What Is Social about Autism? The Role of Allostasis-Driven Learning
Abstract
:1. Introduction
2. Current Theories on Cognitive Mechanisms of Autism Focus on Social Deficits
3. Neural Basis of Social Processing and How It Varies in Autism
4. Social Development Depends on Allostasis-Driven Learning
4.1. Allostasis Regulation Shapes Social Learning
4.2. The Social Environment Shapes the Multi-Modal Representations of Perception and Action Patterns
5. Individuals with Autism Show Variations in Domain-General Processes of Learning
5.1. Individuals with Autism Show Atypical Patterns of Allostasis Regulation
5.2. Individuals with Autism Show Atypical Perception and Motor Function
5.3. Individuals with Autism Show Atypical Learning
6. Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Neurodevelopmental Disorders. In Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Gernsbacher, M.; Geye, H.; Ellis Weismer, S. The Role of Language and Communication Impairments within Autism; John Benjamins Publishing: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Pellicano, E. The development of core cognitive skills in autism: A 3-year prospective study. Child Dev. 2010, 81, 1400–1416. [Google Scholar] [CrossRef]
- Coll, S.M.; Foster, N.E.V.; Meilleur, A.; Brambati, S.M.; Hyde, K.L. Sensorimotor skills in autism spectrum disorder: A meta-analysis. Res. Autism Spectr. Disord. 2020, 76, 101570. [Google Scholar] [CrossRef]
- Canu, D.; Van der Paelt, S.; Canal-Bedia, R.; Posada, M.; Vanvuchelen, M.; Roeyers, H. Early non-social behavioural indicators of autism spectrum disorder (ASD) in siblings at elevated likelihood for ASD: A systematic review. Eur. Child Adolesc. Psychiatry 2021, 30, 497–538. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, P.L.; Apps, M.A.J.; Chang, S.W.C. Is There a ‘Social’ Brain? Implementations and Algorithms. Trends Cogn. Sci. 2020, 24, 802–813. [Google Scholar] [CrossRef]
- Barrett, L.F.; Satpute, A.B. Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 2013, 23, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Atzil, S.; Gao, W.; Fradkin, I.; Barrett, L.F. Growing a social brain. Nat. Hum. Behav. 2018, 2, 624–636. [Google Scholar] [CrossRef]
- Sterling, P. Allostasis: A model of predictive regulation. Physiol. Behav. 2012, 106, 5–15. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- Fletcher-Watson, S.; Happé, F. Autism, 1st ed.; Routledge: London, UK, 2019; p. 208. [Google Scholar]
- Premack, D.; Woodruff, G. Does the chimpanzee have a theory of mind? Behav. Brain Sci. 2010, 1, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Byom, L.J.; Mutlu, B. Theory of mind: Mechanisms, methods, and new directions. Front. Hum. Neurosci. 2013, 7, 413. [Google Scholar] [CrossRef] [Green Version]
- Frith, U.; Morton, J.; Leslie, A.M. The cognitive basis of a biological disorder: Autism. Trends Neurosci. 1991, 14, 433–438. [Google Scholar] [CrossRef]
- Tager-Flusberg, H. Autistic children’s talk about psychological states: Deficits in the early acquisition of a theory of mind. Child Dev. 1992, 63, 161–172. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Jolliffe, T.; Mortimore, C.; Robertson, M. Another advanced test of theory of mind: Evidence from very high functioning adults with autism or asperger syndrome. J. Child Psychol. Psychiatry 1997, 38, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Baron-Cohen, S.; Leslie, A.M.; Frith, U. Does the autistic child have a “theory of mind”? Cognition 1985, 21, 37–46. [Google Scholar] [CrossRef]
- Wimmer, H. Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 1983, 13, 103–128. [Google Scholar] [CrossRef]
- Senju, A.; Southgate, V.; White, S.; Frith, U. Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science 2009, 325, 883–885. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.R.G.; Simonoff, E.; Baird, G.; Pickles, A.; Marsden, A.J.S.; Tregay, J.; Happe, F.; Charman, T. The association between theory of mind, executive function, and the symptoms of autism spectrum disorder. Autism Res. 2018, 11, 95–109. [Google Scholar] [CrossRef]
- Milton, D.E.M. On the ontological status of autism: The ‘double empathy problem’. Disabil. Soc. 2012, 27, 883–887. [Google Scholar] [CrossRef]
- Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Mars, R.; Neubert, F.-X.; Noonan, M.; Sallet, J.; Toni, I.; Rushworth, M. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.J.; Uddin, L.Q.; Supekar, K.; Khouzam, A.; Phillips, J.; Menon, V. Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits. Biol. Psychiatry 2013, 74, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kana, R.K.; Maximo, J.O.; Williams, D.L.; Keller, T.A.; Schipul, S.E.; Cherkassky, V.L.; Minshew, N.J.; Just, M.A. Aberrant functioning of the theory-of-mind network in children and adolescents with autism. Mol. Autism 2015, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, L.Q.; Supekar, K.; Lynch, C.J.; Khouzam, A.; Phillips, J.; Feinstein, C.; Ryali, S.; Menon, V. Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 2013, 70, 869–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, S.J.; Bird, G.; Brindley, R.; Frith, C.D.; Burgess, P.W. Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: An fMRI study of two executive function tasks. Neuropsychologia 2008, 46, 2281–2291. [Google Scholar] [CrossRef] [Green Version]
