, 34 (Suppl. S1), S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Peralta, V.; Cuesta, M.; Serrano, J.; Martinez-Larrea, J. Classification issues in catatonia. Eur. Arch. Psychiatry Clin. Neurosci. 2001, 251, I14–I16. [Google Scholar] [CrossRef] [PubMed]
- Pfuhlmann, B.; Stober, G. The different conceptions of catatonia: Historical overview and critical discussion. Eur. Arch. Psychiatry Clin. Neurosci. 2001, 251, I4–I7. [Google Scholar] [CrossRef] [PubMed]
- Torrey, E.F. Studies of individuals with schizophrenia never treated with antipsychotic medications: A review. Schizophr. Res. 2002, 58, 101–115. [Google Scholar] [CrossRef]
- Blumer, D. Catatonia and the neuroleptics: Psychobiologic significance of remote and recent findings. Compr. Psychiatry 1997, 38, 193–201. [Google Scholar] [CrossRef]
- Ungvari, G.; Kau, L.; Wai-Kwong, T.; Shing, N. The pharmacological treatment of catatonia: An overview. Eur. Arch. Psychiatry Clin. Neurosci. 2001, 251, I31–I34. [Google Scholar] [CrossRef]
- Borsboom, D. A network theory of mental disorders. World Psychiatry 2017, 16, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Kotov, R.; Krueger, R.F.; Watson, D.; Achenbach, T.M.; Althoff, R.R.; Bagby, R.M.; Brown, T.A.; Carpenter, W.T.; Caspi, A.; Clark, L.A.; et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. J. Abnorm. Psychol. 2017, 126, 454–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigman, J.T.; de Vos, S.; Wichers, M.; van Os, J.; Bartels-Velthuis, A.A. A Transdiagnostic Network Approach to Psychosis. Schizophr. Bull. 2017, 43, 122–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manicolo, O.; Brotzmann, M.; Hagmann-von Arx, P.; Grob, A.; Weber, P. Gait in children with infantile/atypical autism: Age-dependent decrease in gait variability and associations with motor skills. Eur. J. Paediatr. Neurol. 2019, 23, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, S.; Sato, S.; Sugawara, A.; Nishikawa, Y.; Koji, T.; Nishimura, Y.; Ogasawara, K. The Coefficient of Variation of Step Time Can Overestimate Gait Abnormality: Test-Retest Reliability of Gait-Related Parameters Obtained with a Tri-Axial Accelerometer in Healthy Subjects. Sensors 2020, 20, 577. [Google Scholar] [CrossRef] [Green Version]
- Gabell, A.; Nayak, U.S. The effect of age on variability in gait. J. Gerontol. 1984, 39, 662–666. [Google Scholar] [CrossRef]
- Henderson, S.; Sugden, D.; Barnett, A. Movement Assessment Battery for Children-2 second edition (Movement ABC-2); The Psychological Corporation: London, UK, 2007. [Google Scholar]
- Wilson, B.; Kaplan, B.; Crawford, S.; Roberts, G. The Developmental Coordination Questionnaire 2007 (DCDQ’07); Alberta Children’s Hospital: Calgary, AB, Canada, 2007. [Google Scholar]
- Thorpe, D.E.; Dusing, S.C.; Moore, C.G. Repeatability of temporospatial gait measures in children using the GAITRite electronic walkway. Arch. Phys. Med. Rehabil. 2005, 86, 2342–2346. [Google Scholar] [CrossRef]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef]
