Molecular Genetics of Microcephaly Primary Hereditary: An Overview
Abstract
:1. Introduction
2. The Cellular Basis of MPCH
3. MCPH Genes
3.1. ASPM (MCPH5)
3.2. WDR62 (MCPH2)
3.3. MCPH1 (MCPH1)
3.4. CDK5RAP2 (MCPH3)
3.5. CASC5 (KNL1, MCPH4)
3.6. CENPJ (SAS-4, CPAP, MCPH6)
3.7. STIL (MCPH7)
3.8. CEP135 (MCPH8)
3.9. CEP152 (MCPH9)
3.10. ZNF335 (MCPH10)
3.11. PHC1 (MCPH11)
3.12. CDK6 (MCPH12)
3.13. CENPE (MCPH13)
3.14. SASS6 (SAS-6, MCPH14)
3.15. MFSD2A (MCPH15)
3.16. ANKLE2 (LEM4, MCPH16)
3.17. CIT (MCPH17)
3.18. ALFY (WDFY3, MCPH18)
3.19. COPB2 (MCPH19)
3.20. KIF14 (MCPH20)
3.21. NCAPD2 (CNAP1, MCPH21)
3.22. NCAPD3 (MCPH22)
3.23. NCAPH (MCPH23)
3.24. NUP37 (MCPH24)
3.25. MAP11 (TRAPPC14, C7orf43, MCPH25)
3.26. LMNB1 (MCPH26) and LMNB2 (MCPH27)
4. Cellular Processes and Molecular Pathways in MCPH
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Abuelo, D. Microcephaly Syndromes. Semin. Pediatr. Neurol. 2007, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Opitz, J.M.; Holt, M.C. Microcephaly: General considerations and aids to nosology. J. Craniofac. Genet. Dev. Biol. 1990, 10, 175. [Google Scholar] [PubMed]
- Hanzlik, E.; Gigante, J. Microcephaly. Children 2017, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von der Hagen, M.; Pivarcsi, M.; Liebe, J.; von Bernuth, H.; Didonato, N.; Hennermann, J.B.; Buhrer, C.; Wieczorek, D.; Kaindl, A.M. Diagnostic approach to microcephaly in childhood: A two-center study and review of the literature. Dev. Med. Child Neurol. 2014, 56, 732. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.G.; Bond, J.; Enard, W. Autosomal recessive primary microcephaly (MCPH): A review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet. 2005, 76, 717. [Google Scholar] [CrossRef] [Green Version]
- von der Hagen, M. Diagnostic approach to primary microcephaly. Neuropediatrics 2017, 48, 133–134. [Google Scholar] [CrossRef]
- Duerinckxa, S.; Abramowicz, M. The genetics of congenitally small brains. Semin. Cell. Dev. Biol. 2018, 76, 76. [Google Scholar] [CrossRef]
- Alcantara, D.; O’Driscoll, M. Congenital Microcephaly. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaqout, S.; Morris-Rosendahl, D.; Kaindl, A.M. Autosomal Recessive Primary Microcephaly (MCPH): An Update. Neuropediatrics 2017, 48, 135. [Google Scholar] [CrossRef]
- Muhammad, F.; Mahmood Baig, S.; Hansen, L.; Sajid Hussain, M.; Anjum Inayat, I.; Aslam, M.; Anver Qureshi, J.; Toilat, M.; Kirst, E.; Wajid, M.; et al. Compound heterozygous ASPM mutations in Pakistani MCPH families. Am. J. Med. Genet. A 2009, 149, 926. [Google Scholar] [CrossRef]
- Passemard, S.; Titomanlio, L.; Elmaleh, M.; Afenjar, A.; Alessandri, J.L.; Andria, G.; de Villemeur, T.B.; Boespflug-Tanguy, O.; Burglen, L.; Del Giudice, E.; et al. Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology 2009, 73, 962. [Google Scholar] [CrossRef]
- Issa, L.; Mueller, K.; Seufert, K.; Kraemer, N.; Rosenkotter, H.; Ninnemann, O.; Buob, M.; Kaindl, A.M.; Morris-Rosendahl, D.J. Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet. J. Rare Dis. 2013, 8, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, T.W.; Mochida, G.H.; Tischfield, D.J.; Sgaier, S.K.; Flores-Sarnat, L.; Sergi, C.M.; Topçu, M.; McDonald, M.T.; Barry, B.J.; Felie, J.M.; et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 2010, 42, 1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desir, J.; Cassart, M.; David, P.; Van Bogaert, P.; Abramowicz, M. Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally. Am. J. Med. Genet. A 2008, 146, 1439. [Google Scholar] [CrossRef]
- Roberts, E.; Hampshire, D.J.; Springell, K.; Pattison, L.; Crow, Y.; Jafri, H.; Corry, P.; Kabani, G.; Mannon, J.; Rashid, Y.; et al. Autosomal recessive primary microcephaly: An analysis of locus heterogeneity and phenotypic variation. J. Med. Genet. 2002, 39, 718–721. [Google Scholar] [CrossRef] [Green Version]
- Barbelanne, M.; Tsang, W.T. Molecular and Cellular Basis of Autosomal Recessive Primary Microcephaly. Biomed. Res. Int. 2014, 547986. [Google Scholar] [CrossRef]
- Paridaen, J.T.; Huttner, W.B. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 2014, 15, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, L.M.; Huttner, W.B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr. Opin. Cell. Biol. 2008, 20, 707. [Google Scholar] [CrossRef]
- Noctor, S.C.; Flint, A.C.; Weissman, T.A.; Dammerman, R.S.; Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001, 409, 714. [Google Scholar] [CrossRef]
- Noctor, S.C.; Flint, A.C.; Weissman, T.A.; Wong, W.S.; Clinton, B.K.; Kriegstein, A.R. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 2002, 22, 3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vertii, A.; Hehnly, H.; Doxsey, S. The Centrosome, a Multitalented Renaissance Organelle. Cold Spring Harb. Perspect. Biol. 2016, 8, a025049. [Google Scholar] [CrossRef]
- Prosser, S.L.; Pelletier, L. Mitotic spindle assembly in animal cells: A fine balancing act. Nat. Rev. Mol. Cell Biol. 2017, 18, 187. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, J.R. Mitosis. Cold Spring Harb. Perspect. Biol. 2016, 8, a023218. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.P.; Eastwood, H.; Bell, S.M.; Adu, J.; Toomes, C.; Carr, I.M.; Roberts, E.; Hampshire, D.J.; Crow, Y.J.; Mighell, A.J.; et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 2002, 71, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Carmo Avides, M.; Glover, D.M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 1999, 283, 1733. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Midgley, C.; Bergh, A.M.; Bell, S.M.; Askham, J.M.; Roberts, E.; Binns, R.K.; Sharif, S.M.; Bennett, C.; Glover, D.M.; et al. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biol. 2010, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, D.; Kodani, A.; Gonzalez, D.M.; Mancias, J.D.; Mochida, G.H.; Vagnoni, C.; Johnson, J.; Krogan, N.; Harper, J.W.; Reiter, J.F.; et al. Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron 2016, 92, 813. [Google Scholar] [CrossRef] [Green Version]