- Agam, Y.; Joseph, R.M.; Barton, J.J.; Manoach, D.S. Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. Neuroimage 2010, 52, 336–347. [Google Scholar] [CrossRef] [Green Version]
- Oblak, A.L.; Rosene, D.L.; Kemper, T.L.; Bauman, M.L.; Blatt, G.J. Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism. Autism Res. 2011, 4, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Leech, R.; Sharp, D.J. The role of the posterior cingulate cortex in cognition and disease. Brain 2014, 137, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.S.; Yerys, B.E.; Della Rosa, A.; Foss-Feig, J.; Barnes, K.A.; James, J.D.; VanMeter, J.; Vaidya, C.J.; Gaillard, W.D.; Kenworthy, L.E. Functional connectivity of the inferior frontal cortex changes with age in children with autism spectrum disorders: A fcMRI study of response inhibition. Cereb. Cortex 2009, 19, 1787–1794. [Google Scholar] [CrossRef] [Green Version]
- Igelstrom, K.M.; Webb, T.W.; Graziano, M.S.A. Functional Connectivity Between the Temporoparietal Cortex and Cerebellum in Autism Spectrum Disorder. Cereb. Cortex 2017, 27, 2617–2627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurz, M.; Tholen, M.G. What brain imaging did (not) tell us about the Inferior Frontal Gyrus in theory of mind—A commentary on Samson et al., (2015). Cortex 2016, 74, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.V.; Chakrabarti, B.; Bullmore, E.T.; Consortium, M.A.; Baron-Cohen, S. Specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. Neuroimage 2011, 56, 1832–1838. [Google Scholar] [CrossRef]
- Chevallier, C.; Kohls, G.; Troiani, V.; Brodkin, E.S.; Schultz, R.T. The social motivation theory of autism. Trends Cogn. Sci. 2012, 16, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Clements, C.C.; Zoltowski, A.R.; Yankowitz, L.D.; Yerys, B.E.; Schultz, R.T.; Herrington, J.D. Evaluation of the Social Motivation Hypothesis of Autism: A Systematic Review and Meta-analysis. JAMA Psychiatry 2018, 75, 797–808. [Google Scholar] [CrossRef]
- Dawson, G.; Meltzoff, A.N.; Osterling, J.; Rinaldi, J.; Brown, E. Children with autism fail to orient to naturally occurring social stimuli. J. Autism Dev. Disord. 1998, 28, 479–485. [Google Scholar] [CrossRef]
- Li, L.; He, C.; Jian, T.; Guo, X.; Xiao, J.; Li, Y.; Chen, H.; Kang, X.; Chen, H.; Duan, X. Attenuated link between the medial prefrontal cortex and the amygdala in children with autism spectrum disorder: Evidence from effective connectivity within the “social brain”. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 111, 110147. [Google Scholar] [CrossRef]
- Delmonte, S.; Gallagher, L.; O’Hanlon, E.; Mc Grath, J.; Balsters, J. Functional and structural connectivity of frontostriatal circuitry in Autism Spectrum Disorder. Front. Hum. Neurosci. 2013, 7, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohls, G.; Chevallier, C.; Troiani, V.; Schultz, R.T. Social ‘wanting’ dysfunction in autism: Neurobiological underpinnings and treatment implications. J. Neurodev. Disord. 2012, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachevalier, J.; Loveland, K.A. The orbitofrontal–amygdala circuit and self-regulation of social–emotional behavior in autism. Neurosci. Biobehav. Rev. 2006, 30, 97–117. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.L. Evaluating the theory of executive dysfunction in autism. Dev. Rev. 2004, 24, 189–233. [Google Scholar] [CrossRef] [Green Version]
- Craig, F.; Margari, F.; Legrottaglie, A.R.; Palumbi, R.; de Giambattista, C.; Margari, L. A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2016, 12, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Happe, F.; Frith, U. The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. J. Autism Dev. Disord. 2006, 36, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, P. Context Blindness in Autism Spectrum Disorder. Focus Autism Other Dev. Disabil. 2014, 30, 182–192. [Google Scholar] [CrossRef]
- Murray, D.; Lesser, M.; Lawson, W. Attention, monotropism and the diagnostic criteria for autism. Autism 2005, 9, 139–156. [Google Scholar] [CrossRef]
- Baron-Cohen, S. The extreme male brain theory of autism. Trends Cogn. Sci. 2002, 6, 248–254. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Cassidy, S.; Auyeung, B.; Allison, C.; Achoukhi, M.; Robertson, S.; Pohl, A.; Lai, M.C. Attenuation of typical sex differences in 800 adults with autism vs. 3900 controls. PLoS ONE 2014, 9, e102251. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Richler, J.; Bisarya, D.; Gurunathan, N.; Wheelwright, S. The systemizing quotient: An investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Baron-Cohen, S.; Ashwin, E.; Ashwin, C.; Tavassoli, T.; Chakrabarti, B. Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Baron-Cohen, S.; Wheelwright, S. The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J. Autism Dev. Disord. 2004, 34, 163–175. [Google Scholar] [CrossRef]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Alaerts, K.; Swinnen, S.P.; Wenderoth, N. Sex differences in autism: A resting-state fMRI investigation of functional brain connectivity in males and females. Soc. Cogn. Affect. Neurosci. 2016, 11, 1002–1016. [Google Scholar] [CrossRef] [Green Version]
