RETRACTED: Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Materials
2.3. Ethics Statement
2.4. Procedures
2.4.1. Plasma Procedures
2.4.2. Western Blot Assay
2.4.3. Specificity of Plasma Autoantibodies
2.5. Statistics
2.6. Calculations
2.7. CNS Autoantibody Index (CAI)
3. Results
3.1. Participant Demographics
3.2. Effects of Gender on the Levels of Autoantibodies against Plasma Neural Proteins
3.2.1. Autoantibody Results Analyzed by Sex for GWI Cases and GW Healthy Only
3.2.2. Autoantibody Results in Plasma of Veteran Men with GWI versus Healthy Veteran Men and then Women with GWI versus Healthy Veteran Women
3.2.3. Autoantibody Results in Plasma of Men GWI Veterans versus All Men Controls and Women GWI Veterans Versus All Women Controls
3.2.4. CAI Values by Gender in Men and Women GWI Cases versus Men and Women Controls
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Racgwi, R. Gulf War Illness and the Health of Gulf War Veterans: Research Recommendations; US Government Printing Office: Washington, DC, USA, 2008.
- Racgwi, R. Gulf War Illness and the Health of Gulf War Veterans: Research Update and Recommendations, 2009–2013; US Government Printing Office: Washington, DC, USA, 2014.
- White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2016, 74, 449–475. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.; Krengel, M.; Heboyan, V.; Schildroth, S.; Wilson, C.C.; Iobst, S.; Klimas, N.; Coughlin, S.S. Prevalence and Patterns of Symptoms Among Female Veterans of the 1991 Gulf War Era: 25 Years Later. J. Women’s Health 2020, 29, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, V.; Krengel, M.; Sullivan, K.; Iobst, S.; Klimas, N.; Wilson, C.C.; Coughlin, S.S. Sex Differences in Gulf War Illness: A Reanalysis of Data From the CDC Air Force Study Using CDC and Modified Kansas Case Definitions. J. Occup. Environ. Med. 2019, 61, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Heboyan, V.; Sullivan, K.; Krengel, M.; Wilson, C.C.; Iobst, S.; Klimas, N. Cardiovascular Disease among Female Veterans of the 1991 Gulf War Era. J. Environ. Health Sci. 2019, 5, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Krengel, M.; Sullivan, K.; Pierce, P.F.; Heboyan, V.; Wilson, C.C. A Review of Epidemiologic Studies of the Health of Gulf War Women Veterans. J. Environ. Health Sci. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Zundel, C.G.; Krengel, M.H.; Heeren, T.; Yee, M.K.; Grasso, C.M.; Janulewicz Lloyd, P.A.; Coughlin, S.S.; Sullivan, K. Rates of Chronic Medical Conditions in 1991 Gulf War Veterans Compared to the General Population. Int. J. Environ. Res. Public Health 2019, 16, 949. [Google Scholar] [CrossRef] [PubMed]
- Pierce, P.F. Monitoring the health of Persian Gulf War veterans women. Federal Nursing Service Award. Mil. Med. 2005, 170, 349–354. [Google Scholar] [CrossRef]
- Pierce, P.F.; Antonakos, C.; Deroba, B.A. Health care utilization and satisfaction concerning gender-specific health problems among military women. Mil. Med. 1999, 164, 98–102. [Google Scholar] [CrossRef]
- Wolfe, J.; Proctor, S.P.; Erickson, D.J.; Hu, H. Risk factors for multisymptom illness in US Army veterans of the Gulf War. J. Occup. Environ. Med. 2002, 44, 271–281. [Google Scholar] [CrossRef]
- Steele, L.; Sastre, A.; Gerkovich, M.M.; Cook, M.R. Complex factors in the etiology of Gulf War illness: Wartime exposures and risk factors in veteran subgroups. Environ. Health Perspect. 2012, 120, 112–118. [Google Scholar] [CrossRef]
