A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals
Abstract
:1. Introduction
2. Microarousal Events
- (1)
- EEG channel: sleep lasts for at least 10 s, followed by a sudden change in EEG frequency for at least 3 s.
- (2)
- EMG channel: amplitude increases [26], and the degree of increase is related to sleep stage.
- (3)
- ECG channel: this is related to the increase in cardiac activity [27], and the increase in the heart rate depends on the degree of arousal.
- (4)
- Respiratory related channels: includes chest, airflow and abdominal (ABD), as shown as shown in Figure 2, the respiratory sequence of the channel changes continuously for more than 10 s, which is manifested in the increase in the respiratory effort or the flattening of the inspiratory part of the respiratory channel.
3. Materials and Methods
4. Introduction of Public PSG Data Sets
4.1. 2018 PhysioNet/Computing in Cardiology Challenge
4.2. Wisconsin Sleep Cohort (WSC)
4.3. Sleep Heart Health Study (SHHS)
4.4. The CAP Sleep Database
- (1)
- Sleep stage (W = wake, S1–S4 = sleep stages, R = REM, MT = body movements);
- (2)
- Body position (left, right, prone, or supine; not recorded in some subjects);
- (3)
- Time of day (hh:mm:ss);
- (4)
- Event (either a sleep stage (SLEEP-S0 … S4, REM, MT), or phase A of CAP);
- (5)
- Duration (in seconds);
- (6)
- Location (the signal(s) in which the event can be observed).
4.5. Comprehensive Comparison of Database
4.6. Discussion of Different Measurement Indicators
5. Microarousal Detection with Traditional Machine Learning Methods
6. Microarousal Detection with Deep Learning Methods
6.1. Microarousal Detection with Feed Forward Neural Networks (FFNNs)
6.2. Microarousal Detection with Convolutional Neural Networks (CNNs)
6.3. Microarousal Detection with RNN and Long Short-Term Memory (LSTM)
6.4. Microarousal Detection with the CNN and LSTM
7. Commercial Application of Microarousal Detection
8. Automated Detection of CAP
9. Conclusions
9.1. Overall Summary
9.2. Open Research Challenges and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anonymous. EEG arousals: Scoring rules and examples: A preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep 1992, 15, 173. [Google Scholar] [CrossRef]
- Ghassemi, M.; Moody, B.; Lehman, L.-W.; Song, C.; Li, Q.; Sun, H.; Westover, B.; Clifford, G. You Snooze, You Win: The PhysioNet/Computing in Cardiology Challenge 2018. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Mathur, R.; Douglas, N.J.S. Frequency of EEG arousals from nocturnal sleep in normal subjects. Sleep 1995, 18, 330–333. [Google Scholar] [CrossRef]
- Boselli, M.; Parrino, L.; Smerieri, A.; Terzano, M.G.J.S. Effect of age on EEG arousals in normal sleep. Sleep 1998, 21, 361–367. [Google Scholar]
- Kabir, E.; Siuly, S.; Cao, J.; Wang, H. A computer aided analysis scheme for detecting epileptic seizure from EEG data. Int. J. Comput. Intell. Syst. 2018, 11, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Siuly, S.; Li, Y.; Zhang, Y. EEG signal analysis and classification. Health Inf. Sci. 2016, 11, 141–144. [Google Scholar]
- Diykh, M.; Li, Y.; Wen, P. EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.C.J.N. Electroencephalography: Basic principles, clinical applications, and related fields. Neurology 2006, 67, 2092. [Google Scholar] [CrossRef]
- Hiltunen, T.; Kantola, J.; Abou Elseoud, A.; Lepola, P.; Suominen, K.; Starck, T.; Nikkinen, J.; Remes, J.; Tervonen, O.; Palva, S. Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J. Neurosci. 2014, 34, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.D.; Azuaje, F.; McSharry, P. Advanced Methods and Tools for ECG Data Analysis; Artech House Boston: Norwood, MA, USA, 2006. [Google Scholar]
- Jarvis, M.; Mitra, P. Apnea patients characterized by 0.02 Hz peak in the multitaper spectrogram of electrocardiogram signals. In Proceedings of the Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; Volume 27, pp. 769–772. [Google Scholar]
- Viitasalo, J.H.; Komi, P.V. Signal characteristics of EMG during fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 1977, 37, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Nino, C.L.; Rodriguez-Martinez, C.E.; Gutierrez, M.J.; Singareddi, R.; Nino, G. Robust spectral analysis of thoraco-abdominal motion and oxymetry in obstructive sleep apnea. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2906–2910. [Google Scholar]