- Gai, M.; Bianchi, F.T.; Vagnoni, C.; Vernì, F.; Bonaccorsi, S.; Pasquero, S.; Berto, G.E.; Sgrò, F.; Chiotto, A.A.; Annaratone, L.; et al. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep. 2017, 18, 1870. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Χ.; Liu, L.; Zhao, A.; Pfeifer, G.P.; Xu, X. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein. Cell Cycle 2005, 4, 1227. [Google Scholar] [CrossRef]
- Fish, J.L.; Kosodo, Y.; Enard, W.; Pääbo, S.; Huttner, W.B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. USA 2006, 103, 10438. [Google Scholar] [CrossRef] [Green Version]
- Pulvers, J.N.; Bryk, J.; Fish, J.L.; Wilsch-Bräuninger, M.; Arai, Y.; Schreier, D.; Naumann, R.; Helppi, J.; Habermann, B.; Vogt, J.; et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc. Natl. Acad. Sci. USA 2010, 107, 16595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rujano, M.A.; Sanchez-Pulido, L.; Pennetier, C.; le Dez, G.; Basto, R. The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat. Cell. Biol. 2013, 15, 1294. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Lee, M.S.; Choi, J.H.; Jung, J.Y.; Ahn, D.G.; Yeo, S.Y.; Choi, D.K.; Kim, C.H. The microcephaly gene aspm is involved in brain development in zebrafish. Biochem. Biophys. Res. Commun. 2011, 409, 640. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, D.; Bae, B.I.; Walsh, C.A. The Genetics of Primary Microcephaly. Annu. Rev. Genom. Hum. Genet. 2018, 19, 177–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, A.K.; Khurshid, M.; Désir, J.; Carvalho, O.P.; Cox, J.J.; Thornton, G.; Kausar, R.; Ansar, M.; Ahmad, W.; Verloes, A.; et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat. Genet. 2010, 42, 1010. [Google Scholar] [CrossRef]
- Pervaiz, N.; Abbasi, A.A. Molecular evolution of WDR62, a gene that regulates neocorticogenesis. Meta. Gene. 2016, 9, 1. [Google Scholar] [CrossRef]
- Bogoyevitch, M.A.; Yeap, Y.Y.C.; Qu, Z.; Ngoei, K.R.; Yip, Y.Y.; Zhao, T.T.; Heng, J.I.; Ng, D.C.H. WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression. J. Cell Sci. 2012, 125, 5096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacCorkle-Chosnek, R.A.; VanHooser, A.; Goodrich, D.W.; Brinkley, B.R.; Tan, T.H. Cell cycle regulation of c-Jun N-terminal kinase activity at the centrosomes. Biochem. Biophys. Res. Commun. 2001, 289, 173. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, F.; Wang, Y.; Sun, Y.; Xu, Z. Microcephaly associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep. 2014, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Zhang, Y.; Wilde, J.; Hansen, K.C.; Lai, F.; Niswander, L. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat. Commun. 2014, 5, 3885. [Google Scholar] [CrossRef] [Green Version]
- Novorol, C.; Burkhardt, J.; Wood, K.J.; Iqbal, A.; Roque, C.; Coutts, N.; Almeida, A.D.; He, J.; Wilkinson, C.J.; Harris, W.A. Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression. Open Biol. 2013, 3, 130065. [Google Scholar] [CrossRef] [Green Version]
- Sgourdou, P.; Mishra-Gorur, K.; Saotome, I.; Henagariu, O.; Tuysuz, B.; Campos, C.; Ishigame, K.; Giannikou, K.; Quon, J.L.; Sestan, N.; et al. Disruptions in asymmetric centrosome inheritance and WDR62-aurora kinase B interactions in primary microcephaly. Sci. Rep. 2017, 7, 43708. [Google Scholar] [CrossRef] [PubMed]
- Pulvers, J.N.; Journiac, N.; Arai, Y.; Nardelli, J. MCPH1: A window into brain development and evolution. Front. Cell. Neurosci. 2015, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Gruber, R.; Zhou, Z.; Sukchev, M.; Joerss, T.; Frappart, P.O.; Wang, Z.Q. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat. Cell Biol. 2011, 13, 1325. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.W.; Wang, Z.Q. The DNA damage response molecule MCPH1 in brain development and beyond. Acta Biochim. Biophys. Sin. (Shanghai) 2016, 48, 678. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Rai, R.; Li, K.; Xu, Z.X.; Elledge, S.J. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc. Natl. Acad. Sci. USA 2005, 102, 15105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Wiltshire, T.D.; Thompson, J.R.; Mer, G.; Couch, F.J. Molecular basis for the association of microcephalin (MCPH1) protein with the cell division cycle protein 27 (Cdc27) subunit of the anaphase-promoting complex. J. Biol. Chem. 2012, 287, 2854. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Basnet, H.; Wiltshire, T.D.; Mohammad, D.H.; Thompson, J.R.; Héroux, A.; Botuyan, M.V.; Yaffe, M.B.; Couch, F.J.; Rosenfeld, M.G.; et al. Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1. Proc. Natl. Acad. Sci. USA 2012, 109, 14381. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Lee, J.; Stern, D.F. Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J. Biol. Chem. 2004, 279, 34091. [Google Scholar] [CrossRef] [Green Version]
- Cicconi, A.; Rai, R.; Xiong, X.; Broton, C.; Al-Hiyasat, A.; Hu, C.; Dong, S.; Sun, W.; Garbarino, J.; Bindra, R.S.; et al. Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nat. Commun. 2020, 11, 5861. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.W.; Tapias, A.; Bruhn, C.; Gruber, R.; Sukchev, M.; Wang, Z.Q. DNA damage response in microcephaly development of MCPH1 mouse model. DNA Repair (Amst) 2013, 12, 645. [Google Scholar] [CrossRef]