- Dursa, E.K.; Barth, S.K.; Porter, B.W.; Schneiderman, A.I. Health Status of Female and Male Gulf War and Gulf Era Veterans: A Population-Based Study. Women’s Health Issues 2019, 29, S39–S46. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.B.; Wilmarth, K.R.; Abdel-Rahman, A.A.; Jensen, K.F.; Oehmen, F.W.; Kurt, T.L. Increased neurotoxicity following concurrent exposure to pyridostigmine bromide, DEET, and chlorpyrifos. Fundam. Appl. Toxicol. 1996, 34, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.B.; Wilmarth, K.R.; Jensen, K.F.; Oehmen, F.W.; Kurt, T.L. Neurotoxicity resulting from coexposure to pyridostigmine bromide, deet, and permethrin: Implications of Gulf War chemical exposures. J. Toxicol. Environ. Health 1996, 48, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.B.; Conboy, L.A.; Kokkotou, E.; Jacobson, E.; Elmasry, E.M.; Elkafrawy, P.; Neely, M.; Bass, C.R.D.; Sullivan, K. Screening for novel central nervous system biomarkers in veterans with Gulf War Illness. Neurotoxicol. Teratol. 2017, 61, 36–46. [Google Scholar] [CrossRef]
- Bowyer, J.F.; Sarkar, S.; Burks, S.M.; Hess, J.N.; Tolani, S.; O’Callaghan, J.P.; Hanig, J.P. Microglial activation and responses to vasculature that result from an acute LPS exposure. Neurotoxicology 2020, 77, 181–192. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.; Shetty, A.K.; Abou-Donia, M.B. Disruption of the blood-brain barrier and neuronal cell death in cingulate cortex, dentate gyrus, thalamus, and hypothalamus in a rat model of Gulf-War syndrome. Neurobiol. Dis. 2002, 10, 306–326. [Google Scholar] [CrossRef]
- Abou-Donia, M.B.; Lapadula, E.S.; Krengel, M.H.; Quinn, E.; LeClair, J.; Massaro, J.; Conboy, L.A.; Kokkotou, E.; Abreu, M.; Klimas, N.G.; et al. Using Plasma Autoantibodies of Central Nervous System Proteins to Distinguish Veterans with Gulf War Illness from Healthy and Symptomatic Controls. Brain Sci. 2020, 10, 610. [Google Scholar] [CrossRef]
- Lee, G.; Cowan, N.; Kirschner, M. The primary structure and heterogeneity of tau protein from mouse brain. Science 1988, 239, 285–288. [Google Scholar] [CrossRef]
- Tagliaferro, P.; Ramos, A.J.; Onaivi, E.S.; Evrard, S.G.; Lujilde, J.; Brusco, A. Neuronal cytoskeleton and synaptic densities are altered after a chronic treatment with the cannabinoid receptor agonist WIN 55,212-2. Brain Res. 2006, 1085, 163–176. [Google Scholar] [CrossRef]
- Laferrière, N.B.; MacRae, T.H.; Brown, D.L. Tubulin synthesis and assembly in differentiating neurons. Biochem. Cell Biol. 1997, 75, 103–117. [Google Scholar] [CrossRef]
- Hoshi, M.; Akiyama, T.; Shinohara, Y.; Miyata, Y.; Ogawara, H.; Nishida, E.; Sakai, H. Protein-kinas-C-catalyzed phosphorylation of the microtubule-binding domain of microtubule-associated protein 2 inhibits its ability to induce tubulin polymerization. Eur. J. Biochem. 1988, 174, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Jauch, E.C.; Lindsell, C.; Broderick, J.; Fagan, S.C.; Tilley, B.C.; Levine, S.R. Association of serial biochemical markers with acute ischemic stroke: The National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006, 37, 2508–2513. [Google Scholar] [CrossRef] [PubMed]