- Bonnet, M.; Carley, D.; Carskadon, M.; Easton, P.; Guilleminault, C.; Harper, R.; Hayes, B.; Hirshkowitz, M.; Ktonas, P.; Keenan, S.J.S. ASDA Report. EEG arousals: Scoring rules and examples. Sleep 1992, 15, 173–184. [Google Scholar]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events; American Academy of Sleep Medicine: Darien, IL, USA, 2012; Volume 176. [Google Scholar]
- Kubicki, S.; Herrmann, W.M. The future of computer-assisted investigation of the polysomnogram: Sleep microstructure. J. Clin. Neurophysiol. 1996, 13, 285–294. [Google Scholar] [CrossRef]
- Terzano, M.G. Phasic Events and Dynamic Organization of Sleep; Raven Press: New York, NY, USA, 1991; Volume 7. [Google Scholar]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4); American Academy of Sleep Medicine: Darien, IL, USA, 2017. [Google Scholar]
- Drinnan, M.; Murray, A.; White, J.; Smithson, A.; Griffiths, C.; Gibson, G.J.S. Automated recognition of EEG changes accompanying arousal in respiratory sleep disorders. Sleep 1996, 19, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Flemons, W.W.; Littner, M.R.; Rowley, J.A.; Gay, P.; Anderson, W.M.; Hudgel, D.W.; McEvoy, R.D.; Loube, D.I.J.C. Home diagnosis of sleep apnea: A systematic review of the literature: An evidence review cosponsored by the American Academy of Sleep Medicine, the American College of Chest Physicians, and the American Thoracic Society. Chest 2003, 124, 1543–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, H.; Maddage, N.C.; Cosic, I.; Cvetkovic, D. Cross-correlation of EEG frequency bands and heart rate variability for sleep apnoea classification. Med. Biol. Eng. Comput. 2010, 48, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Yadollahi, A.; Giannouli, E.; Moussavi, Z.J.M. Sleep apnea monitoring and diagnosis based on pulse oximetery and tracheal sound signals. Med. Biol. Eng. Comput. 2010, 48, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- van Houdt, P.J.; Ossenblok, P.P.; Van Erp, M.; Schreuder, K.; Krijn, R.; Boon, P.A.; Cluitmans, P.J.J.M. Automatic breath-to-breath analysis of nocturnal polysomnographic recordings. Med. Biol. Eng. Comput. 2011, 49, 819–830. [Google Scholar] [CrossRef]
- Fiz, J.A.; Jane, R.; Solà-Soler, J.; Abad, J.; García, M.A.; Morera, J.J.T.L. Continuous analysis and monitoring of snores and their relationship to the apnea-hypopnea index. Laryngoscope 2010, 120, 854–862. [Google Scholar] [CrossRef]
- Berry, R.B.; Gamaldo, C.E. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; Version 2.5; American Academy of Sleep Medicine: Darien, IL, USA, 2018. [Google Scholar]
- Rosenberg, R.S.; Hout, S.V. The American Academy of Sleep Medicine inter-scorer reliability program: Sleep stage scoring. J. Clin. Sleep Med. 2013, 9, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Douglas, N.J.; Thomas, S. Clinical value of polysomnography. Lancet 1992, 339, 347–350. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2001, 2, 537–553. [Google Scholar] [CrossRef]
- Ferri, R.; Bruni, O.; Miano, S.; Plazzi, G.; Terzano, M.G. All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects. Clin. Neurophysiol. 2005, 116, 2429–2440. [Google Scholar] [CrossRef]
- Terzano, M.G.; Parrino, L.; Spaggiari, M.C.; Palomba, V.; Rossi, M.; Smerieri, A. CAP variables and arousals as sleep electroencephalogram markers for primary insomnia. Clin. Neurophysiol. 2003, 114, 1715–1723. [Google Scholar] [CrossRef]
- Parrino, L.; Boselli, M.; Buccino, G.P.; Spaggiari, M.C.; Terzano, M.G. The cyclic alternating pattern plays a gate-control on periodic limb movements during non-rapid eye movement sleep. J. Clin. Neurophysiol. 1996, 13, 314–323. [Google Scholar] [CrossRef]
- Hening, W. The clinical neurophysiology of the restless legs syndrome and periodic limb movements. Part I: Diagnosis, assessment, and characterization. Clin. Neurophysiol. 2004, 115, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Montplaisir, J.Y.; Guitard, F.; Sessle, B.J.; Lund, J.P.; Lavigne, G.J. Evidence that experimentally induced sleep bruxism is a consequence of transient arousal. J. Dent. Res. 2003, 82, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Zucconi, M.; Ferini-Strambi, L. NREM parasomnias: Arousal disorders and differentiation from nocturnal frontal lobe epilepsy. Clin. Neurophysiol. 2000, 111, S129–S135. [Google Scholar] [CrossRef]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, rationale, and methods. Sleep 1997, 20, 1077–1085. [Google Scholar]