- Brunk, K.; Vernay, B.; Griffith, E.; Reynolds, N.L.; Strutt, D.; Ingham, P.W.; Jackson, A.P. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J. Cell. Sci. 2007, 120, 3578. [Google Scholar] [CrossRef] [Green Version]
- Rickmyre, J.L.; Dasgupta, S.; Ooi, D.L.; Keel, J.; Lee, E.; Kirschner, M.W.; Waddell, S.; Lee, L.A. The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo. J. Cell Sci. 2007, 120, 3565–3577. [Google Scholar] [CrossRef] [Green Version]
- Fong, K.W.; Choi, Y.K.; Rattner, J.B.; Qi, R.Z. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol. Biol. Cell. 2008, 19, 115. [Google Scholar] [CrossRef] [Green Version]
- Graser, S.; Stierhof, Y.D.; Nigg, E.A. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 2007, 120, 4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinen, T.; Yamazaki, K.; Hashimoto, K.; Fujii, K.; Watanabe, K.; Takeda, Y.; Yamamoto, S.; Nozaki, Y.; Tsuchiya, Y.; Takao, D.; et al. Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. J. Cell Biol. 2021, 220, e202006085. [Google Scholar] [CrossRef]
- Watanabe, S.; Meitinger, F.; Shiau, A.K.; Oegema, K.; Desai, A. Centriole-independent mitotic spindle assembly relies on the PCNT-CDK5RAP2 pericentriolar matrix. J. Cell. Biol. 2020, 219, e202006010. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Lv, S.; Wang, H.; Zhong, X.; Liu, B.; Wang, B.; Liao, J.; Li, J.; Pfeifer, G.P.; et al. CDK5RAP2 is required for spindle checkpoint function. Cell Cycle 2009, 8, 1206–1216. [Google Scholar] [CrossRef] [Green Version]
- Barrera, J.A.; Kao, L.R.; Hammer, R.E.; Seemann, J.; Fuchs, J.L.; Megraw, T.L. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell. 2010, 18, 913. [Google Scholar] [CrossRef] [Green Version]
- Buchman, J.J.; Tseng, H.C.; Zhou, Y.; Frank, C.L.; Xie, Z.; Tsai, L.H. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 2010, 66, 386–402. [Google Scholar] [CrossRef] [Green Version]
- Lizarraga, S.B.; Margossian, S.P.; Harris, M.H.; Campagna, D.R.; Han, A.P.; Blevins, S.; Mudbhary, R.; Barker, J.E.; Walsh, C.A.; Fleming, M.D. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 2010, 137, 1907. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, I.M.; Chappie, J.S.; Wilson-Kubalek, E.M.; Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genin, A.; Desir, J.; Lambert, N.; Biervliet, M.; Van Der Aa, N.; Pierquin, G.; Killian, A.; Tosi, M.; Urbina, M.; Lefort, A.; et al. Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum. Mol. Genet. 2012, 21, 5306. [Google Scholar] [CrossRef] [Green Version]
- Szczepanski, S.; Hussain, M.S.; Sur, I.; Altmüller, J.; Thiele, H.; Abdullah, U.; Waseem, S.S.; Moawia, A.; Nürnberg, G.; Noegel, A.A.; et al. A novel homozygous splicing mutation of CASC5 causes primary microcephaly in a large Pakistani family. Hum. Genet. 2016, 135, 157. [Google Scholar] [CrossRef] [PubMed]
- Hung, L.Y.; Tang, C.J.; Tang, T.K. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol. Cell. Biol. 2000, 20, 7813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottee, M.A.; Muschalik, N.; Wong, Y.L.; Johnson, C.M.; Johnson, S.; Andreeva, A.; Oegema, K.; Lea, S.M.; Raff, J.W.; van Breugel, M. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. Elife 2013, 2, e01071. [Google Scholar] [CrossRef]
- Bond, J.; Roberts, E.; Springell, K.; Lizarraga, S.B.; Scott, S.; Higgins, J.; Hampshire, D.J.; Morrison, E.E.; Leal, G.F.; Silva, E.O.; et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 2005, 37, 353. [Google Scholar] [CrossRef]
- Gabriel, E.; Wason, A.; Ramani, A.; Gooi, L.M.; Keller, P.; Pozniakovsky, A.; Poser, I.; Noack, F.; Telugu, N.S.; Calegari, F.; et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 2016, 35, 803. [Google Scholar] [CrossRef]
- McIntyre, R.E.; Lakshminarasimhan Chavali, P.; Ismail, O.; Carragher, D.M.; Sanchez-Andrade, G.; Forment, J.V.; Fu, B.; Del Castillo Velasco-Herrera, M.; Edwards, A.; van der Weyden, L.; et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 2012, 8, e1003022. [Google Scholar] [CrossRef] [Green Version]
- Al-Dosari, M.S.; Shaheen, R.; Colak, D.; Alkuraya, F.S. Novel CENPJ mutation causes Seckel syndrome. J. Med. Genet. 2010, 47, 411. [Google Scholar] [CrossRef]
- Kitagawa, D.; Kohlmaier, G.; Keller, D.; Strnad, P.; Balestra, F.R.; Fluckiger, I.; Gonczy, P. Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL. J. Cell. Sci. 2011, 124, 3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arquint, C.; Sonnen, K.F.; Stierhof, Y.D.; Nigg, E.A. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J. Cell Sci. 2012, 125, 1342. [Google Scholar] [CrossRef] [Green Version]
- Kleylein-Sohn, J.; Westendorf, J.; Le Clech, M.; Habedanck, R.; Stierhof, Y.D.; Nigg, E.A. Plk4-induced centriole biogenesis in human cells. Dev. Cell 2007, 13, 190. [Google Scholar] [CrossRef] [Green Version]
- Pfaff, K.L.; Straub, C.T.; Chiang, K.; Bear, D.M.; Zhou, Y.; Zon, L.I. The zebrafish cassiopeia mutant reveals that SIL is required for mitotic spindle organization. Mol. Cell. Biol. 2007, 27, 5887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, A.; Liu, F.; Tibelius, A.; Vulprecht, J.; Wald, D.; Rothermel, U.; Ohana, R.; Seitel, A.; Metzger, J.; Ashery-Padan, R.; et al. Lack of centrioles and primary cilia in STIL(−/−) mouse embryos. Cell Cycle 2014, 13, 2859. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, C.; Carr, A.L. STIL: A multi-function protein required for dopaminergic neural proliferation, protection, and regeneration. Cell. Death Discov. 2019, 5, 90. [Google Scholar] [CrossRef]