- Kövesdi, E.; Lückl, J.; Bukovics, P.; Farkas, O.; Pál, J.; Czeiter, E.; Szellár, D.; Dóczi, T.; Komoly, S.; Büki, A. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir. 2010, 152, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mayne, K.; White, J.A.; McMurran, C.E.; Rivera, F.J.; de la Fuente, A.G. Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front. Aging Neurosci. 2020, 12, 572090. [Google Scholar] [CrossRef] [PubMed]
- Steele, L. Prevalence and patterns of Gulf War illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service. Am. J. Epidemiol. 2000, 152, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehsive approach to its definition and study. International Chornic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Longstreth, G.F.; Thompson, W.G.; Chey, W.D.; Houghton, L.A.; Mearin, F.; Spiller, R.C. Functional bowel disorders. Gastroenterology 2006, 130, 1480–1491. [Google Scholar] [CrossRef]
- Janulewicz, P.; Krengel, M.; Quinn, E.; Heeren, T.; Toomey, R.; Killiany, R.; Zundel, C.; Ajama, J.; O’Callaghan, J.; Steele, L.; et al. The Multiple Hit Hypothesis for Gulf War Illness: Self-Reported Chemical/Biological Weapons Exposure and Mild Traumatic Brain Injury. Brain Sci. 2018, 8, 198. [Google Scholar] [CrossRef]
- Janulewicz, P.A.; Seth, R.K.; Carlson, J.M.; Ajama, J.; Quinn, E.; Heeren, T.; Klimas, N.; Lasley, S.M.; Horner, R.D.; Sullivan, K.; et al. The Gut-Microbiome in Gulf War Veterans: A Preliminary Report. Int. J. Environ. Res. Public Health 2019, 16, 751. [Google Scholar] [CrossRef]
- Conboy, L.; St John, M.; Schnyer, R. The effectiveness of acupuncture in the treatment of Gulf War Illness. Contemp Clin. Trials 2012, 33, 557–562. [Google Scholar] [CrossRef]
- Conboy, L.; Gerke, T.; Hsu, K.Y.; St John, M.; Goldstein, M.; Schnyer, R. The Effectiveness of Individualized Acupuncture Protocols in the Treatment of Gulf War Illness: A Pragmatic Randomized Clinical Trial. PLoS ONE 2016, 11, e0149161. [Google Scholar] [CrossRef]
- Abou-Donia, M.B.; Abou-Donia, M.M.; Elmasry, E.M.; Monro, J.A.; Mulder, M.F.A. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: Biomarkers for nervous system injury. J. Toxicol. Environ. Health A 2013, 76, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Abou-Donia, M.B.; Suliman, H.B.; Siniscalco, D.; Antonucci, N.; ElKafrawy, P. De novo Blood Biomarkers in Autism: Autoantibodies against Neuronal and Glial Proteins. Behav. Sci. 2019, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.K.; Seichepine, D.R.; Janulewicz, P.A.; Sullivan, K.A.; Proctor, S.P.; Krengel, M.H. Self-Reported Traumatic Brain Injury, Health and Rate of Chronic Multisymptom Illness in Veterans From the 1990-1991 Gulf War. J. Head Trauma Rehabil. 2016, 31, 320–328. [Google Scholar] [CrossRef]
- Yee, M.K.; Janulewicz, P.A.; Seichepine, D.R.; Sullivan, K.A.; Proctor, S.P.; Krengel, M.H. Multiple Mild Traumatic Brain Injuries Are Associated with Increased Rates of Health Symptoms and Gulf War Illness in a Cohort of 1990-1991 Gulf War Veterans. Brain Sci. 2017, 7, 79. [Google Scholar] [CrossRef]
- Carney, C.P.; Sampson, T.R.; Voelker, M.; Woolson, R.; Thorne, P.; Doebbeling, B.N. Women in the Gulf War: Combat experience, exposures, and subsequent health care us. Mil. Med. 2003, 168, 654–661. [Google Scholar] [CrossRef]
- Kapural, M.; Krizanac-Bengez, L.; Barnett, G.; Perl, J.; Masaryk, T.; Apollo, d.; Rasmussen, P.; Mayberg, M.R.; Janigro, D. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res. 2002, 940, 102–104. [Google Scholar] [CrossRef]
- Siracusa, R.; Fusco, R.; Cuzzocrea, S. Astrocytes: Role and Functions in Brain Pathologies. Front. Pharm. 2019, 10, 1114. [Google Scholar] [CrossRef]