- Beacher, F.D.; Minati, L.; Baron-Cohen, S.; Lombardo, M.V.; Lai, M.C.; Gray, M.A.; Harrison, N.A.; Critchley, H.D. Autism attenuates sex differences in brain structure: A combined voxel-based morphometry and diffusion tensor imaging study. AJNR Am. J. Neuroradiol. 2012, 33, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron-Cohen, S.; Auyeung, B.; Norgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 2015, 20, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gingrich, B.; Liu, Y.; Cascio, C.; Wang, Z.; Insel, T.R. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav. Neurosci. 2000, 114, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Baez-Mendoza, R.; Schultz, W. The role of the striatum in social behavior. Front. Neurosci. 2013, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Emery, N.J.; Amaral, D.G. The role of the amygdala in primate social cognition. In Cognitive Neuroscience of Emotion; Oxford University Press: New York, NY, USA, 2000; pp. 156–191. [Google Scholar]
- Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocr. 2009, 30, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Preston, S.D.; de Waal, F.B. Empathy: Its ultimate and proximate bases. Behav. Brain Sci. 2002, 25, 1–20, discussion 20–71. [Google Scholar] [CrossRef] [Green Version]
- Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; Fox, A.S.; Winter, J.J.; Davidson, R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011, 12, 154–167. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef] [Green Version]
- van den Bos, W.; Guroglu, B. The role of the ventral medial prefrontal cortex in social decision making. J. Neurosci. 2009, 29, 7631–7632. [Google Scholar] [CrossRef]
- Smith, D.V.; Clithero, J.A.; Boltuck, S.E.; Huettel, S.A. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards. Soc. Cogn. Affect. Neurosci. 2014, 9, 2017–2025. [Google Scholar] [CrossRef] [Green Version]
- Atzil, S.; Hendler, T.; Feldman, R. Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology 2011, 36, 2603–2615. [Google Scholar] [CrossRef] [Green Version]
- Yaniv, A.U.; Salomon, R.; Waidergoren, S.; Shimon-Raz, O.; Djalovski, A.; Feldman, R. Synchronous caregiving from birth to adulthood tunes humans’ social brain. Proc. Natl. Acad. Sci. USA 2021, 118, e2012900118. [Google Scholar] [CrossRef]
- Atzil, S.; Touroutoglou, A.; Rudy, T.; Salcedo, S.; Feldman, R.; Hooker, J.M.; Dickerson, B.C.; Catana, C.; Barrett, L.F. Dopamine in the medial amygdala network mediates human bonding. Proc. Natl. Acad. Sci. USA 2017, 114, 2361–2366. [Google Scholar] [CrossRef] [Green Version]
- Champagne, F.A.; Chretien, P.; Stevenson, C.W.; Zhang, T.Y.; Gratton, A.; Meaney, M.J. Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J. Neurosci. 2004, 24, 4113–4123. [Google Scholar] [CrossRef]
- Silva, M.R.; Bernardi, M.M.; Felicio, L.F. Effects of dopamine receptor antagonists on ongoing maternal behavior in rats. Pharm. Biochem. Behav. 2001, 68, 461–468. [Google Scholar] [CrossRef]
- Johns, J.M.; Joyner, P.W.; McMurray, M.S.; Elliott, D.L.; Hofler, V.E.; Middleton, C.L.; Knupp, K.; Greenhill, K.W.; Lomas, L.M.; Walker, C.H. The effects of dopaminergic/serotonergic reuptake inhibition on maternal behavior, maternal aggression, and oxytocin in the rat. Pharm. Biochem. Behav. 2005, 81, 769–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 2015, 16, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural Regulation of Endocrine and Autonomic Stress Responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luiten, P.G.; Ter Horst, G.J.; Steffens, A.B. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog. Neurobiol. 1987, 28, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Cai, W.; Ryali, S.; Supekar, K.; Menon, V. Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 2016, 14, e1002469. [Google Scholar] [CrossRef] [Green Version]
- Seeley, W.W. The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J. Neurosci. 2019, 39, 9878–9882. [Google Scholar] [CrossRef]
- Jilka, S.R.; Scott, G.; Ham, T.; Pickering, A.; Bonnelle, V.; Braga, R.M.; Leech, R.; Sharp, D.J. Damage to the Salience Network and interactions with the Default Mode Network. J. Neurosci. 2014, 34, 10798–10807. [Google Scholar] [CrossRef] [Green Version]