- Hussain, M.S.; Baig, S.M.; Neumann, S.; Nürnberg, G.; Farooq, M.; Ahmad, I.; Alef, T.; Hennies, H.C.; Technau, M.; Altmüller, J.; et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 2012, 90, 871. [Google Scholar] [CrossRef] [Green Version]
- Kraatz, S.; Guichard, P.; Obbineni, J.M.; Olieric, N.; Hatzopoulos, G.N.; Hilbert, M.; Sen, I.; Missimer, J.; Gonczy, P.; Steinmetz, M.O. The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding. Structure 2016, 24, 1358. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Lee, S.; Chang, J.; Rhee, K. A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization. Exp. Cell Res. 2008, 314, 3692. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chang, C.W.; Hsu, W.B.; Tang, C.J.; Lin, Y.N.; Chou, E.J.; Wu, C.T.; Tang, T.K. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J. 2013, 32, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho-Santos, Z.; Machado, P.; Alvarez-Martins, I.; Gouveia, S.M.; Jana, S.C.; Duarte, P.; Amado, T.; Branco, P.; Freitas, M.C.; Silva, S.T.; et al. BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair. Dev. Cell 2012, 23, 412. [Google Scholar] [CrossRef] [Green Version]
- Inanç, B.; Pütz, M.; Lalor, P.; Dockery, P.; Kuriyama, R.; Gergely, F.; Morrison, C.G. Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells. Mol. Biol. Cell. 2013, 24, 2645. [Google Scholar] [CrossRef] [PubMed]
- Roque, H.; Wainman, A.; Richens, J.; Kozyrska, K.; Franz, A.; Raff, J.W. Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J. Cell Sci. 2012, 125 Pt 23, 5881. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.S.; Wilkinson, C.J.; Mayor, T.; Mortensen, P.; Nigg, E.A.; Mann, M. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426, 570–574. [Google Scholar] [CrossRef]
- Guernsey, D.L.; Jiang, H.; Hussin, J.; Arnold, M.; Bouyakdan, K.; Perry, S.; Babineau-Sturk, T.; Beis, J.; Dumas, N.; Evans, S.C. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 2010, 87, 40. [Google Scholar] [CrossRef] [Green Version]
- Gartenmann, L.; Vicente, C.C.; Wainman, A.; Novak, Z.A.; Sieber, B.; Richens, J.H.; Raff, J.W. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J. Cell Sci. 2020, 133, jcs244574. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Zhang, L.; Il Ahn, J.; Meng, L.; Chen, Y.; Lee, E.; Bang, J.K.; Lim, J.M.; Ghirlando, R.; Fan, L.; et al. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat. Commun. 2019, 10, 1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalay, E.; Yigit, G.; Aslan, Y.; Brown, K.E.; Pohl, E.; Bicknell, L.S.; Kayserili, H.; Li, Y.; Tüysüz, B.; Nürnberg, G.; et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat. Genet. 2011, 43, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhindzhev, N.S.; Yu, Q.D.; Weiskopf, K.; Tzolovsky, G.; Cunha-Ferreira, I.; Riparbelli, M.; Rodrigues-Martins, A.; Bettencourt-Dias, M.; Callaini, G.; Glover, D.M. Asterless is a scaffold for the onset of centriole assembly. Nature 2010, 467, 714. [Google Scholar] [CrossRef] [PubMed]
- Garapaty, S.; Xu, C.F.; Trojer, P.; Mahajan, M.A.; Neubert, T.A.; Samuels, H.H. Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation. J. Biol. Chem. 2009, 284, 7542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.J.; Baltus, A.E.; Mathew, R.S.; Murphy, E.A.; Evrony, G.D.; Gonzalez, D.M.; Wang, E.P.; Marshall-Walker, C.A.; Barry, B.J.; Murn, J. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 2012, 151, 1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, S.; Al-Dosari, M.S.; Al-Yacoub, N.; Colak, D.; Salih, M.A.; Alkuraya, F.S.; Poizat, C. Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum. Mol. Genet. 2013, 22, 2200. [Google Scholar] [CrossRef] [Green Version]
- Ohtsubo, M.; Yasunaga, S.; Ohno, Y.; Tsumura, M.; Okada, S.; Ishikawa, N.; Shirao, K.; Kikuchi, A.; Nishitani, H.; Kobayashi, M.; et al. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity. Proc. Nat. Acad. Sci. USA 2008, 105, 10396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takihara, Y.; Tomotsune, D.; Shirai, M.; Katoh-Fukui, Y.; Nishii, K.; Motaleb, M.A.; Nomura, M.; Tsuchiya, R.; Fujita, Y.; Shibata, Y.; et al. Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development 1997, 124, 3673. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Sawada, A.; Kim, J.Y.; Tokimasa, S.; Nishiguchi, S.; Humphries, R.K.; Hara, J.; Takihara, Y. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J. Exp. Med. 2002, 195, 759. [Google Scholar] [CrossRef] [PubMed]
- Tokimasa, S.; Ohta, H.; Sawada, A.; Matsuda, Y.; Kim, J.Y.; Nishiguchi, S.; Hara, J.; Takihara, Y. Lack of the Polycomb-group gene rae28 causes maturation arrest at the early B-cell developmental stage. Exp. Hematol. 2001, 29, 93. [Google Scholar] [CrossRef]
- Hussain, M.S.; Baig, S.M.; Neumann, S.; Peche, V.S.; Szczepanski, S.; Nürnberg, G.; Tariq, M.; Jameel, M.; Khan, T.N.; Fatima, A. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly. Hum. Mol. Genet. 2013, 22, 5199. [Google Scholar] [CrossRef]
- Malumbres, M.; Sotillo, R.; Santamaría, D.; Galán, J.; Cerezo, A.; Ortega, S.; Dubus, P.; Barbacid, M. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004, 118, 493. [Google Scholar] [CrossRef] [Green Version]
- Mi, D.; Carr, C.B.; Georgala, P.A.; Huang, Y.T.; Manuel, M.N.; Jeanes, E.; Niisato, E.; Sansom, S.N.; Livesey, F.J.; Theil, T.; et al. Pax6 exerts regional control of cortical progenitor proliferation via direct repression of Cdk6 and hypophosphorylation of pRb. Neuron 2013, 78, 269. [Google Scholar] [CrossRef] [Green Version]
- Vaid, S.; Huttner, W.B. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Int. J. Mol. Sci. 2020, 21, 4614. [Google Scholar] [CrossRef]
