Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Demographic and Neuropsychological Assessments at 4 to 6 Years
2.3. Retrospective Extraction of Language Scores from 2 Years Corrected Age
2.4. Stories Listening Task
2.5. Magnetic Resonance Acquisition at 4 to 6 Years
2.5.1. Structural MRI Acquisition
2.5.2. Functional MRI Acquisition
2.6. Magnetoencephalography Acquisition at 4 to 6 Years
2.7. Analysis of Demographic and Neuropsychological Data
2.8. Processing of Magnetic Resonance Data
2.9. Processing of Magnetoencephalography Data
2.10. Functional Connectivity Analyses
2.11. Graph Theoretical Analyses
2.12. Analyses of Sex as a Biological Variable
3. Results
3.1. Demographic and Neuropsychological Assessment
3.2. Language Representation on Magnetic Resonance Imaging
3.3. Functional Connectivity on Magnetoencephalography
3.4. Network Strength and Relation to Performance
3.4.1. All Extremely Preterm Children versus Term Children
3.4.2. Extremely Preterm Children without History of Language Delay or Deficit (EPT)
3.4.3. Extremely Preterm Children with History of Language Delay or Deficit (EPT-HLD)
3.4.4. Sub-Analysis: Correlation with BSID Scores at 2 Years Corrected Age
3.4.5. Sub-Analysis: Correlation with Change in Standardized Language Scores
3.5. Analyses of Sex Effects
4. Discussion
4.1. Limitations
4.2. Strengths
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.-B.; Kinney, M.; Lawn, J.; The Born Too Soon Preterm Birth Action Group. Born Too Soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10, S2. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Hamilton, B.; Osterman, M.; Driscoll, A. Births: Final Data for 2018. Natl. Vital Stat. Rep. 2019, 68, 1–47. [Google Scholar] [PubMed]
- Younge, N.; Goldstein, R.F.; Bann, C.; Hintz, S.R.; Patel, R.; Smith, P.B.; Bell, E.; Rysavy, M.; Duncan, A.F.; Vohr, B.R.; et al. Survival and Neurodevelopmental Outcomes among Periviable Infants. N. Engl. J. Med. 2017, 376, 617–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vohr, B. Speech and language outcomes of very preterm infants. Semin. Fetal Neonatal Med. 2014, 19, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Spek, I.L.V.N.-V.D.; Franken, M.-C.J.P.; Weisglas-Kuperus, N. Language Functions in Preterm-Born Children: A Systematic Review and Meta-analysis. Pediatrics 2012, 129, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Barre, N.; Morgan, A.; Doyle, L.; Anderson, P. Language Abilities in Children Who Were Very Preterm and/or Very Low Birth Weight: A Meta-Analysis. J. Pediatr. 2011, 158, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Mikkola, K.; Ritari, N.; Tommiska, V.; Salokorpi, T.; Lehtonen, L.; Tammela, O.; Pääkkönen, L.; Olsen, P.; Korkman, M.; Fellman, V. Neurodevelopmental Outcome at 5 Years of Age of a National Cohort of Extremely Low Birth Weight Infants Who Were Born in 1996–1997. Pediatrics 2005, 116, 1391–1400. [Google Scholar] [CrossRef]
- Moore, G.P.; Lemyre, B.; Barrowman, N.; Daboval, T. Neurodevelopmental Outcomes at 4 to 8 Years of Children Born at 22 to 25 Weeks’ Gestational Age: A meta-analysis. JAMA Pediatr. 2013, 167, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.A.; De Luca, C.R.; Doyle, L.; Roberts, G.; Anderson, P.; the Victorian Infant Collaborative Study Group. School-age Outcomes of Extremely Preterm or Extremely Low Birth Weight Children. Pediatrics 2013, 131, e1053–e1061. [Google Scholar] [CrossRef] [Green Version]
- Adams-Chapman, I.; Heyne, R.J.; DeMauro, S.B.; Duncan, A.F.; Hintz, S.R.; Pappas, A.; Vohr, B.R.; McDonald, S.; Das, A.; Newman, J.E.; et al. Neurodevelopmental Impairment Among Extremely Preterm Infants in the Neonatal Research Network. Pediatrics 2018, 141, e20173091. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.J.; Hansen, N.I.; Bell, E.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.H.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