- Bickart, K.C.; Wright, C.I.; Dautoff, R.J.; Dickerson, B.C.; Barrett, L.F. Amygdala volume and social network size in humans. Nat. Neurosci. 2011, 14, 163–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, L.F.; Bliss-Moreau, E.; Duncan, S.L.; Rauch, S.L.; Wright, C.I. The amygdala and the experience of affect. Soc. Cogn. Affect. Neurosci. 2007, 2, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Bickart, K.C.; Dickerson, B.C.; Barrett, L.F. The amygdala as a hub in brain networks that support social life. Neuropsychologia 2014, 63, 235–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.C.; Knutson, B. Valence and salience contribute to nucleus accumbens activation. Neuroimage 2008, 39, 538–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldassano, C.; Hasson, U.; Norman, K.A. Representation of Real-World Event Schemas during Narrative Perception. J. Neurosci. 2018, 38, 9689–9699. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Uddin, L.Q.; Duan, X.J.; Zheng, J.J.; Long, Z.L.; Zhang, Y.X.; Guo, X.N.; Zhang, Y.; Zhao, J.P.; Chen, H.F. Shared atypical default mode and salience network functional connectivity between autism and schizophrenia. Autism Res. 2017, 10, 1776–1786. [Google Scholar] [CrossRef] [PubMed]
- Kernbach, J.M.; Satterthwaite, T.D.; Bassett, D.S.; Smallwood, J.; Margulies, D.; Krall, S.; Shaw, P.; Varoquaux, G.; Thirion, B.; Konrad, K.; et al. Shared endo-phenotypes of default mode dysfunction in attention deficit/hyperactivity disorder and autism spectrum disorder. Transl. Psychiatry 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oldehinkel, M.; Mennes, M.; Marquand, A.; Charman, T.; Tillmann, J.; Ecker, C.; Dell’Acqua, F.; Brandeis, D.; Banaschewski, T.; Baumeister, S.; et al. Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor Networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. Biol. Psychiatry-Cogn. Neurosci. Neuroimaging 2019, 4, 260–270. [Google Scholar] [CrossRef] [Green Version]
- von dem Hagen, E.A.; Stoyanova, R.S.; Baron-Cohen, S.; Calder, A.J. Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Soc. Cogn. Affect. Neurosci. 2013, 8, 694–701. [Google Scholar] [CrossRef]
- Abbott, A.E.; Nair, A.; Keown, C.L.; Datko, M.; Jahedi, A.; Fishman, I.; Muller, R.A. Patterns of Atypical Functional Connectivity and Behavioral Links in Autism Differ Between Default, Salience, and Executive Networks. Cereb. Cortex 2016, 26, 4034–4045. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.D.; Li, D.D.; Keown, C.L.; Lee, A.; Johnson, R.T.; Angkustsiri, K.; Rogers, S.J.; Muller, R.A.; Amaral, D.G.; Nordahl, C.W. Functional Connectivity of the Amygdala Is Disrupted in Preschool-Aged Children with Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monk, C.S.; Peltier, S.J.; Wiggins, J.L.; Weng, S.-J.; Carrasco, M.; Risi, S.; Lord, C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage 2009, 47, 764–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, R. Parent-infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. J. Child Psychol. Psychiatry 2007, 48, 329–354. [Google Scholar] [CrossRef]
- Feldman, R. Parent–infant synchrony: A biobehavioral model of mutual influences in the formation of affiliative bonds. Monogr. Soc. Res. Child. Dev. 2012, 77, 42–51. [Google Scholar] [CrossRef]
- Winberg, J. Mother and newborn baby: Mutual regulation of physiology and behavior—A selective review. Dev. Psychobiol. 2005, 47, 217–229. [Google Scholar] [CrossRef]
- Hofer, M.A. Hidden regulators in attachment, separation, and loss. Monogr. Soc. Res. Child Dev. 1994, 59, 192–207. [Google Scholar] [CrossRef]
- Keramati, M.; Gutkin, B. Homeostatic reinforcement learning for integrating reward collection and physiological stability. eLife 2014, 3, e04811. [Google Scholar] [CrossRef] [Green Version]
- Atzil, S.; Barrett, L.F. Social Regulation of Allostasis: Commentary on “Mentalizing Homeostasis: The Social Origins of Interoceptive Inference” by Fotopoulou & Tsakiris. Neuropsychoanalysis 2017, 19, 29–33. [Google Scholar] [CrossRef]
- Atzil, S.; Gendron, M. Bio-behavioral synchrony promotes the development of conceptualized emotions. Curr. Opin. Psychol. 2017, 17, 162–169. [Google Scholar] [CrossRef]
- Stein, B.E.; Stanford, T.R.; Rowland, B.A. Development of multisensory integration from the perspective of the individual neuron. Nat. Rev. Neurosci. 2014, 15, 520–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydede, M.; Guzeldere, G. Cognitive architecture, concepts, and introspection: An information-theoretic solution to the problem of phenomenal consciousness. Nous 2005, 39, 197–255. [Google Scholar] [CrossRef]
- Arcaro, M.J.; Livingstone, M.S. On the relationship between maps and domains in inferotemporal cortex. Nat. Rev. Neurosci. 2021, 22, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Charman, T.; Swettenham, J.; Baron-Cohen, S.; Cox, A.; Baird, G.; Drew, A. Infants with autism: An investigation of empathy, pretend play, joint attention, and imitation. Dev. Psychol. 1997, 33, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.V.; Godwin, K.E.; Matlen, B.J.; Unger, L. Development of Category-Based Induction and Semantic Knowledge. Child Dev. 2015, 86, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.; Greenbaum, C.W. Affect regulation and synchrony in mother—Infant play as precursors to the development of symbolic competence. Infant Ment. Health J. 1997, 18, 4–23. [Google Scholar] [CrossRef]