- O’Callaghan, J.P.; Jensen, K.F.; Miller, D.B. Quantitative aspects of drug and toxicant-induced astrogliosis. Neurochem. Int. 1995, 26, 115–124. [Google Scholar] [CrossRef]
- Eng, L.F.; Ghirnikar, R.S. GFAP and astrogliosis. Brain Pathol. 1994, 4, 229–237. [Google Scholar] [CrossRef]
- Aurell, A.; Rosengren, L.E.; Karlsson, B.; Olsson, J.E.; Zbornikova, V.; Haglid, K.G. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke 1991, 22, 1254–1258. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.C.; Sims, K.J.; Gifford, E.J.; Goldstein, K.M.; Johnson, M.R.; Williams, C.D.; Provenzale, D. Gender-based Differences among 1990–1991 Gulf War Era Veterans: Demographics, Lifestyle Behaviors, and Health Conditions. Women’s Health Issues 2019, 29 (Suppl. 1), S47–S55. [Google Scholar] [CrossRef] [PubMed]
- Craddock, T.J.; Fritsch, P.; Rice, M.A., Jr.; del Rosario, R.M.; Miller, D.B.; Fletcher, M.A.; Klimas, N.G.; Broderick, G. A role for homeostatic drive in the perpetuation of complex chronic illness: Gulf War Illness and chronic fatigue syndrome. PLoS ONE 2014, 9, e84839. [Google Scholar] [CrossRef]
- Smylie, A.L.; Broderick, G.; Fernandes, H.; Razdan, S.; Barnes, Z.; Collado, F.; Sol, C.; Fletcher, M.A.; Klimas, N. A comparison of sex-specific immune signatures in Gulf War illness and chronic fatigue syndrome. BMC Immunol. 2013, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lobo, P.I. Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation. Curr. Top. Microbiol. Immunol. 2017, 408, 89–117. [Google Scholar]
- Sullivan, K.; Krengel, M.; Bradford, W.; Stone, C.; Thompson, T.A.; Heeren, T.; White, R.F. Neuropsychological functioning in military pesticide applicators from the Gulf War: Effects on information processing speed, attention and visual memory. Neurotoxicol. Teratol. 2018, 65, 1–13. [Google Scholar] [CrossRef]
- Chao, L.L.; Rothlind, J.C.; Cardenas, V.A.; Meyerhoff, D.J.; Weiner, M.W. Effects of low-level exposure to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US veterans. Neurotoxicology 2010, 31, 493–501. [Google Scholar] [CrossRef]
- Chao, L.L.; Abadjian, L.; Hlavin, J.; Meyerhoff, D.J.; Weiner, M.W. Effects of low-level sarin and cyclosarin exposure and Gulf War Illness on brain structure and function: A study at 4T. Neurotoxicology 2011, 32, 814–822. [Google Scholar] [CrossRef]
- Golomb, B.A. Acetylcholinesterase inhibitors and Gulf War illnesses. Proc. Natl. Acad. Sci. USA 2008, 105, 4295–4300. [Google Scholar] [CrossRef]
- Michalovicz, L.T.; Kelly, K.A.; Sullivan, K.; O’Callaghan, J.P. Acetylcholinesterase inhibitor exposures as an initiating factor in the development of Gulf War Illness, a chronic neuroimmune disorder in deployed veterans. Neuropharmacology 2020, 171, 108073. [Google Scholar] [CrossRef]
- O’Callaghan, J.P.; Kelly, K.A.; Locker, A.R.; Miller, D.B.; Lasley, S.M. Corticosterone primes the neuroinflammatory response to DFP in mice: Potential animal model of Gulf War Illness. J. Neurochem. 2015, 133, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Winkenwerder, W. Environmental Exposure Report: Pesticides Final Report U.S. Department of Defense, Office of the Special Assistant to the Undersecretary of Defense (Personnel and Readiness) from Gulf War Illnesses Medical Readiness and Military Deployments; US Government Printing Office: Washington, DC, USA, 2003.