- Twilhaar, E.S.; Wade, R.M.; De Kieviet, J.F.; van Goudoever, J.; van Elburg, R.; Oosterlaan, J. Cognitive Outcomes of Children Born Extremely or Very Preterm Since the 1990s and Associated Risk Factors: A Meta-analysis and Meta-regression. JAMA Pediatr. 2018, 172, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Rysavy, M.A.; Horbar, J.D.; Bell, E.F.; Li, L.; Greenberg, L.T.; Tyson, J.E.; Patel, R.M.; Carlo, W.A.; Younge, N.E.; Green, C.E.; et al. Assessment of an Updated Neonatal Research Network Extremely Preterm Birth Outcome Model in the Vermont Oxford Network. JAMA Pediatr. 2020, 174, e196294. [Google Scholar] [CrossRef] [PubMed]
- Wild, K.T.; Betancourt, L.M.; Brodsky, N.L.; Hurt, H. The effect of socioeconomic status on the language outcome of preterm infants at toddler age. Early Hum. Dev. 2013, 89, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Wolke, D. Is Social Inequality in Cognitive Outcomes Increased by Preterm Birth-Related Complications? JAMA Netw. Open 2019, 2, e192902. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Merhar, S. Biomarkers in Neonatal Posthemorrhagic Hydrocephalus. Neonatology 2012, 101, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Garfield, C.F.; Karbownik, K.; Murthy, K.; Falciglia, G.; Guryan, J.; Figlio, D.N.; Roth, J. Educational Performance of Children Born Prematurely. JAMA Pediatr. 2017, 171, 764–770. [Google Scholar] [CrossRef]
- Benavente-Fernandez, I.; Synnes, A.; Grunau, R.E.; Chau, V.; Ramraj, C.; Glass, T.; Cayam-Rand, D.; Siddiqi, A.; Miller, S.P. Association of Socioeconomic Status and Brain Injury with Neurodevelopmental Outcomes of Very Preterm Children. JAMA Netw. Open 2019, 2, e192914. [Google Scholar] [CrossRef]
- Woods, P.L.; Rieger, I.; Wocadlo, C.; Gordon, A. Predicting the outcome of specific language impairment at five years of age through early developmental assessment in preterm infants. Early Hum. Dev. 2014, 90, 613–619. [Google Scholar] [CrossRef]
- Foster-Cohen, S.; Edgin, J.O.; Champion, P.R.; Woodward, L.J. Early delayed language development in very preterm infants: Evidence from the MacArthur-Bates CDI. J. Child. Lang. 2007, 34, 655–675. [Google Scholar] [CrossRef]
- Foster-Cohen, S.H.; Friesen, M.D.; Champion, P.R.; Woodward, L.J. High Prevalence/Low Severity Language Delay in Preschool Children Born Very Preterm. J. Dev. Behav. Pediatr. 2010, 31, 658–667. [Google Scholar] [CrossRef]
- dos Santos, E.S.L.; de Kieviet, J.F.; Königs, M.; van Elburg, R.M.; Oosterlaan, J. Predictive value of the Bayley Scales of Infant Development on development of very preterm/very low birth weight children: A meta-analysis. Early Hum. Dev. 2013, 89, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, E.H.; Hampson, M.; Vohr, B.; Lacadie, C.; Frost, S.J.; Pugh, K.R.; Katz, K.H.; Schneider, K.C.; Makuch, R.W.; Constable, R.T.; et al. Functional connectivity to a right hemisphere language center in prematurely born adolescents. NeuroImage 2010, 51, 1445–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozzo, Y.; Vohr, B.; Lacadie, C.; Hampson, M.; Katz, K.H.; Maller-Kesselman, J.; Schneider, K.C.; Peterson, B.S.; Rajeevan, N.; Makuch, R.W.; et al. Alterations in neural connectivity in preterm children at school age. NeuroImage 2009, 48, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.H.; Scheinost, D.; Lacadie, C.; Sze, G.; Schneider, K.C.; Dai, F.; Constable, R.; Ment, L.R. Adaptive mechanisms of developing brain: Cerebral lateralization in the prematurely-born. NeuroImage 2015, 108, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.H.; Scheinost, D.; Vohr, B.; Lacadie, C.; Schneider, K.; Dai, F.; Sze, G.; Constable, R.; Ment, L.R. Functional magnetic resonance connectivity studies in infants born preterm: Suggestions of proximate and long-lasting changes in language organization. Dev. Med. Child Neurol. 