- Taumoepeau, M.; Ruffman, T. Stepping stones to others’ minds: Maternal talk relates to child mental state language and emotion understanding at 15, 24, and 33 months. Child Dev. 2008, 79, 284–302. [Google Scholar] [CrossRef]
- Brown, J.R.; Dunn, J. ‘You can cry, mum’: The social and developmental implications of talk about internal states. Br. J. Dev. Psychol. 1991, 9, 237–256. [Google Scholar] [CrossRef]
- Rollo, D.; Sulla, F. Maternal Talk in Cognitive Development: Relations between Psychological Lexicon, Semantic Development, Empathy, and Temperament. Front. Psychol. 2016, 7, 394. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G. The Big Book of Concepts; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Barsalou, L.W. Ad hoc categories. Mem. Cogn. 1983, 11, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Gweon, H. Inferential social learning: Cognitive foundations of human social learning and teaching. Trends Cogn. Sci. 2021. [Google Scholar] [CrossRef]
- Chanes, L.; Barrett, L.F. Redefining the Role of Limbic Areas in Cortical Processing. Trends Cogn. Sci. 2016, 20, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Krogh, L.; Vlach, H.A.; Johnson, S.P. Statistical learning across development: Flexible yet constrained. Front. Psychol. 2012, 3, 598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegelman, N.; Frost, R. Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. J. Mem. Lang. 2015, 81, 105–120. [Google Scholar] [CrossRef]
- Saffran, J.R.; Aslin, R.N.; Newport, E.L. Statistical learning by 8-month-old infants. Science 1996, 274, 1926–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaaf, R.C.; Benevides, T.W.; Leiby, B.E.; Sendecki, J.A. Autonomic dysregulation during sensory stimulation in children with autism spectrum disorder. J. Autism Dev. Disord. 2015, 45, 461–472. [Google Scholar] [CrossRef]
- McCormick, C.E.B.; Sheinkopf, S.J.; Levine, T.P.; LaGasse, L.L.; Tronick, E.; Lester, B.L. Diminished respiratory sinus arrhythmia response in infants later diagnosed with autism spectrum disorder. Autism Res. 2018, 11, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, M.V.; Richard, E.; Wallace, G.L. The Combination of Food Approach and Food Avoidant Behaviors in Children with Autism Spectrum Disorder: “Selective Overeating”. J. Autism Dev. Disord. 2021. [Google Scholar] [CrossRef]
- Terai, K.; Munesue, T.; Hiratani, M. Excessive water drinking behavior in autism. Brain Dev. 1999, 21, 103–106. [Google Scholar] [CrossRef]
- Richdale, A.L. Sleep problems in autism: Prevalence, cause, and intervention. Dev. Med. Child. Neurol. 1999, 41, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Fiene, L.; Brownlow, C. Investigating interoception and body awareness in adults with and without autism spectrum disorder. Autism Res. 2015, 8, 709–716. [Google Scholar] [CrossRef]
- Garfinkel, S.N.; Tiley, C.; O’Keeffe, S.; Harrison, N.A.; Seth, A.K.; Critchley, H.D. Discrepancies between dimensions of interoception in autism: Implications for emotion and anxiety. Biol. Psychol. 2016, 114, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Elwin, M.; Ek, L.; Schroder, A.; Kjellin, L. Autobiographical accounts of sensing in Asperger syndrome and high-functioning autism. Arch. Psychiatr. Nurs. 2012, 26, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Singletary, W.M. An integrative model of autism spectrum disorder: ASD as a neurobiological disorder of experienced environmental deprivation, early life stress and allostatic overload. Neuropsychoanalysis 2015, 17, 81–119. [Google Scholar] [CrossRef]
- McEwen, B.S. A key role for allostatic overload in ASD and other disorders. Commentary on “An integrative model of autism spectrum disorder: ASD as a neurobiological disorder of experienced environmental deprivation, early life stress, and allostatic overload” by William M. Singletary, MD. Neuropsychoanalysis 2016, 18, 9–14. [Google Scholar] [CrossRef]
- Wass, S. Allostasis and metastasis: The yin and yang of childhood self-regulation. Dev. Psychopathol. 2021, 1–12. [Google Scholar] [CrossRef]
- Bogdashina, O. Sensory Perceptual Issues in Autism and Asperger Syndrome: Different Sensory Experiences—Different Perceptual Worlds; Jessica Kingsley Publishers: London, UK, 2003; p. 217. [Google Scholar]
- Jones, R.S.P.; Quigney, C.; Huws, J.C. First-hand accounts of sensory perceptual experiences in autism: A qualitative analysis. J. Intellect. Dev. Disabil. 2003, 28, 112–121. [Google Scholar] [CrossRef]
- Chung, S.; Son, J.W. Visual Perception in Autism Spectrum Disorder: A Review of Neuroimaging Studies. J. Korean Acad. Child Adolesc. Psychiatry 2020, 31, 105–120. [Google Scholar] [CrossRef]
- Behrmann, M.; Thomas, C.; Humphreys, K. Seeing it differently: Visual processing in autism. Trends Cogn. Sci. 2006, 10, 258–264. [Google Scholar] [CrossRef]
- O’Connor, K. Auditory processing in autism spectrum disorder: A review. Neurosci. Biobehav. Rev. 2012, 36, 836–854. [Google Scholar] [CrossRef]