- Mack, D.C.; Alwan, M.; Turner, B.; Suratt, P.; Felder, R.A. A passive and portable system for monitoring heart rate and detecting sleep apnea and arousals: Preliminary validation. In Proceedings of the 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006, D2H2, Arlington, VA, USA, 2–4 April 2006; pp. 51–54. [Google Scholar]
- Agarwal, R. Automatic detection of micro-arousals. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2 September 2005; pp. 1158–1161. [Google Scholar]
- Foussier, J.; Fonseca, P.; Long, X.; Misgeld, B.; Leonhardt, S. Combining HRV features for automatic arousal detection. In Proceedings of the Computing in Cardiology, Zaragoza, Spain, 22–25 September 2013. [Google Scholar]
- Gouveia, P.; Oliveira, R.; Rosa, A. Sleep apnea related micro-arousal detection with EEG analysis. In Proceedings of the BioEng 2003 7th Portuguese Conference on Biomedical Engineering, Lisbon, Portugal, 15 April 2003. [Google Scholar]
- Espiritu, H.; Metsis, V. Automated detection of sleep disorder-related events from polysomnographic data. In Proceedings of the International Conference on Healthcare Informatics, Dallas, TX, USA, 21–23 October 2015; pp. 562–569. [Google Scholar]
- Cho, S.; Lee, J.; Park, H.; Lee, K. Detection of arousals in patients with respiratory sleep disorders using a single channel EEG. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 2733–2735. [Google Scholar]
- Shmiel, O.; Shmiel, T.; Dagan, Y.; Teicher, M. Data mining techniques for detection of sleep arousals. J. Neurosci. Methods 2009, 179, 331–337. [Google Scholar] [CrossRef]
- Huupponen, E.; Vaerri, A.; Hasan, J.; Saarinen, J.; Kaski, K. Sleep arousal detection with neural network. In Medical & Biological Engineering & Computing, Proceedings of the 1st International Conference on Bioelectromagnetism; Tampere, Finland, 9–13 June 1996, Volume 34, pp. 219–220.
- Shahrbabaki, S.S.; Dissanayaka, C.; Patti, C.R.; Cvetkovic, D. Automatic detection of sleep arousal events from polysomnographic biosignals. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar]
- Wallant, D.C.T.; Muto, V.; Gaggioni, G.; Jaspar, M.; Phillips, C. Automatic artifacts and arousals detection in whole-night sleep EEG recordings. J. Neurosci. Methods 2016, 258, 124–133. [Google Scholar] [CrossRef]
- Olsen, M.; Schneider, L.D.; Cheung, J.; Peppard, P.E.; Jennum, P.J.; Mignot, E.; Sorensen, H.B.D. Automatic, electrocardiographic-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep. Sleep 2018, 41, zsy006. [Google Scholar] [CrossRef]
- Olesen, A.N.; Jennum, P.; Mignot, E.; Sorensen, H.B.D. Deep transfer learning for improving single-EEG arousal detection. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 99–103. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, X.; Zhang, X.; Xu, M. Automatic Arousal Detection Using Multi-model Deep Neural Network. In Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 15–18 May 2020. [Google Scholar]
- Zoubek, L.; Charbonnier, S.; Lesecq, S.; Buguet, A.; Chapotot, F. Feature selection for sleep/wake stages classification using data driven methods. Biomed. Signal Process. Control. 2007, 2, 171–179. [Google Scholar] [CrossRef]
- Burioka, N.; Miyata, M.; Cornelissen, G.; Halberg, F.; Takeshima, T.; Kaplan, D.T.; Suyama, H.; Endo, M.; Maegaki, Y.; Nomura, T.J.C.E.; et al. Approximate entropy in the electroencephalogram during wake and sleep. Clin. EEG Neurosci. 2005, 36, 21–24. [Google Scholar] [CrossRef]
- Welch, P.; Electroacoust, V.A. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Faust, O.; Acharya, U.R.; Adeli, H.; Adeli, A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015, 26, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjorth, B.J.E.; Neurophysiology, C. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [Google Scholar] [CrossRef]