2016, 58, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, R.J.; Lacadie, C.; Vohr, B.; Kesler, S.R.; Katz, K.H.; Schneider, K.C.; Pugh, K.R.; Makuch, R.W.; Reiss, A.L.; Constable, R.; et al. Alterations in functional connectivity for language in prematurely born adolescents. Brain 2009, 132, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Scheinost, D.; Lacadie, C.; Vohr, B.R.; Schneider, K.C.; Papademetris, X.; Constable, R.; Ment, L.R. Cerebral Lateralization is Protective in the Very Prematurely Born. Cereb. Cortex 2014, 25, 1858–1866. [Google Scholar] [CrossRef] [Green Version]
- Wilke, M.; Hauser, T.-K.; Krägeloh-Mann, I.; Lidzba, K. Specific impairment of functional connectivity between language regions in former early preterms. Hum. Brain Mapp. 2014, 35, 3372–3384. [Google Scholar] [CrossRef]
- Choi, E.J.; Vandewouw, M.M.; Young, J.M.; Taylor, M.J. Language Network Function in Young Children Born Very Preterm. Front. Hum. Neurosci. 2018, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes-Davis, M.E.; Merhar, S.L.; Holland, S.K.; Kadis, D.S. Extremely preterm children exhibit increased interhemispheric connectivity for language: Findings from fMRI-constrained MEG analysis. Dev. Sci. 2018, 21, e12669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalle, D.; Hughes, E.J.; Zhang, H.; Tournier, J.-D.; Tusor, N.; Aljabar, P.; Wali, L.; Alexander, D.C.; Hajnal, J.; Nosarti, C.; et al. Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage 2017, 149, 379–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes-Davis, M.E.; Merhar, S.L.; Holland, S.K.; Parikh, N.A.; Kadis, D.S. Extremely preterm children demonstrate hyperconnectivity during verb generation: A multimodal approach. NeuroImage Clin. 2021, 30, 102589. [Google Scholar] [CrossRef]
- Baillet, S.; Mosher, J.C.; Leahy, R.M. Electromagnetic brain mapping. IEEE Signal Process. Mag. 2001, 18, 14–30. [Google Scholar] [CrossRef]
- Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 2017, 20, 327–339. [Google Scholar] [CrossRef]
- Papadelis, C.; Chen, Y.-H. Pediatric Magnetoencephalography in Clinical Practice and Research. Neuroimaging Clin. N. Am. 2020, 30, 239–248. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Saby, J.; Kuschner, E.; Gaetz, W.; Edgar, J.C.; Roberts, T.P. Magnetoencephalography and the infant brain. NeuroImage 2019, 189, 445–458. [Google Scholar] [CrossRef]
- Barnes-Davis, M.E.; Williamson, B.J.; Merhar, S.L.; Holland, S.K.; Kadis, D.S. Rewiring the extremely preterm brain: Altered structural connectivity relates to language function. NeuroImage Clin. 2020, 25, 102194. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Dunn, L.M.; Dunn, D.M.; Lenhard, A. Peabody Picture Vocabulary Test: PPVT 4; Pearson: Minneapolis, MN, USA, 2007. [Google Scholar]
- Williams, K. Expressive Vocabulary Test, 2nd ed.; Pearson: San Antonio, TX, USA, 2007. [Google Scholar]
- Wechsler, D.; Naglieri, J. Wechsler Nonverbal Scale of Ability; Harcourt Assessments: San Antonio, TX, USA, 2006. [Google Scholar]
- Semel, E.; Wiig, E.; Secord, W. Clinical Evaluation of Language Fundamentals Preschool-2; NCS Pearson: Bloomington, MN, USA, 2004. [Google Scholar]