- Shah, A.; Frith, U. An islet of ability in autistic children: A research note. J. Child Psychol. Psychiatry 1983, 24, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Plaisted, K.; O’Riordan, M.; Baron-Cohen, S. Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. J. Child Psychol. Psychiatry 1998, 39, 765–775. [Google Scholar] [CrossRef]
- O’Riordan, M.A.; Plaisted, K.C.; Driver, J.; Baron-Cohen, S. Superior visual search in autism. J. Exp. Psychol. Hum. Percept. Perform. 2001, 27, 719–730. [Google Scholar] [CrossRef]
- Milne, E.; Swettenham, J.; Hansen, P.; Campbell, R.; Jeffries, H.; Plaisted, K. High motion coherence thresholds in children with autism. J. Child Psychol. Psychiatry 2002, 43, 255–263. [Google Scholar] [CrossRef]
- Spencer, J.; O’Brien, J.; Riggs, K.; Braddick, O.; Atkinson, J.; Wattam-Bell, J. Motion processing in autism: Evidence for a dorsal stream deficiency. Neuroreport 2000, 11, 2765–2767. [Google Scholar] [CrossRef]
- Kellerman, G.R.; Fan, J.; Gorman, J.M. Auditory abnormalities in autism: Toward functional distinctions among findings. CNS Spectr. 2005, 10, 748–756. [Google Scholar] [CrossRef]
- Del Nieto Rincon, P.L. Autism: Alterations in auditory perception. Rev. Neurosci. 2008, 19, 61–78. [Google Scholar] [CrossRef]
- Heaton, P. Pitch memory, labelling and disembedding in autism. J. Child Psychol. Psychiatry 2003, 44, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Alcantara, J.I.; Weisblatt, E.J.; Moore, B.C.; Bolton, P.F. Speech-in-noise perception in high-functioning individuals with autism or Asperger’s syndrome. J. Child Psychol. Psychiatry 2004, 45, 1107–1114. [Google Scholar] [CrossRef]
- Ming, X.; Brimacombe, M.; Wagner, G.C. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007, 29, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.H.; Bodfish, J.W. Repetitive behavior disorders in autism. Ment. Retard. Dev. Disabil. Res. Rev. 1998, 4, 80–89. [Google Scholar] [CrossRef]
- Aiken, J.M.; Salzberg, C.L. The effects of a sensory extinction procedure on stereotypic sounds of two autistic children. J. Autism Dev. Disord. 1984, 14, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Cerezuela, G.; Fernandez-Andres, M.I.; Sanz-Cervera, P.; Marin-Suelves, D. The impact of sensory processing on executive and cognitive functions in children with autism spectrum disorder in the school context. Res. Dev. Disabil. 2020, 96, 103540. [Google Scholar] [CrossRef]
- Miller Kuhaneck, H.; Britner, P.A. A preliminary investigation of the relationship between sensory processing and social play in autism spectrum disorder. OTJR Occup. Particip. Health 2013, 33, 159–167. [Google Scholar] [CrossRef]
- Humes, L.E.; Busey, T.A.; Craig, J.; Kewley-Port, D. Are age-related changes in cognitive function driven by age-related changes in sensory processing? Atten. Percept. Psychophys 2013, 75, 508–524. [Google Scholar] [CrossRef] [Green Version]
- Kessler, S.E.; Radespiel, U.; Hasiniaina, A.I.; Leliveld, L.M.; Nash, L.T.; Zimmermann, E. Modeling the origins of mammalian sociality: Moderate evidence for matrilineal signatures in mouse lemur vocalizations. Front. Zool. 2014, 11, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seltzer, L.J.; Ziegler, T.E.; Pollak, S.D. Social vocalizations can release oxytocin in humans. Proc. R. Soc. Lond. B Biol. Sci. 2010, 277, 2661–2666. [Google Scholar] [CrossRef] [Green Version]
- Kelleher, R.J., 3rd; Bear, M.F. The autistic neuron: Troubled translation? Cell 2008, 135, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 2009, 19, 231–234. [Google Scholar] [CrossRef]
- Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat. Rev. Neurosci. 2015, 16, 551–563. [Google Scholar] [CrossRef]
- Gkogkas, C.G.; Khoutorsky, A.; Ran, I.; Rampakakis, E.; Nevarko, T.; Weatherill, D.B.; Vasuta, C.; Yee, S.; Truitt, M.; Dallaire, P.; et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 2013, 493, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Santini, E.; Huynh, T.N.; MacAskill, A.F.; Carter, A.G.; Pierre, P.; Ruggero, D.; Kaphzan, H.; Klann, E. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 2013, 493, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Santini, E.; Klann, E. Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Sci. Signal. 2014, 7, re10. [Google Scholar] [CrossRef] [PubMed]
- Oberman, L.M.; Ifert-Miller, F.; Najib, U.; Bashir, S.; Heydrich, J.G.; Picker, J.; Rotenberg, A.; Pascual-Leone, A. Abnormal Mechanisms of Plasticity and Metaplasticity in Autism Spectrum Disorders and Fragile X Syndrome. J. Child Adolesc. Psychopharmacol. 2016, 26, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedapati, E.V.; Gilbert, D.L.; Erickson, C.A.; Horn, P.S.; Shaffer, R.C.; Wink, L.K.; Laue, C.S.; Wu, S.W. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case-Control Pilot Study. J. Child Adolesc. Psychopharmacol. 2016, 26, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetze, M.; Rohr, C.S.; Dewey, D.; McCrimmon, A.; Bray, S. Reinforcement Learning in Autism Spectrum Disorder. Front. Psychol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, M.; Smith, A.C.; Frank, M.J.; Ly, S.; Carter, C.S. Probabilistic reinforcement learning in adults with autism spectrum disorders. Autism Res. Off. J. Int. Soc. Autism Res. 2011, 4, 109–120. [Google Scholar] [CrossRef]