- Cherry, N.; Creed, F.; Silman, A.; Dunn, G.; Baxter, D.; Smedley, J.; Taylor, S.; Macfarlane, G.J. Health and exposures of United Kingdom Gulf war veterans. Part II: The relation of health to exposure. Occup. Environ. Med. 2001, 58, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Haley, R.W.; Kurt, T.L. Self-reported exposure to neurotoxic chemical combinations in the Gulf War. A cross-sectional epidemiologic study. JAMA 1997, 277, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Nisenbaum, R.; Barrett, D.H.; Reyes, M.; Reeves, W.C. Deployment stressors and a chronic multisymptom illness among Gulf War veterans. J. Nerv. Ment. Dis. 2000, 188, 259–266. [Google Scholar] [CrossRef]
- Sullivan, K.; Krengel, M.; Proctor, S.P.; Devine, S.; Heeren, T.; White, R.F. Cognitive Functioning in Treatment-Seeking Gulf War Veterans: Pyridostigmine Bromide Use and PTSD. J. Psychopathol. Behav. Assess. 2003, 25, 95–103. [Google Scholar] [CrossRef]
- Patton, S.E.; O’Callaghan, J.P.; Miller, D.B.; Abou-Donia, M.B. Effect of oral administration of tri-o-cresyl phosphate on in vitro phosphorylation of membrane and cytosolic proteins from chicken brain. J. Neurochem. 1983, 41, 897–901. [Google Scholar] [CrossRef]
- Lapadula, E.S.; Lapadula, D.M.; Abou-Donia, M.B. Biochemical changes in sciatic nerve of hens treated with tri-o-cresyl phosphate: Increased phosphorylation of cytoskeletal proteins. Neurochem. Int. 1992, 20, 247–255. [Google Scholar] [CrossRef]
- Abou-Donia, M.B. Involvement of cytoskeletal proteins in the mechanisms of organophosphorus ester-induced delayed neurotoxicity. Clin. Exp. Pharm. Physiol. 1995, 22, 358–359. [Google Scholar] [CrossRef]
- Torres-Altoro, M.I.; Mathur, B.N.; Drerup, J.M.; Thomas, R.; Lovinger, D.M.; O’Callaghan, J.P.; Bibb, J.A. Organophosphates dysregulate dopamine signaling, glutamatergic neurotransmission, and induce neuronal injury markers in striatum. J. Neurochem. 2011, 119, 303–313. [Google Scholar] [CrossRef]
- Reneman, L.; Schagen, S.B.; Mulder, M.; Mutsaerts, H.J.; Hageman, G.; de Ruiter, M.B. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes. Brain Imaging Behav. 2016, 10, 437–444. [Google Scholar] [CrossRef]
- Petras, J.M. Soman neurotoxicity. Fundam. Appl. Toxicol. 1981, 1, 242. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.A.; Shetty, A.K.; Abou-Donia, M.B. Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: Dose-response relationships. Neuroscience 2002, 113, 721–741. [Google Scholar] [CrossRef]
- Belgrad, J.; De Pace, R.; Fields, R.D. Autophagy in Myelinating Glia. J. Neurosci. 2020, 40, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Naughton, S.X.; Beck, W.D.; Wei, Z.; Qu, G.; Terry, A.V., Jr. Multifunctional compounds lithium chloride and methylene Blue attenuate the negative effects of diisoprophylfluorophosphate on axonal transport in rat cortical neurons. Toxicology 2020, 431, 152379. [Google Scholar] [CrossRef]