- Krasileva, K.E.; Sanders, S.; Bal, V.H. Peabody Picture Vocabulary Test: Proxy for Verbal IQ in Genetic Studies of Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 1073–1085. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Luu, T.M.; Vohr, B.R.; Schneider, K.C.; Katz, K.H.; Tucker, R.; Allan, W.C.; Ment, L.R. Trajectories of Receptive Language Development From 3 to 12 Years of Age for Very Preterm Children. Pediatrics 2009, 124, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Ment, L.R.; Peterson, B.S.; Meltzer, J.A.; Vohr, B.; Allan, W.; Katz, K.H.; Lacadie, C.; Schneider, K.C.; Duncan, C.C.; Makuch, R.W.; et al. A Functional Magnetic Resonance Imaging Study of the Long-term Influences of Early Indomethacin Exposure on Language Processing in the Brains of Prematurely Born Children. Pediatrics 2006, 118, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Mullen, K.M.; Vohr, B.R.; Katz, K.H.; Schneider, K.C.; Lacadie, C.; Hampson, M.; Makuch, R.W.; Reiss, A.L.; Constable, R.; Ment, L.R. Preterm birth results in alterations in neural connectivity at age 16 years. NeuroImage 2011, 54, 2563–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constable, R.T.; Vohr, B.R.; Scheinost, D.; Benjamin, J.R.; Fulbright, R.K.; Lacadie, C.; Schneider, K.C.; Katz, K.H.; Zhang, H.; Papademetris, X.; et al. A left cerebellar pathway mediates language in prematurely-born young adults. NeuroImage 2013, 64, 371–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayley, N. Bayley Scales of Infant Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Holland, S.K.; Vannest, J.; Mecoli, M.; Jacola, L.M.; Tillema, J.-M.; Karunanayaka, P.R.; Schmithorst, V.J.; Yuan, W.; Plante, E.; Byars, A.W. Functional MRI of language lateralization during development in children. Int. J. Audiol. 2007, 46, 533–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, P.; Inati, S.; Evans, J.W.; Luh, W.-M.; Bandettini, P.A. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage 2012, 60, 1759–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, P.; Brenowitz, N.D.; Voon, V.; Worbe, Y.; Vértes, P.E.; Inati, S.J.; Saad, Z.S.; Bandettini, P.A.; Bullmore, E. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proc. Natl. Acad. Sci. USA 2013, 110, 16187–16192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craddock, R.C.; James, G.A.; Iii, P.E.H.; Hu, X.P.; Mayberg, H.S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 2012, 33, 1914–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadis, D.S.; Dimitrijevic, A.; Toro-Serey, C.A.; Smith, M.L.; Holland, S.K. Characterizing Information Flux Within the Distributed Pediatric Expressive Language Network: A Core Region Mapped Through fMRI-Constrained MEG Effective Connectivity Analyses. Brain Connect. 2016, 6, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 1–9. [Google Scholar] [CrossRef]
- Nolte, G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 2003, 48, 3637–3652. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Zalesky, A.; Fornito, A.; Bullmore, E. Network-based statistic: Identifying differences in brain networks. NeuroImage 2010, 53, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.; Aljabar, P.; Nongena, P.; Kennea, N.; Gonzalez-Cinca, N.; Falconer, S.; Chew, A.T.; Harper, N.; Wurie, J.; Rutherford, M.; et al. Multimodal image analysis of clinical influences on preterm brain development. Ann. Neurol. 2017, 82, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, R.L.; Feng, R.; DeMauro, S.B.; Ferkol, T.; Hardie, W.; Rogers, E.E.; Stevens, T.P.; Voynow, J.A.; Bellamy, S.L.; Shaw, P.A.; et al. Bronchopulmonary Dysplasia and Perinatal Characteristics Predict 1-Year Respiratory Outcomes in Newborns Born at Extremely Low Gestational Age: A Prospective Cohort Study. J. Pediatr. 2017, 187, 89–97. [Google Scholar] [CrossRef]
- Macedo, I.; Pereira-Da-Silva, L.; Brito, L.; Cardoso, M. Male sex is an independent risk factor for poor neurodevelopmental outcome at 20 months’ corrected age, in human milk-fed very preterm infants: A cohort study. Einstein 2019, 17, eAO4607. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Cerebellum of the Premature Infant: Rapidly Developing, Vulnerable, Clinically Important. J. Child Neurol. 2009, 24, 1085–1104. [Google Scholar] [CrossRef] [Green Version]