- Nayate, A.; Tonge, B.J.; Bradshaw, J.L.; McGinley, J.L.; Iansek, R.; Rinehart, N.J. Differentiation of high-functioning autism and Asperger’s disorder based on neuromotor behaviour. J. Autism Dev. Disord. 2012, 42, 707–717. [Google Scholar] [CrossRef]
- Wilson, B.N.; Crawford, S.G.; Green, D.; Roberts, G.; Aylott, A.; Kaplan, B.J. Psychometric properties of the revised Developmental Coordination Disorder Questionnaire. Phys. Occup. Ther. Pediatr. 2009, 29, 182–202. [Google Scholar] [CrossRef]
- Caravale, B.; Baldi, S.; Gasparini, C.; Wilson, B.N. Cross-cultural adaptation, reliability and predictive validity of the Italian version of Developmental Coordination Disorder Questionnaire (DCDQ). Eur. J. Paediatr. Neurol. 2014, 18, 267–272. [Google Scholar] [CrossRef]
- Cancer, A.; Minoliti, R.; Crepaldi, M.; Antonietti, A. Identifying developmental motor difficulties: A review of tests to assess motor coordination in children. J. Funct. Morphol. Kinesiol. 2020, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Ungvari, G.S. Catatonia in DSM 5: Controversies regarding its psychopathology, clinical presentation and treatment response. Neuropsychopharmacol. Hung. 2014, 16, 189–194. [Google Scholar] [PubMed]
- Tang, V.M.; Duffin, J. Catatonia in the History of Psychiatry: Construction and Deconstruction of a Disease Concept. Perspect. Biol. Med. 2014, 57, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.C.; Mostofsky, S.H.; Goldberg, M.C.; Cutting, L.E.; Denckla, M.B.; Mahone, E.M. Effects of gender and age on motor exam in typically developing children. Dev. Neuropsychol. 2007, 32, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Largo, R.; Caflisch, J.; Hug, F.; Muggli, K.; Molnar, A.; Molinari, L. Neuromotor development from 5 to 18 years. Part 2: Associated movements. Dev. Med. Child. Neurol. 2001, 43, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Largo, R.; Caflisch, J.; Hug, F.; Muggli, K.; Molnar, A.; Molinari, L.; Sheehy, A.; Gasser, T. Neuromotor development from 5 to 18 years. Part 1: Timed performance. Dev. Med. Child. Neurol. 2001, 43, 436–443. [Google Scholar] [CrossRef]
- Skinner, R.A.; Piek, J.P. Psychosocial implications of poor motor coordination in children and adolescents. Hum. Mov. Sci. 2001, 20, 73–94. [Google Scholar] [CrossRef]
- Nicolson, R.; Lenane, M.; Singaracharlu, S.; Malaspina, D.; Giedd, J.N.; Hamburger, S.D.; Gochman, P.; Bedwell, J.; Thaker, G.K.; Fernandez, T.; et al. Premorbid speech and language impairments in childhood-onset schizophrenia: Association with risk factors. Am. J. Psychiatry 2000, 157, 794–800. [Google Scholar] [CrossRef]
- LeDoux, J. The Emotional Brain; Weidenfeld and Nicolson: London, UK, 1998. [Google Scholar]
- Piek, J.P.; Barrett, N.C.; Allen, L.S.; Jones, A.; Louise, M. The relationship between bullying and self-worth in children with movement coordination problems. Br. J. Educ. Psychol. 2005, 75, 453–463. [Google Scholar] [CrossRef]
- Cairney, J.; Veldhuizen, S.; Szatmari, P. Motor coordination and emotional-behavioral problems in children. Curr. Opin. Psychiatry 2010, 23, 324–329. [Google Scholar] [CrossRef]