- Naughton, S.X.; Terry, A.V., Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef]
- Naughton, S.X.; Hernandez, C.M.; Beck, W.D.; Poddar, I.; Yanasak, N.; Lin, P.-C.; Terry, A.V., Jr. Repeated exposures to diisopropylfluorophosphate result in structural disruptions of myelinated axons and persistent impairments of axonal transport in the brains of rats. Toxicology 2018, 406, 92–103. [Google Scholar] [CrossRef]
- Gao, J.; Naughton, S.X.; Beck, W.D.; Hernandez, C.M.; Wu, G.; Wei, Z.; Yang, X.; Bartlett, M.G.; Terry, A.V., Jr. Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology 2017, 62, 111–123. [Google Scholar] [CrossRef]
- Qiang, L.; Rao, A.N.; Mostoslavsky, G.; James, M.F.; Comfort, N.; Sullivan, K.; Baas, P.W. Reprogramming cells from Gulf War veterans into neurons to study Gulf War illness. Neurology 2017, 88, 1968–1975. [Google Scholar] [CrossRef]
- Hernandez, C.M.; Beck, W.D.; Naughton, S.X.; Poddar, I.; Adam, B.-L.; Yanasak, N.; Middleton, C.; Terry, A.V., Jr. Repeated exposure to chlorpyrifos leads to prolonged impairments of axonal transport in the living rodent brain. Neurotoxicology 2015, 47, 17–26. [Google Scholar] [CrossRef]
- Rao, A.N.; Patil, A.; Brodnik, Z.D.; Qiang, L.; Espana, R.A.; Sullivan, K.A.; Black, M.M.; Baas, P.W. Pharmacologically increasing microtubule acetylation corrects stress-exacerbated effects of organophosphates on neurons. Traffic 2017, 18, 433–441. [Google Scholar] [CrossRef]
- Terry, A.V., Jr. Functional consequences of repeated organophosphate exposure: Potential non-cholinergic mechanisms. Pharmacol. Ther. 2012, 134, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Joshi, U.; Pearson, A.; Evans, J.E.; Langlois, H.; Saltiel, N.; Ojo, J.; Klimas, N.; Sullivan, K.; Keegan, A.P.; Oberlin, S.; et al. A permethrin metabolite is associated with adaptive immune responses in Gulf War Illness. Brain Behav. Immun. 2019, 81, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, A.; Thrasher, J.D. Cellular and humoral immune abnormalities in Gulf War veterans. Environ. Health Perspect. 2004, 112, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Skowera, A.; Stewart, E.; Davis, E.T.; Cleare, A.J.; Unwin, C.; Hull, L.; Ismail, K.; Hossain, G.; Wessely, S.C.; Peakman, M. Antinuclear autoantibodies (ANA) in Gulf War-related illness and chronic fatigue syndrome (CFS) patients. Clin. Exp. Immunol. 2002, 129, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Hokama, Y.; Empey-Campora, C.; Hara, C.; Higa, N.; Siu, N.; Lau, R.; Kuribayashi, T.; Yabusaki, K. Acute phase phospholipids related to the cardiolipin of mitochondria in the sera of patients with chronic fatigue syndrome (CFS), chronic Ciguatera fish poisoning (CCFP), and other diseases attributed to chemicals, Gulf War, and marine toxins. J. Clin. Lab. Anal. 2008, 22, 99–105. [Google Scholar] [CrossRef]
Men | Women | |||