- Argyropoulos, G.P. The cerebellum, internal models and prediction in ‘non-motor’ aspects of language: A critical review. Brain Lang. 2016, 161, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Hutton, J.S.; Phelan, K.; Horowitz-Kraus, T.; Dudley, J.; Altaye, M.; DeWitt, T.; Holland, S.K. Story time turbocharger? Child engagement during shared reading and cerebellar activation and connectivity in preschool-age children listening to stories. PLoS ONE 2017, 12, e0177398. [Google Scholar] [CrossRef]
- Lean, R.E.; Paul, R.A.; Smyser, T.A.; Smyser, C.D.; Rogers, C.E. Social Adversity and Cognitive, Language, and Motor Development of Very Preterm Children from 2 to 5 Years of Age. J. Pediatr. 2018, 203, 177–184. [Google Scholar] [CrossRef]
- Luu, T.M.; Vohr, B.R.; Allan, W.; Schneider, K.C.; Ment, L.R. Evidence for Catch-up in Cognition and Receptive Vocabulary Among Adolescents Born Very Preterm. Pediatrics 2011, 128, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Ment, L.R.; Vohr, B.; Allan, W.; Katz, K.H.; Schneider, K.C.; Westerveld, M.; Duncan, C.C.; Makuch, R.W. Change in Cognitive Function Over Time in Very Low-Birth-Weight Infants. JAMA 2003, 289, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stipdonk, L.W.; Dudink, J.; Utens, E.M.; Reiss, I.K.; Franken, M.-C.J. Language functions deserve more attention in follow-up of children born very preterm. Eur. J. Paediatr. Neurol. 2020, 26, 75–81. [Google Scholar] [CrossRef]
- Rowlands, M.A.; Scheinost, D.; Lacadie, C.; Vohr, B.; Li, F.; Schneider, K.C.; Constable, R.; Ment, L.R. Language at rest: A longitudinal study of intrinsic functional connectivity in preterm children. NeuroImage Clin. 2016, 11, 149–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Term Control/Comparison Children (TC) |
Age 4 to less than 7 years |
Personal history of term birth with gestational age of 37 weeks to 42 weeks |
Informed consent of parent, assent of children |
Negative for |
Cerebral palsy |
IVH Grade III or IV or parenchymal lesion/bleed on cranial ultrasound |
Seizures |
Migraines |
History of speech, language, or learning disability |
History of other neurologic or psychiatric disease, such as autism or ADHD |
Standard MRI exclusion criteria, including orthodontic braces or metallic implants/devices |
Extremely Preterm Children Without Diagnosis of Language Impairment (EPT) |
Age 4 to less than 7 years |
Personal history of preterm birth with gestational age of less than 28 weeks |
Personal history of birth weight less than 1500 grams |
Informed consent of parent, assent of children |
Negative for |
Cerebral palsy |
IVH Grade III or IV or parenchymal lesion/bleed on cranial ultrasound |
Seizures |
Migraines |
History of speech, language, or learning disability |
History of other neurologic or psychiatric disease, such as autism or ADHD |
Standard MRI exclusion criteria, including orthodontic braces or metallic implants/devices |
Extremely Preterm Children With History of Language Delay (EPT-HLD) |
Age 4 to less than 7 years |
Personal history of preterm birth with gestational age of less than 28 weeks |
Personal history of birth weight less than 1500 grams |
Personal history of language delay or deficit |
(Defined as current or prior formal diagnosis by pediatrician and/or speech language pathologist of language delay, deficit, disorder, or impairment in the medical record or history of speech/language therapy for such diagnosis) |
Informed consent of parent, assent of children |
Negative for |
Cerebral palsy |
IVH Grade III or IV or parenchymal lesion/bleed on cranial ultrasound |
Seizures |