- Schiff, S.J.; Aldroubi, A.; Unser, M.; Sato, S.J.E.; Neurophysiology, C. Fast wavelet transformation of EEG. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 442–445. [Google Scholar] [CrossRef]
- Coskun, A.; Ozsen, S.; Yucelbas, S.; Yucelbas, C.; Tezel, G.; Kuccukturk, S.; Yosunkaya, S. Detection of REM in Sleep EOG Signals. Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Kee, K.; Sands, S.; Stuart-Andrews, C.; Edwards, B.; Skuza, E.; Roebuck, T.; Hamilton, G.; Thompson, B.; Berger, P.M.N. Sleep and Physiology SIG 2. Respirology 2015, 20, 50–52. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.A.; Arancibia, J.M.; Bassi, A.; Vivaldi, E.A. Envelope analysis of the airflow signal to improve polysomnographic assessment of sleep disordered breathing. Sleep 2014, 37, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Már Þráinsson, H.; Ragnarsdóttir, H.; Fannar Kristjansson, G.; Marinósson, B.; Finnsson, E.; Gunnlaugsson, E.; Ægir Jónsson, S.; Skírnir Ágústsson, J.; Helgadóttir, H. Automatic Detection of Target Regions of Respiratory Effort-Related Arousals Using Recurrent Neural Networks. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar]
- Linz, D.; Colling, S.; Nußstein, W.; Debl, K.; Hohl, M.; Fellner, C.; Böhm, M.; Maier, L.S.; Hamer, O.W.; Buchner, S.; et al. Nocturnal hypoxemic burden is associated with epicardial fat volume in patients with acute myocardial infarction. Sleep Breath. 2018, 22, 703–711. [Google Scholar] [CrossRef]
- Hamilton, P. Open source ECG analysis. In Proceedings of the Computers in Cardiology, Memphis, TN, USA, 22–25 September 2002. [Google Scholar]
- Penzel, T.; Mcnames, J.; Chazal, P.D.; Raymond, B.; Murray, A.; Moody, G.J.M. Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med. Biol. Eng. Comput. 2002, 40, 402–407. [Google Scholar] [CrossRef]
- De Carli, F.; Nobili, L.; Gelcich, P.; Ferrillo, F. A Method for the Automatic Detection of Arousals During Sleep. Sleep 1999, 22, 561–572. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Yang, B.J.I.A. Automatic Sleep Arousals Detection From Polysomnography Using Multi-Convolution Neural Network and Random Forest. IEEE Access 2020, 8, 176343–176350. [Google Scholar] [CrossRef]
- Subramanian, S.; Chamadia, S.; Chakravarty, S. Arousal Detection in Obstructive Sleep Apnea using Physiology-Driven Features. In Proceedings of the 2018 Computing in Cardiology Conference, Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Ugur, T.K.; Erdamar, A. An efficient automatic arousals detection algorithm in single channel EEG. Comput. Methods Programs Biomed. 2019, 173, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Schalkoff, R.J. Pattern Recognition. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar] [CrossRef]
- Dongya, J.; Yu, S.; Yan, C.; Zhao, W.; Hu, J.; Wang, H.; You, T. Deep Learning with Convolutional Neural Networks for Sleep Arousal Detection. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Varga, B.; Görög, M.; Hajas, P. Using Auxiliary Loss to Improve Sleep Arousal Detection With Neural Network. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Patane, A.; Ghiasi, S.; Pasquale Scilingo, E.; Kwiatkowska, M. Automated Recognition of Sleep Arousal Using Multimodal and Personalized Deep Ensembles of Neural Networks. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Zabihi, M.; Rad, A.B.; Kiranyaz, S.; Särkkä, S.; Gabbouj, M. 1D convolutional neural network models for sleep arousal detection. arXiv 2019, arXiv:1903.0155. [Google Scholar]
- Warrick, P.; Homsi, M.N. Sleep arousal detection from polysomnography using the scattering transform and recurrent neural networks. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; pp. 1–4. [Google Scholar]
- Kim, H.; Jun, T.J.; Nguyen, G.; Kim, D. Bidirectional LSTM with MFCC Feature Extraction for Sleep Arousal Detection in Multi-channel Signal Data. In ICONIP 2019: Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 442–453. [Google Scholar]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.J.J. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, F.; Qian, X.; Hu, H.; He, Q.; Lin, H.; Shuai, J. Application of Deep Neural Network to Study the Sleep Stage Scoring on the Polysomnography. Biophysics 2019, 7, 11–25. (In Chinese) [Google Scholar] [CrossRef]