- Mirzaa, G.M.; Vitre, B.; Carpenter, G.; Abramowicz, I.; Gleeson, J.G.; Paciorkowski, A.R.; Cleveland, D.W.; Dobyns, W.B.; O’Driscoll, M. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum. Genet. 2014, 133, 1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudimchuk, N.; Vitre, B.; Kim, Y.; Kiyatkin, A.; Cleveland, D.W.; Ataullakhanov, F.I.; Grishchuk, E.L. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat. Cell Biol. 2013, 15, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.W.; Zhong, N.; Xiao, Y.; She, Z.Y. Mechanisms of kinesin-7 CENP-E in kinetochore-microtubule capture and chromosome alignment during cell division. Biol. Cell 2019, 111, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Iegiani, G.; Gai, M.; Di Cunto, F.; Pallavicini, G. CENPE Inhibition Leads to Mitotic Catastrophe and DNA Damage in Medulloblastoma. Cells Cancers 2021, 13, 1028. [Google Scholar] [CrossRef] [PubMed]
- Putkey, F.R.; Cramer, T.; Morphew, M.K.; Silk, A.D.; Johnson, R.S.; McIntosh, J.R.; Cleveland, D.W. Unstable Kinetochore-Microtubule Capture and Chromosomal Instability Following Deletion of CENP-E. Dev. Cell 2002, 3, 351. [Google Scholar] [CrossRef] [Green Version]
- Weaver, B.A.A.; Bonday, Z.Q.; Putkey, F.R.; Kops, G.J.P.L.; Silk, A.D.; Cleveland, D.W. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J. Cell Biol. 2003, 162, 551. [Google Scholar] [CrossRef]
- Vladar, E.K.; Stearns, T. Molecular characterization of centriole assembly in ciliated epithelial cells. J. Cell Biol. 2007, 178, 31. [Google Scholar] [CrossRef] [Green Version]
- Keller, D.; Orpinell, M.; Olivier, N.; Wachsmuth, M.; Mahen, R.; Wyss, R.; Hachet, V.; Ellenberg, J.; Manley, S.; Gönczy, P. Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. J. Cell Biol. 2014, 204, 697–712. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Rupp, V.M.; Orpinell, M.; Hussain, M.S.; Altmüller, J.; Steinmetz, M.O.; Enzinger, C.; Thiele, H.; Höhne, W.; Nürnberg, G.; et al. A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Hum. Mol. Genet. 2014, 23, 5940. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Pang, J.; Peng, Y.; Shu, L.; Wang, H. Novel SASS6 compound heterozygous mutations in a Chinese family with primary autosomal recessive microcephaly. Clin. Chim. Acta. 2019, 491, 15. [Google Scholar] [CrossRef]
- Leidel, S.; Delattre, M.; Cerutti, L.; Baumer, K.; Gönczy, P. SAS-6 defines a protein family required for centrosome duplication in, C. elegans and in human cells. Nat. Cell Biol. 2005, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Strnad, P.; Leidel, S.; Vinogradova, T.; Euteneuer, U.; Khodjakov, A.; Gönczy, P. Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev. Cell 2007, 13, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, B.H.; Silver, D.L. Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye. Adv. Exp. Med. Biol. 2020, 1276, 223. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Ma, D.; Shui, G.; Wong, P.; Cazenave-Gassiot, A.; Zhang, X.; Wenk, M.R.; Goh, E.L.K.; Silver, D.L. Mfsd2a is a transporter for the essentialomega-3 fatty acid docosahexaenoic acid. Nature 2014, 509, 503. [Google Scholar] [CrossRef]
- Guemez-Gamboa, A.; Nguyen, L.N.; Yang, H.; Zaki, M.S.; Kara, M.; Ben-Omran, T.; Akizu, N.; Rosti, R.O.; Rosti, B.; Scott, E.; et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 2015, 47, 809. [Google Scholar] [CrossRef] [Green Version]
- Alakbarzade, V.; Hameed, A.; Quek, D.Q.; Chioza, B.A.; Baple, E.L.; Cazenave-Gassiot, A.; Nguyen, L.N.; Wenk, M.R.; Ahmad, A.Q.; Sreekantan-Nair, A.; et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 2015, 47, 814. [Google Scholar] [CrossRef]
- Chan, J.P.; Wong, B.H.; Chin, C.F.; Galam, D.L.A.; Foo, J.C.; Wong, L.C.; Ghosh, S.; Wenk, M.R.; Cazenave-Gassiot, A.; Silver, D.L. The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain. PLoS Biol. 2018, 16, e2006443. [Google Scholar] [CrossRef]
- Link, N.; Chung, H.; Jolly, A.; Withers, M.; Tepe, B.; Arenkiel, B.R.; Shah, P.S.; Krogan, N.J.; Aydin, H.; Geckinli, B.B.; et al. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev. Cell 2019, 51, 713. [Google Scholar] [CrossRef]
- Yamamoto, S.; Jaiswal, M.; Charng, W.L.; Gambin, T.; Karaca, E.; Mirzaa, G.; Wiszniewski, W.; Sandoval, H.; Haelterman, N.A.; Xiong, B.; et al. A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 2014, 159, 200. [Google Scholar] [CrossRef] [Green Version]
- Posey, J.E.; O’Donnell-Luria, A.H.; Chong, J.X.; Harel, T.; Jhangiani, S.N.; Coban Akdemir, Z.H.; Buyske, S.; Pehlivan, D.; Carvalho, C.M.B.; Baxter, S.; et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet. Med. 2019, 21, 798. [Google Scholar] [CrossRef]
- Bianchi, F.T.; Gai, M.; Berto, G.E.; Di Cunto, F. Of rings and spines: The multiple facets of Citron proteins in neural development. Small GTPases 2020, 11, 122–130. [Google Scholar] [CrossRef]
- Di Cunto, F.; Imarisio, S.; Hirsch, E.; Broccoli, V.; Bulfone, A.; Migheli, A.; Atzori, C.; Turco, E.; Triolo, R.; Dotto, G.P.; et al. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 2000, 28, 115. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.T.; Tocco, C.; Pallavicini, G.; Liu, Y.; Vernì, F.; Merigliano, C.; Bonaccorsi, S.; El-Assawy, N.; Priano, L.; Gai, M.; et al. Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. Cell Rep. 2017, 18, 1674. [Google Scholar] [CrossRef]
- McKenzie, C.; Bassi, Z.I.; Debski, J.; Gottardo, M.; Callaini, G.; Dadlez, M.; D’Avino, P.P. Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biol. 2016, 6, 160019. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Bielas, S.L.; Zaki, M.S.; Ismail, S.; Farfara, D.; Um, K.; Rosti, R.O.; Scott, E.C.; Tu, S.; Chi, N.C.; et al. Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly. Am. J. Hum. Genet. 2016, 99, 501. [Google Scholar] [CrossRef] [Green Version]