- Yechiam, E.; Arshavsky, O.; Shamay-Tsoory, S.G.; Yaniv, S.; Aharon, J. Adapted to explore: Reinforcement learning in Autistic Spectrum Conditions. Brain Cogn. 2010, 72, 317–324. [Google Scholar] [CrossRef]
- Maia, T.V. Reinforcement learning, conditioning, and the brain: Successes and challenges. Cogn. Affect. Behav. Neurosci. 2009, 9, 343–364. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.M.; Niv, Y.; Barto, A.G. Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition 2009, 113, 262–280. [Google Scholar] [CrossRef] [Green Version]
- Maia, T.V.; Frank, M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 2011, 14, 154–162. [Google Scholar] [CrossRef]
- Shiner, T.; Seymour, B.; Wunderlich, K.; Hill, C.; Bhatia, K.P.; Dayan, P.; Dolan, R.J. Dopamine and performance in a reinforcement learning task: Evidence from Parkinson’s disease. Brain 2012, 135, 1871–1883. [Google Scholar] [CrossRef] [Green Version]
- Silvetti, M.; Wiersema, J.R.; Sonuga-Barke, E.; Verguts, T. Deficient reinforcement learning in medial frontal cortex as a model of dopamine-related motivational deficits in ADHD. Neural. Netw. 2013, 46, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Minassian, A.; Paulus, M.; Lincoln, A.; Perry, W. Adults with autism show increased sensitivity to outcomes at low error rates during decision-making. J. Autism Dev. Disord. 2007, 37, 1279–1288. [Google Scholar] [CrossRef]
- Pavăl, D. A Dopamine Hypothesis of Autism Spectrum Disorder. Dev. Neurosci. 2017, 39, 355–360. [Google Scholar] [CrossRef]
- Gidley Larson, J.C.; Mostofsky, S.H. Evidence that the pattern of visuomotor sequence learning is altered in children with autism. Autism Res. 2008, 1, 341–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostofsky, S.H.; Goldberg, M.C.; Landa, R.J.; Denckla, M.B. Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. J. Int. Neuropsychol. Soc. 2000, 6, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Norrelgen, F.; Fernell, E.; Eriksson, M.; Hedvall, A.; Persson, C.; Sjolin, M.; Gillberg, C.; Kjellmer, L. Children with autism spectrum disorders who do not develop phrase speech in the preschool years. Autism 2015, 19, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Howlin, P. Outcome in high-functioning adults with autism with and without early language delays: Implications for the differentiation between autism and Asperger syndrome. J. Autism Dev. Disord. 2003, 33, 3–13. [Google Scholar] [CrossRef]
- Mayo, J.; Chlebowski, C.; Fein, D.A.; Eigsti, I.M. Age of first words predicts cognitive ability and adaptive skills in children with ASD. J. Autism Dev. Disord. 2013, 43, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Tager-Flusberg, H.; Calkins, S. Does imitation facilitate the acquisition of grammar? Evidence from a study of autistic, Down’s syndrome and normal children. J. Child Lang. 1990, 17, 591–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigsti, I.M.; Bennetto, L.; Dadlani, M.B. Beyond pragmatics: Morphosyntactic development in autism. J. Autism Dev. Disord. 2007, 37, 1007–1023. [Google Scholar] [CrossRef] [PubMed]
- Klinger, L.G.; Dawson, G. Prototype formation in autism. Dev. Psychopathol. 2001, 13, 111–124. [Google Scholar] [CrossRef]
- Lieder, I.; Adam, V.; Frenkel, O.; Jaffe-Dax, S.; Sahani, M.; Ahissar, M. Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nat. Neurosci. 2019, 22, 256–264. [Google Scholar] [CrossRef]
- Palmer, C.J.; Lawson, R.P.; Hohwy, J. Bayesian approaches to autism: Towards volatility, action, and behavior. Psychol. Bull. 2017, 143, 521–542. [Google Scholar] [CrossRef]
- van’t Hof, M.; Tisseur, C.; van Berckelear-Onnes, I.; van Nieuwenhuyzen, A.; Daniels, A.M.; Deen, M.; Hoek, H.W.; Ester, W.A. Age at autism spectrum disorder diagnosis: A systematic review and meta-analysis from 2012 to 2019. Autism 2021, 25, 862–873. [Google Scholar] [CrossRef]
- Elder, J.H.; Kreider, C.M.; Brasher, S.N.; Ansell, M. Clinical impact of early diagnosis of autism on the prognosis and parent-child relationships. Psychol. Res. Behav. Manag. 2017, 10, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Interagency Autism Coordinating Committee. 2016–2017 Interagency Autism Coordinating Committee Strategic Plan for Autism Spectrum Disorder; The U.S. Department of Health and Human Services Interagency Autism Coordinating Committee: Washington, DC, USA, 2017. [Google Scholar]
- Allison, C.; Matthews, F.E.; Ruta, L.; Pasco, G.; Soufer, R.; Brayne, C.; Charman, T.; Baron-Cohen, S. Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: The case for multiple time-point screening for autism. BMJ Paediatr. Open. 2021, 5, e000700. [Google Scholar] [CrossRef] [PubMed]
- Irani, M.; Klein Selle, N.; Zeevi, L.; Bdarne, S.; Atzil, S. A novel approach to study social regulation in parents and infants. in preparation.