- Xu, F.; Wang, S.; Qian, X.; Hu, H.; He, Q.; Lin, H.; Shuai, J. Review of automatic sleep staging. Biophysics 2019, 7, 34–48. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, Q.; Hong, Z.; Wang, X.; Shuai, J.; Cao, Y. Research progress of depression based on artificial intelligence technology. Chin. J. Clin. Psychol. 2020, 47, 4–7. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, X.; Shuai, J.; Cao, Y. Application of artificial intelligence in mental illness. Int. J. Psychiatry 2020, 8, 1–17. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, S.; You, H.; Lin, H.; Qian, X.; He, Q.; Hu, H.; Xiong, F.; Cao, Y.; Shuai, J. Classification of Sleep Apnea with Artificial Intelligence. Biophysics 2020, 8, 1–17. (In Chinese) [Google Scholar] [CrossRef]
- He, Q.; Zhong, C.; Li, X.; Shuai, J.; Han, J. Deep learning analysis for data-independent acquisition mass spectrometry data. J. Xiamen Univ. 2021, 60, 97–103. [Google Scholar] [CrossRef]
- Lyu, Z.; Wang, Z.; Luo, F.; Shuai, J.; Huang, Y. Protein Secondary Structure Prediction with a Reductive Deep Learning Method. Front. Bioeng. Biotechnol. 2021, 9, 687426. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, D.; Yang, G.; Qi, D.; Lu, Y.; He, Q.; Qian, X.; Li, X.; Cao, Y.; Shuai, J. Cuffless blood pressure estimation based on composite neural network and graphics information. Biomed. Signal Process. Control 2021, 70, 103001. [Google Scholar] [CrossRef]
- Grigg-Damberger, M.M. The AASM Scoring Manual four years later. J. Clin. Sleep Med. 2012, 8, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Estévez, D.; Vicente, M.-B. Identification of Electroencephalographic Arousals in Multichannel Sleep Recordings. IEEE Trans. Biomed. Eng. 2010, 58, 54–63. [Google Scholar] [CrossRef]
- Chazal, P.D.; Sadr, N. Automated Annotation of Polysomnogram Epochs for Apnoea and Non-apnoea Arousals. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 2796–2799. [Google Scholar] [CrossRef]
- Behera, C.K.; Reddy, T.K.; Behera, L.; Bhattacarya, B. Artificial neural network based arousal detection from sleep electroencephalogram data. In Proceedings of the 2014 International Conference on Computer, Communications, and Control Technology (I4CT), Langkawi, Malaysia, 2–4 September 2014; pp. 458–462. [Google Scholar]
- Macias Toro, E.; Morell, A.; Serrano, J.; Lopez Vicario, J. Knowledge extraction based on wavelets and DNN for classification of physiological signals: Arousals case. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Liang, Y.; Leung, C.; Miao, C.; Wu, Q.; Mckeown, M.J. Automatic Sleep Arousal Detection Based on C-ELM. In Proceedings of the 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore, 6–9 December 2015. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Jane, I.G.B.; LeCun, Y.; Sckinger, E.; Shah, R. Signature Verification Using a Siamese Time Delay Neural Network. Intern. J. Pattern Recognit. Artif. Intell. 1993, 7, 669–688. [Google Scholar]
- Jegou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1175–1183. [Google Scholar]
- Miller, D.; Ward, A.; Bambos, N. Automatic sleep arousal identification from physiological waveforms using deep learning. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; pp. 1–4. [Google Scholar]
- Zhou, G.; Li, R.; Zhang, S.; Wang, J.; Ma, J. Multimodal Sleep Signals-Based Automated Sleep Arousal Detection. IEEE Access 2020, 8, 106157–106164. [Google Scholar] [CrossRef]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. Signal. Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S. Group Invariant Scattering. IEEE Trans. Signal. Process. 2012, 65, 1331–1398. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Wang, K.; Liu, Y.; Zhao, N.; Yuan, Y.; Li, Q.; Zhang, H. Identification of Arousals With Deep Neural Networks Using Different Physiological Signals. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Sridhar, N.; Shoeb, A. Evaluating Convolutional and Recurrent Neural Network Architectures for Respiratory-Effort Related Arousal Detection during Sleep. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Warrick, P.A.; Lostanlen, V.; Nabhan Homsi, M. Hybrid scattering-LSTM networks for automated detection of sleep arousals. Physiol. Meas. 2019, 40, 074001. [Google Scholar] [CrossRef] [PubMed]