---|---|---|---|---|
Demographics | GWI Cases (N = 137) | All Controls (N = 64) | GWI Cases (N = 34) | All Controls (N = 81) |
Age-Mean + SD | 49.18 + 7.36 | 49.69 + 8.36 | 46.91 + 9.27 | 44.33 + 12.52 |
Race-N (%) | ||||
Caucasian | 110 (79.7) | 46 (71.9) | 29 (85.3) | 71 (87.7) |
African American | 19 (13.8) | 13 (20.3) | 3 (8.8) | 8 (9.9) |
Other/Multiracial | 9 (6.5) | 2 (3.1) | 1 (2.9) | 2 (2.5) |
Neural Proteins | Men (N = 137) Mean + SD | Women (N = 34) Mean + SD | p-Value |
---|---|---|---|
A. Neuronal Proteins | |||
Neurofilament triplet proteins (NFP) | 3.70 + 2.75 | 2.40 + 1.69 | 0.0120 |
Tubulin | 4.51 + 3.52 | 2.79 + 1.46 | 0.0071 |
Microtubule-associated tau proteins (tau) | 2.99 + 1.86 | 2.50 + 1.53 | 0.1647 |
Microtubule-associated protein-2 (MAP) | 10.11 + 4.96 | 8.19 + 5.18 | 0.0629 |
Calmodulin-dependent protein kinase II (CaMkII) | 2.09 + 1.08 | 1.85 + 1.27 | 0.2879 |
Alpha-synuclein (α-syn) | 2.58 + 1.62 | 2.28 + 1.68 | 0.3906 |
B. Glial Proteins Oligodendrocytes | |||
Myelin-associated glycoprotein (MAG) | 5.26 + 3.44 | 3.57 + 2.70 | 0.0097 |
Myelin basic protein (MBP) | 4.34 + 2.24 | 3.82 + 2.82 | 0.2900 |
Astrocytes | |||
Glial fibrillary acidic protein (GFAP) | 4.30 + 2.37 | 4.01 + 2.67 | 0.6437 |
Glial S100B protein (S100B) | 1.21 + 0.47 | 1.04 + 0.58 | 0.1015 |
CNS autoantibody Index (CAI) | 41.1 + 15.7 | 32.4 + 16.9 | 0.0076 |
Male | Female | |||||
---|---|---|---|---|---|---|
Neural Proteins | GWI Cases (N = 137) Mean + SD | Healthy GW Controls (N = 56) Mean + SD | p-Value | GWI Cases (N = 34) Mean + SD | Healthy GW Controls (N = 4) Mean + SD | p-Value |
A. Neuronal Proteins | ||||||
Neurofilament triplet proteins (NFP) | 3.70 + 2.75 | 1.91 + 2.08 | <0.0001 | 2.40 + 1.69 | 1.51 + 1.05 | 0.0492 |
Tubulin | 4.51 + 3.52 | 2.43 + 2.40 | <0.0001 | 2.79 + 1.46 | 1.36 + 0.86 | 0.0081 |
Microtubule-associated tau proteins (tau) | 2.99 + 1.86 | 1.57 + 1.32 | <0.0001 | 2.50 + 1.53 | 1.61 + 1.43 | 0.1561 |
Microtubule-associated protein-2 (MAP) | 10.11 + 4.96 | 5.03 + 5.80 | <0.0001 | 8.19 + 5.18 | 5.19 + 8.22 | 0.1022 |
Calmodulin-dependent protein kinase II (CaMkII) | 2.09 + 1.08 | 1.21 + 1.02 | <0.0001 | 1.85 + 1.27 | 1.12 + 0.42 | 0.0555 |
Alpha-synuclein (SNCA) | 2.58 + 1.62 | 1.47 + 1.33 | <0.0001 | 2.28 + 1.68 | 1.37 + 1.48 | 0.1391 |
B. Glial Proteins Oligodendrocytes | ||||||
Myelin basic protein (MBP) | 4.34 + 2.24 | 2.20 + 2.50 | <0.0001 | 3.82 + 2.82 | 1.80 + 1.74 | 0.0724 |
Myelin-associated glycoprotein (MAG) | 5.26 + 3.44 | 2.18 + 2.02 | <0.0001 | 3.57 + 2.70 | 1.33 + 1.01 | 0.0531 |
Astrocytes | ||||||
Glial fibrillary acidic protein (GFAP) | 4.30 + 2.37 | 2.38 + 2.39 | <0.0001 | 4.01 + 2.67 | 1.84 + 1.12 | 0.0377 |
Glial S100B protein (S100B) | 1.21 + 0.47 | 1.16 + 0.43 | 0.4174 | 1.04 + 0.58 | 1.19 + 0.36 | 0.6037 |
CNS Autoantibody Index (CAI) | 41.1 + 15.7 | 21.5 + 17.7 | <0.0001 | 32.4 + 16.9 | 18.3 + 17.6 | 0.0212 |