Migraines |
History of other neurologic or psychiatric disease, such as autism or ADHD |
Standard MRI exclusion criteria, including orthodontic braces or metallic implants/devices |
EPT-HLD (n = 9) | EPT (n = 17) | TC (n = 32) | p Value | ||
---|---|---|---|---|---|
Age (Years, Mean ± SD) | 5.81 ± 0.64 | 5.34 ± 0.96 | 5.54 ± 0.95 | 0.47 | |
Gestational Age (Weeks + Days) | 25 + 5 | 26 + 3 | 39 + 3 | <0.001 | |
Sex | Females | 5 | 10 | 17 | 0.935 |
Males | 4 | 7 | 15 | ||
Race | White/Caucasian | 4 | 11 | 20 | 0.727 |
Black/African American | 5 | 4 | 9 | ||
Other/Multiple | 0 | 1 | 2 | ||
No Response | 0 | 1 | 1 | ||
Ethnicity | Hispanic/Latino/Latina | 2 | 1 | 2 | 0.277 |
Not Hispanic/Latino/Latina | 7 | 16 | 30 | ||
No Response | 0 | 0 | 0 | ||
Family Income | <$50,000 | 4 | 4 | 11 | 0.886 |
$50,000–$100,000 | 2 | 5 | 9 | ||
>$100,000 | 3 | 8 | 12 | ||
No Response | 0 | 0 | 0 | ||
Parental Education | High School | 1 | 0 | 6 | 0.056 |
College | 6 | 10 | 9 | ||
Post Graduate | 2 | 7 | 17 | ||
No Response | 0 | 0 | 0 | ||
Receptive Language | PPVT-4 (Mean ± SD) | 108 ± 14 | 110 ± 12 | 111 ± 16 | 0.837 |
Expressive Language | EVT-2 (Mean ± SD) | 99 ± 7 | 105 ± 12 | 108 ± 16 | 0.208 |
Language Morphology | CELFP-WS (Mean ± SD) | 9.38 ± 2 | 9.38 ± 3 | 10.23 ± 3 | 0.485 |
General Abilities | WNV (Mean ± SD) | 98 ± 14 | 103 ± 15 | 105 ± 17 | 0.458 |
Language Scores at Age 2 | BSID3 (Mean ± SD) | 87.9 ± 16 | 102.5 ± 17 | 0.081 |
MNI Coordinates | Region | |
---|---|---|
Left Frontal | −9, 7, 63 | Left Superior Frontal |
−48, 25, 7 | Left Inferior Frontal | |
Right Frontal | 7, 55, 24 | Right Medial Frontal |
Left Temporal | −56, −12, 8 | Left Primary Auditory |
−48, −1, −18 | Left Middle Temporal | |
−51, −4, −31 | Left Inferior Temporal | |
−62, −23, −17 | Left Superior Temporal | |
−49, 4, −2 | Left Superior Temporal | |
−60, −30, 13 | Left Superior Temporal | |
−44, 15, −16 | Left Temporal Pole | |
−57, −17, −17 | Left Middle Temporal | |
−38, −19, 13 | Left Insula | |
−32, −17, −21 | Left Hippocampus | |
−58, −36, −7 | Left Middle Temporal | |
−40, 9, −37 | Left Middle Temporal | |
−56, −53, 5 | Left Middle Temporal | |
−45, −35, 13 | Left Superior Temporal | |
−50, −59, 23 | Left Superior Temporal | |
Right Temporal | 62, −35, −8 | Right Middle Temporal |
41, −19, 12 | Right Primary Auditory | |
45, −14, −7 | Right Superior Temporal | |
61, −19, −20 | Right Inferior Temporal | |
65, −40, −10 | Right Superior Temporal | |
56, −1, −22 | Right Middle Temporal | |
42, 11, −20 | Right Superior Temporal | |
63, −14, −1 | Right Superior Temporal | |
51, −34, 11 | Right Superior Temporal | |
55, −55, 21 | Right Supramarginal | |
Right Parietal | 9, −62, 33 | Right Precuneus |
2, −44, 28 | Right Posterior Cingulate | |
Cerebellar | 18, −83, −30 | Right Cerebellum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnes-Davis, M.E.; Fujiwara, H.; Drury, G.; Merhar, S.L.; Parikh, N.A.; Kadis, D.S. Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm. Brain Sci. 2021, 11, 1271. https://doi.org/10.3390/brainsci11101271
Barnes-Davis ME, Fujiwara H, Drury G, Merhar SL, Parikh NA, Kadis DS. Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm. Brain Sciences. 2021; 11(10):1271. https://doi.org/10.3390/brainsci11101271
Chicago/Turabian StyleBarnes-Davis, Maria E., Hisako Fujiwara, Georgina Drury, Stephanie L. Merhar, Nehal A. Parikh, and Darren S. Kadis. 2021. "Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm" Brain Sciences 11, no. 10: 1271. https://doi.org/10.3390/brainsci11101271
APA StyleBarnes-Davis, M. E., Fujiwara, H., Drury, G., Merhar, S. L., Parikh, N. A., & Kadis, D. S. (2021). Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm. Brain Sciences, 11(10), 1271. https://doi.org/10.3390/brainsci11101271