- Howe-Patterson, M.; Pourbabaee, B.; Benard, F. Automated Detection of Sleep Arousals From Polysomnography Data Using a Dense Convolutional Neural Network. In Proceedings of the 2018 Computing in Cardiology Conference, Maastricht, The Netherlands, 23–26 September 2018. [Google Scholar]
- Pourbabaee, B.; Patterson, M.H.; Patterson, M.R.; Benard, F. SleepNet: Automated sleep analysis via dense convolutional neural network using physiological time series. Physiol. Meas. 2019, 40, 084005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achuth, R.M.V.; Ghosh, P.K.; Bhattacharjee, T.; Choudhury, A.D. Trend Statistics Network and Channel invariant EEG Network for sleep arousal study. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Alexandratos, V.; Bulut, M.; Jasinschi, R. Mobile real-time arousal detection. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014. [Google Scholar]
- Saeed, A.; Trajanovski, S.; Van Keulen, M.; Van Erp, J. Deep Physiological Arousal Detection in a Driving Simulator Using Wearable Sensors. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 486–493. [Google Scholar]
- Chindhade, A.; Alshi, A.; Bhatia, A.; Dabhadkar, K.; Menon, P.S. A machine learning model for identifying cyclic alternating patterns in the sleeping brain. arXiv 2018, arXiv:1804.08750. [Google Scholar]
- Hui, W.L.; Ooi, C.P.; Dhok, S.G.; Sharma, M.; Acharya, U.R. Automated detection of cyclic alternating pattern and classification of sleep stages using deep neural network. Appl. Intell. 2021, 1–15. [Google Scholar] [CrossRef]
- Mariani, S.; Manfredini, E.; Rosso, V.; Grassi, A.; Mendez, M.O.; Alba, A.; Matteucci, M.; Parrino, L.; Terzano, M.G.; Cerutti, S. Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep. Med. Biol. Eng. Comput. 2012, 50, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Mendona, F.; Mostafa, S.S.; Morgado-Dias, F.; Ravelo-García, A. On the use of patterns obtained from LSTM and feature-based methods for time series analysis: Application in automatic classification of the CAP A phase subtypes. J. Neural. Eng. 2021, 18, 036004. [Google Scholar] [CrossRef] [PubMed]
Dataset | Number | Types of Sleep Arousals | Area | Sex Ratio (Man:Woman) | Age | Medical History |
---|---|---|---|---|---|---|
PhysioNet | 994 | Non-apnea/hypopnea arousals | USA | 65:35 | Mean: 55 | Apnea, hypopnea, periodic limb movement disorder, sleep stage |
SHHS | 6441 | Indistinguishable | USA | about 1:1 | 40 years or older | OSA, SDB |
WSC | over 1000 | Indistinguishable | Not mentioned | about 1:1 | Mean: 51 | BMI, sleep stage |
CAP Sleep Database | 108 | CAP | Italy | 42:66 | 14–82 | NFLE, RBD, PLM, insomniac, narcoleptic, SDB, bruxism |
David et al. [36] | 40 | Indistinguishable | USA | 4:1 | Quite diverse | AHI, height, weight |
Agarwal et al. [37] | 2 | Indistinguishable | Italian | Not mentioned | 19–67 years (mean: 45) | Breathing disorders, nocturnal myoclonus, epileptic, psychophysiologic insomnia, narcoleptic |
Foussier et al. [38] | 15 | Indistinguishable | Boston (USA), Hoven (Netherlands) | Not mentioned | Not mentioned | Without any known sleep disorder |
Gouveia et al. [39] | 9 | (1) Sleep apneas; (2) Micro-arousals related to other breathing events; (3) No noticeable micro-arousal | Houston (USA) | Not mentioned | Not mentioned | UARS |
Espiritu et al. [40] | 1 (8 h, 25 min) | (1) Arousal from sleep(2) Left and right leg movement | Texas State (USA) | Not mentioned | Not mentioned | Sleep disorder |
Cho et al. [41] | 9 | Indistinguishable | South Korea | 8:1 | 28–67 years (mean: 50.33) | Sleep apnea, snoring, and excessive daytime sleepiness (EDS) |
Shmiel et al. [42] | 26 | Indistinguishable | Petach-Tikva, Tel-Aviv, Sheba (Israel) | Not mentioned | Not mentioned | Sleep disorder |
Huupponen et al. [43] | 6 | Indistinguishable | Not mentioned | Not mentioned | Not mentioned | Sleep disorder |
Shahrbabaki et al. [44] | 9 | Indistinguishable | Sydney (Australia) | 6:3 | 34–69 | Obstructive sleep apneas, periodic limb movement disorder, healthy subjects |
Wallant et al. [45] | 32 | Indistinguishable | Not mentioned | Not mentioned | 19–26 | Healthy subjects |
Olsen et al. [46] | 258 | (1) Autonomic arousals (AA); (2) Cortical arousals (CA) | USA | Not mentioned | Not mentioned | A variety of sleep and cardiac disorders |