- Rapoport, J.L.; Giedd, J.N.; Gogtay, N. Neurodevelopmental model of schizophrenia: Update 2012. Mol. Psychiatry 2012, 17, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Panagiotidis, P.; Kimiskidis, V.; Nimatoudis, I.; Gonda, X. Prevalence and correlates of neurological soft signs in healthy controls without family history of any mental disorder: A neurodevelopmental variation rather than a specific risk factor? Int. J. Dev. Neurosci. 2018, 68, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Poole, K.L.; Schmidt, L.A.; Missiuna, C.; Saigal, S.; Boyle, M.H.; Van Lieshout, R.J. Childhood motor coordination and adult psychopathology in extremely low birth weight survivors. J. Affect. Disord. 2016, 190, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; O’Donovan, M.C.; Thapar, A.; Craddock, N. Neurodevelopmental hypothesis of schizophrenia. Br. J. Psychiatry 2011, 198, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Bremer, E.; Cairney, J. Fundamental Movement Skills and Health-Related Outcomes: A Narrative Review of Longitudinal and Intervention Studies Targeting Typically Developing Children. Am. J. Lifestyle Med. 2018, 12, 148–159. [Google Scholar] [CrossRef]
- O’Donovan, M.C.; Owen, M.J. The implications of the shared genetics of psychiatric disorders. Nat. Med. 2016, 22, 1214–1219. [Google Scholar] [CrossRef]
- Caçola, P. Physical and Mental Health of Children with Developmental Coordination Disorder. Front. Public Health 2016, 4, 224. [Google Scholar] [CrossRef]
- Toro, P.; Schröder, J. Editorial: Neurological Soft Signs in Neuropsychiatric Conditions. Front. Psychiatry 2018, 9, 736. [Google Scholar] [CrossRef] [Green Version]
NDD Individuals | Healthy Controls | |||||||
---|---|---|---|---|---|---|---|---|
n | M (SD) | Median (IQR) | Range | n | M (SD) | Median (IQR) | Range | |
WISC IV | ||||||||
Verbal Comprehension | 82 | 98.93 (15.41) | 97 (90–110) | 56–142 | 30 | 102.87 (14.51) | 103 (90–110) | 80–140 |
Perceptual Reasoning | 82 | 103.73 (17.46) | 105 (93–115) | 54–141 | 30 | 110.23 (10.03) | 111 (104–115) | 91–132 |
Working Memory | 82 | 89.13 (13.93) | 88 (79–100) | 52–127 | 30 | 99.60 (12.50) | 103 (88–109) | 79–121 |
Processing Speed | 81 | 89.54 (18.14) | 88 (76–100) | 47–129 | 30 | 102.27 (17.39) | 103 (91–115) | 56–132 |
full-scale Intelligence Quotient | 81 | 95 (17.10) | 95 (86–107) | 45–141 | 30 | 105.83 (12.45) | 104 (97–115) | 79–132 |
Spatiotemporal gait organization | ||||||||
Velocity (cm/s) | 79 | 102.64 (17.61) | 102.4 (89.2–114.7) | 63.2–143.3 | 31 | 108.76 (19.16) | 112.1 (89.7–121.5) | 74.2–149.4 |
Cadence (step/min) | 79 | 110.94 (13.69) | 110.2 (101.3–119) | 78.5–145.9 | 31 | 112.35 (10.51) | 112.2 (104.5–117.2) | 91–138.2 |
Step time (s) * | 79 | 0.55 (0.07) | 0.54 (0.5–0.59) | 0.41–0.76 | 31 | 0.55 (0.11) | 0.53 (0.51–0.58) | 0.43–1.09 |
Step length (cm) | 79 | 55.53 (7.09) | 54.53 (50.27–59.52) | 43.11–77.67 | 31 | 58.13 (8.91) | 59.36 (52.1–65.07) | 41.25–73.91 |
Stance phase (%) | 79 | 61(1.51) | 61.15 (60–62.05) | 57.95–64.15 | 31 | 60.45 (1.26) | 60.2 (59.3–61.65) | 58–63.1 |