Men | Women | |||||
---|---|---|---|---|---|---|
Autoantibody Measure | GWI Cases (N = 137) Mean + SD | All Controls (N = 64) Mean + SD | p-Value | GWI Cases (N = 34) Mean + SD | All Controls (N = 81) Mean + SD | p-Value |
A. Neuronal Proteins | ||||||
Neurofilament triplet proteins (NFP) | 3.70 + 2.75 | 1.80 + 1.96 | <0.0001 | 2.40 + 1.69 | 1.08 + 0.38 | <0.0001 |
Tubulin | 4.51 + 3.52 | 2.54 + 2.40 | 0.0001 | 2.79 + 1.46 | 1.90 + 1.33 | 0.0041 |
Tau proteins (Tau) | 2.99 + 1.86 | 1.50 + 1.25 | <0.0001 | 2.50 + 1.53 | 1.15 + 0.73 | <0.0001 |
Microtubule-associated protein-2 (MAP) | 10.11 + 4.96 | 5.01 + 5.54 | <0.0001 | 8.19 + 5.18 | 4.53 + 3.78 | 0.0001 |
Calmodulin-dependent protein kinase II (CaMkII) | 2.09 + 1.08 | 1.19 + 0.98 | <0.0001 | 1.85 + 1.27 | 0.97 + 0.43 | <0.0001 |
Alpha-synuclein (α-syn) | 2.58 + 1.62 | 1.43 + 1.25 | <0.0001 | 2.28 + 1.68 | 0.98 + 0.44 | <0.0001 |
B. Glial Proteins Oligodendrocytes | ||||||
Myelin basic protein (MBP) | 4.34 + 2.24 | 2.15 + 2.37 | <0.0001 | 3.82 + 2.82 | 1.36 + 0.55 | <0.0001 |
Myelin-associated glycoprotein (MAG) | 5.26 + 3.44 | 2.19 + 1.90 | <0.0001 | 3.57 + 2.70 | 2.19 + 1.31 | 0.0004 |
Astrocytes | ||||||
Glial fibrillary acidic protein (GFAP) | 4.30 + 2.37 | 2.51 + 2.40 | <0.0001 | 4.01 + 2.67 | 3.11 + 2.41 | 0.1379 |
Glial S100B protein (S100B) | 1.21 + 0.47 | 1.19 + 0.45 | 0.6833 | 1.04 + 0.58 | 1.15 + 0.39 | 0.0952 |
CNS Autoantibody Neurodegeneration Index (CA_NDI) | 41.1 + 15.7 | 21.5 + 16.8 | <0.0001 | 32.4 + 16.9 | 18.4 + 7.24 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Donia, M.B.; Krengel, M.H.; Lapadula, E.S.; Zundel, C.G.; LeClair, J.; Massaro, J.; Quinn, E.; Conboy, L.A.; Kokkotou, E.; Nguyen, D.D.; et al. RETRACTED: Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls. Brain Sci. 2021, 11, 148. https://doi.org/10.3390/brainsci11020148
Abou-Donia MB, Krengel MH, Lapadula ES, Zundel CG, LeClair J, Massaro J, Quinn E, Conboy LA, Kokkotou E, Nguyen DD, et al. RETRACTED: Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls. Brain Sciences. 2021; 11(2):148. https://doi.org/10.3390/brainsci11020148
Chicago/Turabian StyleAbou-Donia, Mohamed B., Maxine H. Krengel, Elizabeth S. Lapadula, Clara G. Zundel, Jessica LeClair, Joseph Massaro, Emily Quinn, Lisa A. Conboy, Efi Kokkotou, Daniel D. Nguyen, and et al. 2021. "RETRACTED: Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls" Brain Sciences 11, no. 2: 148. https://doi.org/10.3390/brainsci11020148
APA StyleAbou-Donia, M. B., Krengel, M. H., Lapadula, E. S., Zundel, C. G., LeClair, J., Massaro, J., Quinn, E., Conboy, L. A., Kokkotou, E., Nguyen, D. D., Abreu, M., Klimas, N. G., & Sullivan, K. (2021). RETRACTED: Sex-Based Differences in Plasma Autoantibodies to Central Nervous System Proteins in Gulf War Veterans versus Healthy and Symptomatic Controls. Brain Sciences, 11(2), 148. https://doi.org/10.3390/brainsci11020148