- Kadir, R.; Harel, T.; Markus, B.; Perez, Y.; Bakhrat, A.; Cohen, I.; Volodarsky, M.; Feintsein-Linial, M.; Chervinski, E.; Zlotogora, J.; et al. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size. PLoS Genet. 2016, 12, e1005919. [Google Scholar] [CrossRef] [Green Version]
- Orosco, L.A.; Ross, A.P.; Cates, S.L.; Scott, S.E.; Wu, D.; Sohn, J.; Pleasure, D.; Pleasure, S.J.; Adamopoulos, I.E.; Zarbalis, K.S. Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nat. Commun. 2014, 5, 4692. [Google Scholar] [CrossRef] [Green Version]
- Le Duc, D.; Giulivi, C.; Hiatt, S.M.; Napoli, E.; Panoutsopoulos, A.; Harlan De Crescenzo, A.; Kotzaeridou, U.; Syrbe, S.; Anagnostou, E.; Azage, M.; et al. Pathogenic WDFY3 variants cause neurodevelopmental disorders and opposing effects on brain size. Brain 2019, 142, 2617. [Google Scholar] [CrossRef]
- Styers, M.L.; O’Connor, A.K.; Grabski, R.; Cormet-Boyaka, E.; Sztul, E. Depletion of beta-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am. J. Physiol. Cell Physiol. 2008, 294, C1485. [Google Scholar] [CrossRef] [Green Version]
- DiStasio, A.; Driver, A.; Sund, K.; Donlin, M.; Muraleedharan, R.M.; Pooya, S.; Kline-Fath, B.; Kaufman, K.M.; Prows, C.A.; Schorry, E.; et al. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum. Mol. Genet. 2017, 26, 4836. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, G.; Li, M.; Du, J.; Wang, M. COPB2 gene silencing inhibits colorectal cancer cell proliferation and induces apoptosis via the JNK/c-Jun signaling pathway. PLoS ONE 2020, 15, e0240106. [Google Scholar] [CrossRef]
- Gruneberg, U.; Neef, R.; Li, X.; Chan, E.H.; Chalamalasetty, R.B.; Nigg, E.A.; Barr, F.A. KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 2006, 172, 363. [Google Scholar] [CrossRef] [Green Version]
- Fujikura, K.; Setsu, T.; Tanigaki, K.; Abe, T.; Kiyonari, H.; Terashima, T.; Sakisaka, T. Kif14 mutation causes severe brain malformation and hypomyelination. PLoS ONE 2013, 8, e53490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moawia, A.; Shaheen, R.; Rasool, S.; Waseem, S.S.; Ewida, N.; Budde, B.; Kawalia, A.; Motameny, S.; Khan, K.; Fatima, A.; et al. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann. Neurol. 2017, 82, 562. [Google Scholar] [CrossRef] [PubMed]
- Shintomi, K.; Hirano, T. The relative ratio of condensin I to II determines chromosome shapes. Genes Dev. 2011, 25, 1464. [Google Scholar] [CrossRef] [Green Version]
- Watrin, E.; Legagneux, V. Contribution of hCAP-D2, a non-SMC subunit of condensin I, to chromosome and chromosomal protein dynamics during mitosis. Mol. Cell Biol. 2005, 25, 740. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Fang, Y.; Spector, D.L.; Hirano, T. Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 2004, 15, 3296. [Google Scholar] [CrossRef]
- Yang, J.; Adamian, M.; Li, T. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell 2006, 17, 1033–1040. [Google Scholar] [CrossRef]
- Martin, C.A.; Murray, J.E.; Carroll, P.; Leitch, A.; Mackenzie, K.J.; Halachev, M.; Fetit, A.E.; Keith, C.; Bicknell, L.S.; Fluteau, A.; et al. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. 2016, 30, 2158. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.S.; Tawamie, H.; Buchert, R.; Hosney Gebril, O.; Froukh, T.; Thiel, C.; Uebe, S.; Ekic, A.B.; Krumbiegel, M.; Zweier, C.; et al. Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry 2017, 74, 293–299. [Google Scholar] [CrossRef]
- Abe, S.; Nagasaka, K.; Hirayama, Y.; Kozuka-Hata, H.; Oyama, M.; Aoyagi, Y.; Obuse, C.; Hirota, T. The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 2011, 25, 863. [Google Scholar] [CrossRef] [Green Version]
- D’Ambrosio, C.; Kelly, G.; Shirahige, K.; Uhlmann, F. Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr. Biol. 2008, 18, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- Kschonsak, M.; Merkel, F.; Bisht, S.; Metz, J.; Rybin, V.; Hassler, M.; Haering, C.H. Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes. Cell 2017, 171, 588. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.K.; Chakraborty, P.; Arnaoutov, A.; Fontoura, B.M.; Dasso, M. The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Nat. Cell Biol. 2010, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.A.; Lovric, S.; Schapiro, D.; Schneider, R.; Marquez, J.; Asif, M.; Hussain, M.S.; Daga, A.; Widneier, E.; Rao, J.; et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J. Clin. Investig. 2018, 128, 4313. [Google Scholar] [CrossRef] [Green Version]
- Cuenca, A.; Insinna, C.; Zhao, H.; John, P.; Weiss, M.A.; Lu, Q.; Walia, V.; Specht, S.; Manivannan, S.; Stauffer, J. The C7orf43/TRAPPC14 component links the TRAPPII complex to Rabin8 for preciliary vesicle tethering at the mother centriole during ciliogenesis. J. Biol. Chem. 2019, 294, 15418. [Google Scholar] [CrossRef] [PubMed]
- Perez, Y.; Bar-Yaacov, R.; Kadir, R.; Wormser, O.; Shelef, I.; Birk, O.S.; Flusser, H.; Birnbaum, R.Y. Mutations in the microtubule-associated protein MAP11 (C7orf43) cause microcephaly in humans and zebrafish. Brain 2019, 142, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruenbaum, Y.; Foisner, R. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 2015, 84, 131. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.Y.; Wang, S.; Heidinger, J.M.; Shumaker, D.K.; Adam, S.A.; Goldman, R.D.; Zheng, Y. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 2006, 311, 1887. [Google Scholar] [CrossRef] [Green Version]