Olesen et al. [47] | 1500 | Indistinguishable | USA | All male | 67 years or older | AHI, incident falls, fractures, and cardiovascular disease |
Jia et al. [48] | 323 | Indistinguishable | Beijing (China) | Not mentioned | Not mentioned | Not mentioned |
Channel Name | The Discussed Features and the Related References |
---|---|
EEG | Spectral energies in the delta, theta, alpha, beta, and gamma bands [49] |
Approximate entropy (ApEn) [50] | |
Power spectrum density [51] | |
Wavelet packet decomposition (WPD) [52] | |
Hjorth parameters (including Hjorth activity, mobility, and complexity) [53] | |
Wavelet transform [54] | |
Frequency and amplitude [45] | |
EOG/chin EMG | Spectral energies in the delta, theta, alpha, beta, and gamma bands [49] |
Form factor, standard deviation, skewness, kurtosis, and relative energies [55] | |
Submental, amplitude [45] | |
CHEST/ABDOMINAL/AIRFLOW | Breath rate, width, amplitude, inspiratory, slope, inter-breath intervals [56] |
Coefficient of variation of the signal envelope [57] | |
Form factor, standard deviation, skewness, kurtosis, and relative energies in two regions [55] | |
Respiratory disturbance variable (RDV) [57] | |
Correlation between abdomen and thorax signals [58] | |
SaO2 | Rolling mean [59] |
Hypoxic burden, proportion, standard deviation, skewness, kurtosis [60] | |
Statistical features [59] | |
ECG | Heart rate, inter-beat intervals, and R-wave amplitude time-series [36] |
Rolling variance [59] | |
QRS [61] | |
Heart rate variability (HRV) signals [62] |
Author (Year) [Reference] | Database | Data Preprocessing | Machine Learning Model | Results |
---|---|---|---|---|
Huupponen et al. (1996) [43] | Local dataset | FFT, average power | MLP | Accuracy = 41% |
Patanerli et al. (1999) [63] | Naya University | Wavelet transform, moving average, filter | SAS software; STEPDISC program | Sensitivity = 88.1%, Selectivity = 74.5% |
Gouveia et al. (2003) [39] | Local dataset | FFT, frequency analysis | A set of scoring rules | Detection rate = 70% |
Cho et al. (2005) [41] | South Korea’s Asan Medical Center | Filtering, power spectrum, FFT | SVM | Sensitivity = 75.26%, Specificity = 93.08% |
Agarwal et al. (2006) [37] | Local dataset (two patients) | Second-order adaptive filter, frequency, MAA, etc. | A set of decisional rules | Sensitivity = 76.15% |
David et al. (2006) [36] | National Institutes of Health (NIH) Sleep Disorders Research Plan | 1. Bi-directional recursive filtering, 2. peak detection 3. relative trough position | Passive ballistocardiograph-based system | Sensitivity = 77.3%, Specificity = 96.2% |
Shmiel et al. (2009) [42] | Aviv’s Assuta Medical Center | FFT, critical points, etc. | Sequential pattern discovery field | Sensitivity = 75.2%, positive predictive value = 76.5% |
Foussier et al. (2013) [38] | Self-bulit database | HRV, MD, 72 features | Linear mixed mode | |
Espiritu et al. (2015) [40] | Texas State Sleep Center | Savitzky-Golay filter, energy power/entropy, zero-crossing rate, etc. | Decision tree | Accuracy = 81.63% |
Shahrbabaki et al. (2015) [44] | Self-bulit database (6 male, 3 female) | Butterworth filter, Welch’s algorithm, 32 features | KNN | Accuracy = 93.6% |
Wallant et al. (2016) [45] | Self-bulit database (35 healthy volunteers) | PSD, filtering data, segmentation, maximal amplitude, and slope | Adapted thresholds | Sensitivity = 83% |
Subramanian et al. (2018) [65] | PhysioNet 2018 | 28 features | GLM, RF | Highest AUROC = 0.847, highest AUPRC = 0.630 |
Ugur et al. (2019) [66] | SHHS | CWT | SVM | Accuracy = 98.2%, positive predictive value = 97.93% |
Liu et al. (2020) [64] | PhysioNet 2018 | ICA, double density DWT algorithm, FIR filter | CNN with RF | AUPRC = 0.552 |
Author (Year) | Database | Data Preprocessing | Machine Learning Model | Results |
---|---|---|---|---|
Álvarez-Estévez et al. (2010) [84] | SHHS | Temporal aggregation rules | Single hidden layer FFNN | Sensitivity = 0.86, Specificity = 0.76 |
Behera et al. (2014) [86] | SHHS | Hjorth, etc. | Single hidden layer FFNN | Sensitivity = 0.933, Specificity = 0.914 |
Liang et al. (2015) [88] | SHHS | Band-pass filter, FFT, 22 features | C-ELM | AUC = 0.85, ACC = 0.79 |
Macias Toro et al. (2018) [87] | PhysioNet | Average power, etc. | Fully connected network | AUPRC = 0.261 |