Swing phase (%) | 79 | 38.99 (1.51) | 38.85 (38–40.05) | 35.85–42.05 | 31 | 39.56 (1.28) | 39.8 (38.4–40.7) | 36.85–42 |
Single support phase (%) * | 79 | 39.36 (4.89) | 38.85 (38–40.1) | 26.25–78.3 | 31 | 39.55 (1.28) | 39.8 (38.4–40.65) | 36.75–42.05 |
Double support phase (%) | 79 | 21.58 (2.99) | 21.5 (19.5–23.8) | 14.7–27.85 | 31 | 20.50 (2.37) | 20.2 (18.45–22.8) | 15.55–24.25 |
M-ABC-2 | ||||||||
Manual dexterity * | 82 | 8.39 (4.48) | 8 (5–11) | 1–19 | 31 | 10.23 (3.44) | 11 (8–13) | 4–16 |
Ball skills | 82 | 8.38 (3.14) | 8 (7–10) | 2–19 | 31 | 10.13 (3.29) | 11 (8–12) | 1–16 |
Balance | 82 | 9.95 (4.88) | 9 (6–14) | 1–19 | 31 | 11.29 (3.23) | 11 (10–14) | 3–16 |
Total score | 82 | 8.78 (4.54) | 8.5 (5–12) | 1–19 | 31 | 10.74 (3.71) | 11 (8–14) | 3–16 |
DCDQ’07 | ||||||||
Control during movement | 77 | 20.27 (5.39) | 19 (16–25) | 9–30 | 29 | 23.52 (5.51) | 24 (21–28) | 10–30 |
Fine motor and handwriting | 77 | 12.82 (4.13) | 13 (9–16) | 4–20 | 29 | 16.55 (3.25) | 17 (14–20) | 10–20 |
General coordination | 77 | 14.79 (4.18) | 14 (12–17) | 5–25 | 29 | 18.97 (4.12) | 20 (15–22) | 11–25 |
Total score | 77 | 47.88 (11.17) | 48 (41–54) | 23–74 | 29 | 59.03 (12.14) | 62 (52–70) | 32–75 |
p-Value | OR | 95% CI | |
---|---|---|---|
Gender | <0.001 | 13.023 | 3.693–47.080 |
Step time | 0.661 | 1.690 | 0.161–17.705 |
M-ABC-2 total score | 0.361 | 0.929 | 0.794–1.087 |
DCDQ’07 total score | 0.054 | 0.945 | 0.891–1.001 |
full-scale Intelligence Quotient | 0.368 | 0.823 | 0.539–1.257 |
DCDQ’07 total score * full-scale Intelligence Quotient | 0.038 | 0.964 | 0.931–0.998 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colizzi, M.; Ciceri, M.L.; Di Gennaro, G.; Morari, B.; Inglese, A.; Gandolfi, M.; Smania, N.; Zoccante, L. Investigating Gait, Movement, and Coordination in Children with Neurodevelopmental Disorders: Is There a Role for Motor Abnormalities in Atypical Neurodevelopment? Brain Sci. 2020, 10, 601. https://doi.org/10.3390/brainsci10090601
Colizzi M, Ciceri ML, Di Gennaro G, Morari B, Inglese A, Gandolfi M, Smania N, Zoccante L. Investigating Gait, Movement, and Coordination in Children with Neurodevelopmental Disorders: Is There a Role for Motor Abnormalities in Atypical Neurodevelopment? Brain Sciences. 2020; 10(9):601. https://doi.org/10.3390/brainsci10090601
Chicago/Turabian StyleColizzi, Marco, Marco Luigi Ciceri, Gianfranco Di Gennaro, Beatrice Morari, Alessandra Inglese, Marialuisa Gandolfi, Nicola Smania, and Leonardo Zoccante. 2020. "Investigating Gait, Movement, and Coordination in Children with Neurodevelopmental Disorders: Is There a Role for Motor Abnormalities in Atypical Neurodevelopment?" Brain Sciences 10, no. 9: 601. https://doi.org/10.3390/brainsci10090601
APA StyleColizzi, M., Ciceri, M. L., Di Gennaro, G., Morari, B., Inglese, A., Gandolfi, M., Smania, N., & Zoccante, L. (2020). Investigating Gait, Movement, and Coordination in Children with Neurodevelopmental Disorders: Is There a Role for Motor Abnormalities in Atypical Neurodevelopment? Brain Sciences, 10(9), 601. https://doi.org/10.3390/brainsci10090601