- Cristofoli, F.; Moss, T.; Moore, H.W.; Devriendt, K.; Flanagan-Steet, H.; May, M.; Jones, J.; Roelens, F.; Fons, C.; Fernandez, A.; et al. De novo variants in LMNB1 cause pronounced syndromic microcephaly and disruption of nuclear envelope integrity. Am. J. Hum. Genet. 2020, 107, 753. [Google Scholar] [CrossRef]
- Parry, D.A.; Martin, C.A.; Greene, P.; Marsh, J.A.; Blyth, M.; Cox, H.; Donnelly, D.; Greenhalgh, L.; Greville-Heygate, S.; Genomics England Research Consortium. Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy. Genet. Med. 2021, 23, 408. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Tsai, L.H.; Wynshaw-Boris, A. Life is a journey: A genetic look at neocortical development. Nat. Rev. Genet. 2002, 3, 342. [Google Scholar] [CrossRef]
- Wynshaw-Boris, A. Lissencephaly and LIS1: Insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 2007, 72, 296. [Google Scholar] [CrossRef]
- Asencio, C.; Davidson, I.F.; Santarella-Mellwig, R.; Ly-Hartig, T.B.N.; Mall, M.; Wallenfang, M.R.; Mattaj, I.W.; Gorjánácz, M. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell 2012, 150, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodani, A.; Yu, T.W.; Johnson, J.R.; Jayaraman, D.; Johnson, T.L.; Al-Gazali, L.; Sztriha, L.; Partlow, J.N.; Kim, H.; Krup, A.L.; et al. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. Elife 2015, 4, e07519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, T.I.; Kleylein-Sohn, J.; Westendorf, J.; Le Clech, M.; Lavoie, S.B.; Stierhof, Y.D.; Nigg, E.A. Control of centriole length by CPAP and CP110. Curr. Biol. 2009, 19, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sir, J.H.; Barr, A.R.; Nicholas, A.K.; Carvalho, O.P.; Khurshid, M.; Sossick, A.; Reichelt, S.; D’Santos, C.; Woods, C.G.; Gergely, F. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 2011, 43, 1147. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.S.; Park, J.E.; Shukla, A.; Choi, S.; Murugan, R.N.; Lee, J.H.; Ahn, M.; Rhee, K.; Bang, J.K.; Kim, B.Y.; et al. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl. Acad. Sci. USA 2013, 110, E4849. [Google Scholar] [CrossRef] [Green Version]
- Sonnen, K.F.; Gabryjonczyk, A.M.; Anselm, E.; Nigg, E.A.; Stierhof, Y.D. Human cep192 and cep152 cooperate in plk4 recruitment and centriole duplication. J. Cell Sci. 2013, 126, 3223. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, L.; O’Toole, E.; Schwager, A.; Hyman, A.A.; Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 2006, 444, 619. [Google Scholar] [CrossRef]
- Rogala, K.B.; Dynes, N.J.; Hatzopoulos, G.N.; Yan, J.; Pong, S.K.; Robinson, C.V.; Deane, C.M.; Gönczy, P.; Vakonakis, I. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. Elife 2015, 4, e07410. [Google Scholar] [CrossRef]
- Haren, L.; Stearns, T.; Lüders, J. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 2009, 4, e5976. [Google Scholar] [CrossRef]
- Wueseke, O.; Zwicker, D.; Schwager, A.; Wong, Y.L.; Oegema, K.; Jülicher, F.; Hyman, A.A.; Woodruff, J.B. Polo-like kinase phosphorylation determines Caenorhabditis elegans centrosome size and density by biasing SPD-5 toward an assembly-competent conformation. Biol. Open 2016, 5, 1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamill, D.R.; Severson, A.F.; Carter, J.C.; Bowerman, B. Centrosome maturation and mitotic spindle assembly in, C. elegans require SPD- 5, a protein with multiple coiled-coil domains. Dev. Cell 2002, 3, 673. [Google Scholar] [CrossRef] [Green Version]
- Okumura, M.; Natsume, T.; Kanemaki, M.T.; Kiyomitsu, T. Dynein–dynactin–NuMA clusters generate cortical spindle-pulling forces as a multiarm ensemble. Elife 2018, 7, e36559. [Google Scholar] [CrossRef] [PubMed]
- van der Voet, M.; Berends, C.W.H.; Perreault, A.; Nguyen-Ngoc, T.; Gönczy, P.; Vidal, M.; Boxem, M.; van den Heuvel, S. NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Ga. Nat. Cell Biol. 2009, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Ciossani, G.; Overlack, K.; Petrovic, A.; Huis Int Veld, P.J.; Koerner, C.; Wohlgemuth, S.; Maffini, S.; Musacchio, A. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases. J. Biol. Chem. 2018, 293, 10084–10101. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Desai, A.; Cleveland, D.W. Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J. Cell Biol. 2005, 170, 873–880. [Google Scholar] [CrossRef] [Green Version]
- D’Avino, P.P.; Savoian, M.S.; Glover, D.M. Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J. Cell Biol. 2004, 166, 61. [Google Scholar] [CrossRef]
- Bassi, Z.I.; Audusseau, M.; Riparbelli, M.G.; Callaini, G.; D’Avino, P.P. Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc. Natl. Acad. Sci. USA 2013, 110, 9782. [Google Scholar] [CrossRef] [Green Version]
- Arora, K.; Talje, L.; Asenjo, A.B.; Andersen, P.; Atchia, K.; Joshi, M.; Sosa, H.; Allingham, J.S.; Kwok, B.H. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. J. Mol. Biol. 2014, 426, 2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, D.; Shintomi, K.; Ono, T.; Gavvovidis, I.; Schindler, D.; Neitzel, H.; Trimborn, M.; Hirano, T. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J. Cell Biol. 2011, 194, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerinckx, S.; Jacquemin, V.; Drunat, S.; Vial, Y.; Passemard, S.; Perazzolo, C.; Massart, A.; Soblet, J.; Racapé, J.; Desmyter, L.; et al. Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. Hum. Mutat. 2020, 41, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disorder | OMIM | Chromosomal Location | Gene | Protein | Mode of Inheritance | Subcellular Localization | Cellular Process (es) |
---|---|---|---|---|---|---|---|
MCPH1 | 607117 | 8p23.1 | MCPH1 | Microcephalin 1 (BRCT-repeat inhibitor of hTERT, MCPH1) | Autosomal recessive | Nucleus Centrosome | DNA damage Chromatin condensation Coupling centrosome cycle to mitosis |