Olsen et al.(2018) [46] | Local Dataset | CWT | Single hidden layer FFNN | Precision = 0.72, Sensitivity = 0.63 |
Chazal et al. (2020) [85] | PhysioNet | 59 combining features from adjacent epochs | FFNN | Specificity = 70% |
Author (Year) | Database | Preprocessing | Results |
---|---|---|---|
Dongya et al. (2018) [68] | PhysioNet 2018 | Welch algorithm | AUPRC = 0.114 |
Varga et al. (2018) [69] | PhysioNet 2018 | 68 features | AUPRC = 0.42 |
Patane et al. (2018) [70] | PhysioNet 2018 | Filter, data augmentation | AUPRC =0.40 |
Miller et al. (2018) [92] | PhysioNet 2018 | - | AUPRC = 0.37 |
Zabihi et al. (2018) [71] | PhysioNet 2018 | - | AUPRC = 0.31 |
Olesen et al. (2020) [47] | National Sleep Research Resource | Resampled, baseline model | F1-score = 0.682 |
Zhou et al. (2020) [93] | PhysioNet 2018 | Re-sample, Fourier transform | AUPRC= 0.39 |
Jia et al. (2020) [48] | Beijing Tongren Hospital | Down-sampled | Recall = 86.0% |
Author (Year) | Database | Data Preprocessing | AUPRC |
---|---|---|---|
Warrick et al. (2018) [72] | PhysioNet 2018 | ST algorithm, logarithmic filters | 0.36 |
Már Þráinsson et al. (2018) [59] | PhysioNet 2018 | Energy, Hjorth parameters, WPD | 0.45 |
Kim et al. (2019) [73] | PhysioNet 2018 | MFCC | 0.458 |
Author (Year) [Reference] | Database | Data Preprocessing | Model | AUPRC |
---|---|---|---|---|
Li et al. (2018) [97] | PhysioNet 2018 | Signal segmentation | CNN+BiLSTM | 0.42 |
Sridhar et al. (2018) [98] | PhysioNet 2018 | Feature time-series | LSTM | 0.573 |
Howe-Patterson et al. (2018) [100] | PhysioNet 2018 | FFT, down-sampled | DNN+BiLSTM | 0.54 |
Warrick et al. (2019) [99] | PhysioNet 2018 | - | ST-LSTM | 0.36 |
Achuth et al. (2019) [102] | Local dataset | Filters, RF | DNN+LSTM | 0.50 |
Author (Year) [Reference] | Number of Channels | Model | AUPRC |
---|---|---|---|
Sridhar et al. (2018) [98] | 13 | CNN+RNN | 0.573 |
Howe-Patterson et al. (2018) [100] | 12 | CNN+LSTM | 0.54 |
Pourbabaee et al. (2019) [101] | 12 | DNN+LSTM | 0.543 |
Már Þráinsson et al. (2018) [59] | 13 | Bi-LSTM | 0.45 |
Li et al. (2018) [97] | 13 | DNN+LSTM | 0.43 |
Varga et al. (2018) [69] | 13 | CNN | 0.42 |
Patane et al. (2018) [70] | 5 | CNN | 0.40 |
Miller et al. (2018) [92] | 13 | CNN | 0.36 |
Warrick et al. (2018) [72] | 13 | RNN | 0.36 |
Zabihi et al. (2019) [71] | 5 | CNN | 0.31 |
Author (Year) [Reference] | Database | Data Preprocessing | Model | Results |
---|---|---|---|---|
Alexandratos et al. (2014) [103] | Local dataset | SCL, HRV | RF | Detection accuracy = 68% |
Saeed et al. (2017) [104] | Local dataset | KSS | CNN | F1-score = 0.78 |
Author (Year) [Reference] | Database | Data Preprocessing | Model | Results |
---|---|---|---|---|
Mariani et al. (2012) [107] | Parma Sleep Disorders Center | Hjorth activity; EEG variance | Discriminant classifier | Accuracy = 84.9% |
Chindhade et al. (2018) [105] | CAP Sleep Database | Differential moving average | Logistic regression | AUROC = 0.512; Accuracy = 58% |
Hui et al.(2021) [106] | CAP Sleep Database | - | CNN | Sensitivity = 80.29%; Accuracy = 74.43% |
Mendona et al.(2021) [108] | CAP Sleep Database | Lowpass filter | LSTM | Accuracy = 81.3%; Sensitivity = 73.7%; Specificity = 81.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Qiu, Y.; He, Q.; Lu, Y.; Lin, H.; Xu, F.; Zhu, F.; Liu, Z.; Li, X.; Cao, Y.; et al. A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals. Brain Sci. 2021, 11, 1274. https://doi.org/10.3390/brainsci11101274
Qian X, Qiu Y, He Q, Lu Y, Lin H, Xu F, Zhu F, Liu Z, Li X, Cao Y, et al. A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals. Brain Sciences. 2021; 11(10):1274. https://doi.org/10.3390/brainsci11101274
Chicago/Turabian StyleQian, Xiangyu, Ye Qiu, Qingzu He, Yuer Lu, Hai Lin, Fei Xu, Fangfang Zhu, Zhilong Liu, Xiang Li, Yuping Cao, and et al. 2021. "A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals" Brain Sciences 11, no. 10: 1274. https://doi.org/10.3390/brainsci11101274
APA StyleQian, X., Qiu, Y., He, Q., Lu, Y., Lin, H., Xu, F., Zhu, F., Liu, Z., Li, X., Cao, Y., & Shuai, J. (2021). A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals. Brain Sciences, 11(10), 1274. https://doi.org/10.3390/brainsci11101274