- Kording, K.P.; Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 2004, 427, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Ashourian, P.; Loewenstein, Y. Bayesian inference underlies the contraction bias in delayed comparison tasks. PLoS ONE 2011, 6, e19551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, A.; Rowe, M.A.; Palacios, E.M.; Wren-Jarvis, J.; Bourla, I.; Gerdes, M.; Brandes-Aitken, A.; Desai, S.S.; Marco, E.J.; Mukherjee, P. Altered Cerebellar White Matter in Sensory Processing Dysfunction Is Associated with Impaired Multisensory Integration and Attention. Front. Psychol. 2021, 11. [Google Scholar] [CrossRef]
- Owen, J.P.; Marco, E.J.; Desai, S.; Fourie, E.; Harris, J.; Hill, S.S.; Arnett, A.B.; Mukherjee, P. Abnormal white matter microstructure in children with sensory processing disorders. Neuroimage Clin. 2013, 2, 844–853. [Google Scholar] [CrossRef] [Green Version]
- de Giambattista, C.; Ventura, P.; Trerotoli, P.; Margari, M.; Palumbi, R.; Margari, L. Subtyping the Autism Spectrum Disorder: Comparison of Children with High Functioning Autism and Asperger Syndrome. J. Autism Dev. Disord. 2019, 49, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.R.; Thompson, A.N.N.; Zwaigenbaum, L.; Goldberg, J.; Bryson, S.E.; Mahoney, W.J.; Strawbridge, C.P.; Szatmari, P. Specifying PDD-NOS: A Comparison of PDD-NOS, Asperger Syndrome, and Autism. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 172–180. [Google Scholar] [CrossRef]
- Rankin, J.A.; Paisley, C.A.; Tomeny, T.S.; Eldred, S.W. Fathers of Youth with Autism Spectrum Disorder: A Systematic Review of the Impact of Fathers’ Involvement on Youth, Families, and Intervention. Clin. Child Fam. Psychol. Rev. 2019, 22, 458–477. [Google Scholar] [CrossRef]
- Sharabi, A.; Marom-Golan, D. Social Support, Education Levels, and Parents’ Involvement: A Comparison Between Mothers and Fathers of Young Children with Autism Spectrum Disorder. Top. Early Child. Spec. Educ. 2018, 38, 54–64. [Google Scholar] [CrossRef]
- Koller, J.; David, T.; Bar, N.; Lebowitz, E.R. The Role of Family Accommodation of RRBs in Disruptive Behavior Among Children with Autism. J. Autism Dev. Disord. 2021. [CrossRef]
- Feldman, I.; Koller, J.; Lebowitz, E.R.; Shulman, C.; Ben Itzchak, E.; Zachor, D.A. Family Accommodation in Autism Spectrum Disorder. J. Autism Dev. Disord. 2019, 49, 3602–3610. [Google Scholar] [CrossRef]
- Schreibman, L.; Dawson, G.; Stahmer, A.C.; Landa, R.; Rogers, S.J.; McGee, G.G.; Kasari, C.; Ingersoll, B.; Kaiser, A.P.; Bruinsma, Y.; et al. Naturalistic Developmental Behavioral Interventions: Empirically Validated Treatments for Autism Spectrum Disorder. J. Autism Dev. Disord. 2015, 45, 2411–2428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters-Scheffer, N.; Didden, R.; Korzilius, H.; Sturmey, P. A meta-analytic study on the effectiveness of comprehensive ABA-based early intervention programs for children with Autism Spectrum Disorders. Res. Autism Spectr. Disord. 2011, 5, 60–69. [Google Scholar] [CrossRef]
- Minjarez, M.B.; Karp, E.A.; Stahmer, A.C.; Brookman-Frazee, L. Empowering parents through parent training and coaching. In Naturalistic Developmental Behavioral Interventions for Autism Spectrum Disorder; Paul, H., Ed.; Brookes Publishing Co.: Baltimore, MD, USA, 2020; pp. 77–98. [Google Scholar]
- Landa, R.J. Efficacy of early interventions for infants and young children with, and at risk for, autism spectrum disorders. Int. Rev. Psychiatry 2018, 30, 25–39. [Google Scholar] [CrossRef]
- Fami Tafreshi, F.; Mohammadi, M.R.; Sharifi Saki, S.; Ahmadi, H.; Karimi, R.; Aakhte, M. Effectiveness of Training Applied Behavior Analysis to Parents on Increasing Self-help of Children with Autism. Q. J. Child. Ment. Health 2016, 3, 9–18. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djerassi, M.; Ophir, S.; Atzil, S. What Is Social about Autism? The Role of Allostasis-Driven Learning. Brain Sci. 2021, 11, 1269. https://doi.org/10.3390/brainsci11101269
Djerassi M, Ophir S, Atzil S. What Is Social about Autism? The Role of Allostasis-Driven Learning. Brain Sciences. 2021; 11(10):1269. https://doi.org/10.3390/brainsci11101269
Chicago/Turabian StyleDjerassi, Meshi, Shachar Ophir, and Shir Atzil. 2021. "What Is Social about Autism? The Role of Allostasis-Driven Learning" Brain Sciences 11, no. 10: 1269. https://doi.org/10.3390/brainsci11101269
APA StyleDjerassi, M., Ophir, S., & Atzil, S. (2021). What Is Social about Autism? The Role of Allostasis-Driven Learning. Brain Sciences, 11(10), 1269. https://doi.org/10.3390/brainsci11101269