MCPH2 | 613583 | 19q13.12 | WDR62 (MCPH2) | WDR62 (WD Repeat-containing protein 62, MCPH2) | Autosomal recessive | Centrosome Spindle poles | Centriole biogenesis Spindle assembly and orientation |
MCPH3 | 608201 | 9q33.2 | CDK5RAP2 (MCPH3) | CDK5RAP2 (CDK5 Regulatory subunit Associated Protein 2, MCPH3) | Autosomal recessive | Pericentriolar material of the centrosome Nucleus | Centriole biogenesis Control of spindle checkpoints Cytokinesis |
MCPH4 | 609173 | 15q15.1 | CASC5 (KNL1, MCPH4) | CASC5 (CAncer Susceptibility Candidate 5, KNL1, kinetochore scaffold 1, MCPH4) | Autosomal recessive | Kinetochore | Attachment of chromatin to the mitotic apparatus Control of spindle checkpoint |
MCPH5 | 605481 | 1q31.3 | ASPM (MCPH5) | ASPM (Abnormal SPindle Microtubule assembly, MCPH5 | Autosomal recessive | Nucleus Centrosome Midbody | Centriole biogenesis Spindle assembly and orientation Cytokinesis |
MCPH6 | 609279 | 13q12.12-q12.13 | CENPJ (SAS-4, CPAP, MCPH6) | CENPJ (CEntromere Protein J, SAS-4, CPAP, MCPH6) | Autosomal recessive | Centrosome | Centriole biogenesis |
MCPH7 | 181590 | 1p33 | STIL (MCPH7) | STIL (SCL/TAL1 Interrupting Locus, MCPH7) | Autosomal recessive | Centrosome | Centriole biogenesis Spindle assembly and positioning |
MCPH8 | 611423 | 4q12 | CEP135 (MCPH8) | CEP135 (CEntrosomal Protein 135, MCPH8) | Autosomal recessive | Centrosome | Centriole biogenesis |
MCPH9 | 613529 | 15q21.1 | CEP152 (MCPH9) | CEP152 (CEntrosomal Protein 152, MCPH9) | Autosomal recessive | Centrosome | Centriole biogenesis |
MCPH10 | 610827 | 20q13.12 | ZNF335 (MCPH10) | CEP152 (CEntrosomal Protein 152, MCPH9) | Autosomal recessive | Nucleus | Transcription Chromatin remodeling |
MCPH11 | 602978 | 12p13.31 | PHC1 (MCPH11) | PHC1 (PolyHomeotiC like 1, MCPH11) | Autosomal recessive | Nucleus | Transcription Chromatin remodeling |
MCPH12 | 603368 | 7q21.2 | CDK6 (MCPH12) | CDK6 (Cyclin Dependent Kinase 6, MCPH12) | Autosomal recessive | Cytosol Nucleus Spindle poles Centrosome | Cell cycle regulation |
MCPH13 | 117143 | 4q24 | CENPE (MCPH13) | CENPE (CENtromere associated Protein E, MCPH13) | Autosomal recessive | Kinetochore | Kinetochore attachment Control of spindle checkpoint |
MCPH14 | 609321 | 1p21.2 | SASS6 (SAS6, MCPH14) | SASS6 (Spindle ASSembly abnormal protein 6 homolog, MCPH14) | Autosomal recessive | Centrosome | Centriole biogenesis |
MCPH15 | 614397 | 1p34.2 | MFSD2A (MCPH15) | MFSD2A (Major Facilitator Superfamily Domain containing 2A, MCPH15) | Autosomal recessive | Plasma membrane | Metabolism |
MCPH16 | 616062 | 12q24.33 | ANKLE2 (LEM4, MCPH16) | ANKLE2 (ANKyrin repeat and LEM domain containing protein 2, MCPH16) | Autosomal recessive | Endoplasmic reticulum Nuclear envelope | Nuclear envelope assembly/disassembly |
MCPH17 | 605629 | 12q24.23 | CIT (MCPH17) | CIT (CITron rho-interacting serine/threonine kinase, MCPH17) | Autosomal recessive | Spindle Midbody | Spindle assembly and orientation Cytokinesis |
MCPH18 | 617485 | 4q21.23 | ALFY (WDFY3, MCPH19) | ALFY (Autophagy-Linked FYVE protein, WDFY3, MCPH18) | Autosomal dominant | Cytoplasm Nucleus | Canonical Wnt pathway |
MCPH19 | 606990 | 3q23 | COPB2 (MCPH19) | COPB2 (COatomer Protein complex, subunit Beta 2, MCPH19) | Autosomal recessive | Non-clathrin vesicles | Vesicle trafficking Apoptosis via the JNK/c-jun pathway |
MCPH20 | 611279 | 1q32.1 | KIF14 (MCPH20) | KIF14 (Kinesin Family member 14, MCPH20) | Autosomal recessive | Spindle poles Spindle mid-zone Midbody | Spindle assembly Cytokinesis |
MCPH21 | 615638 | 12p13.31 | NCAPD2 (CNAP1 MCPH21) | NCAPD2 (Non-SMC condensin I complex Subunit D2, Centrosomal Nek2-Associated Protein 1, MCPH21) | Autosomal recessive | Nucleus Chromatin Chromosomes | Chromatin condensation |
MCPH22 | 609276 | 11q25 | NCAPD3 (MCPH22) | NCAPD3 (Non-SMC condensin II complex subunit D3, MCPH22) | Autosomal recessive | Nucleus Chromatin Chromosomes | Chromatin condensation |
MCPH23 | 602332 | 2q11.2 | NCAPH (MCPH23) | NCAPH (Non-SMC condensin I complex subunit H, MCPH23) | Autosomal recessive | Nucleus Chromatin Chromosomes | Chromatin condensation |
MCPH24 | 609264 | 12q23.2 | NUP37 (MCPH24) | NUP37 (NucleoPorin 37, MCPH24) | Autosomal recessive | Nuclear Pore Kinetochore | Nuclear Pore assembly Spindle assembly |
MCPH25 | 618350 | 7q22.1 | MAP11 (TRAPPC14, C7orf43, MCPH25) | MAP11 (Microtubule Associated Protein 11, TRAPPC14, C7orf43, MCPH25) | Autosomal recessive | Spindle Midbody Golgi | Spindle assembly Cytokinesis Golgi trafficking |
MCPH26 | 150340 | 5q23.2 | LMNB1 | LMNB1 (LaMiN B1, MCPH26) | Autosomal dominant | Nuclear Lamina Spindle | Nuclear envelope assembly Assembly of the mitotic spindle |
MCPH27 | 150341 | 19p13.3 | LMNB2 | LMNB2 (LaMiN B2, MCPH27) | Autosomal dominant | Nuclear Lamina Spindle | Nuclear envelope assembly Assembly of the mitotic spindle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siskos, N.; Stylianopoulou, E.; Skavdis, G.; Grigoriou, M.E. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci. 2021, 11, 581. https://doi.org/10.3390/brainsci11050581
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sciences. 2021; 11(5):581. https://doi.org/10.3390/brainsci11050581
Chicago/Turabian StyleSiskos, Nikistratos, Electra Stylianopoulou, Georgios Skavdis, and Maria E. Grigoriou. 2021. "Molecular Genetics of Microcephaly Primary Hereditary: An Overview" Brain Sciences 11, no. 5: 581. https://doi.org/10.3390/brainsci11050581
APA StyleSiskos, N., Stylianopoulou, E., Skavdis, G., & Grigoriou, M. E. (2021). Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sciences, 11(5), 581. https://doi.org/10.3390/brainsci11050581