3D Printed Models—A Useful Tool in Endovascular Treatment of Intracranial Aneurysms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Acquisition and Postprocessing of CTA Data
2.3. Printing of 3D Models
2.4. Case Analyses
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bederson, J.B.; Connolly, E.S.; Batjer, H.H.; Dacey, R.G.; Dion, J.E.; Diringer, M.N.; Duldner, J.E.; Harbaugh, R.E.; Patel, A.B.; Rosenwasser, R.H. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 2009, 40, 994–1025. [Google Scholar] [CrossRef] [Green Version]
- Molyneux, A.J.; Kerr, R.S.; Yu, L.-M.; Clarke, M.; Sneade, M.; Yarnold, J.A.; Sandercock, P. International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 2005, 366, 809–817. [Google Scholar]
- Papagiannaki, C.; Spelle, L.; Januel, A.-C.; Benaissa, A.; Gauvrit, J.-Y.; Costalat, V.; Desal, H.; Turjman, F.; Velasco, S.; Barreau, X.; et al. WEB intrasaccular flow disruptor-prospective, multicenter experience in 83 patients with 85 aneurysms. AJNR Am. J. Neuroradiol. 2014, 35, 2106–2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinjikji, W.; Murad, M.H.; Lanzino, G.; Cloft, H.J.; Kallmes, D.F. Endovascular treatment of intracranial aneurysms with flow diverters: A meta-analysis. Stroke 2013, 44, 442–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciuc, E.A.; Popescu, R.M.; Marciuc, D.; Chiriac, A.; Dobrovat, B.I.; Haba, D. Postprocessed computed tomography angiography images—An underused modality of better understanding aneurysms. Med. Surg. J. 2020, 124, 412–418. [Google Scholar]
- Fernandes de Oliveira-Santos, B.; Silva da Costa, M.D.; Centeno, R.S.; Cavalheiro, S.; Antônio de Paiva-Neto, M.; Lawton, M.T.; Chaddad-Neto, F. Clinical Application of an Open-Source 3D Volume Rendering Software to Neurosurgical Approaches. World Neurosurg. 2018, 110, e864–e872. [Google Scholar] [CrossRef]
- 3D Slicer Image Computing Platform| D Slicer. Available online: https://www.slicer.org (accessed on 10 July 2020).
- Zortrax Software—Slicing Software for 3D Printers|Zortrax. Available online: https://zortrax.com/software/ (accessed on 10 July 2020).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- D’Urso, P.S.; Earwaker, W.J.; Barker, T.M.; Redmond, M.J.; Thompson, R.G.; Effeney, D.J.; Tomlinson, F.H. Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 2000, 53, 200–204. [Google Scholar] [CrossRef]
- Salmi, M.; Paloheimo, K.S.; Tuomi, J.; Wolff, J.; Mäkitie, A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Craniomaxillofac. Surg. 2013, 41, 603–609. [Google Scholar] [CrossRef]
- Wurm, G.; Tomancok, B.; Pogady, P.; Holl, K.; Trenkler, J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery: Technical note. J. Neurosurg. 2004, 100, 139–145. [Google Scholar] [CrossRef]
- Chivukula, V.K.; Levitt, M.R.; Clark, A.; Barbour, M.C.; Sansom, K.; Johnson, L.; Kelly, C.M.; Geindreau, C.; Rolland du Roscoat, S.; Kim, L.J.; et al. Reconstructing patient-specific cerebral aneurysm vasculature for in vitro investigations and treatment efficacy assessments. J. Clin. Neurosci. 2019, 61, 153–159. [Google Scholar] [CrossRef]
- Faraj, M.K.; Hoz, S.S.; Mohammad, A.J. The use of three-dimensional anatomical patient-specific printed models in surgical clipping of intracranial aneurysm: A pilot study. Surg. Neurol. Int. 2020, 11, 381. [Google Scholar] [CrossRef]
- Scerrati, A.; Trovalusci, F.; Albanese, A.; Ponticelli, G.S.; Tagliaferri, V.; Sturiale, C.L.; Cavallo, M.A.; Marchese, E. A workflow to generate physical 3D models of cerebral aneurysms applying open source freeware for CAD modeling and 3D printing. Interdiscip. Neurosurg. 2019, 17, 1–6. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, L.-H.; Xu, T.; Zheng, S.-F.; Yao, P.-S.; Liu, M.; Lin, Y.-X.; Lin, Z.-Y.; Fan, X.-M.; Kang, D.-Z. Three-dimensional printing technology for treatment of intracranial aneurysm. Chin. Neurosurg. J. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ye, X.; Hao, Q.; Ma, L.; Chen, X.; Wang, H.; Zhao, Y. Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J. Clin. Neurosci. 2018, 50, 77–82. [Google Scholar] [CrossRef]
- Akmal, J.S.; Salmi, M.; Hemming, B.; Teir, L.; Suomalainen, A.; Kortesniemi, M.; Partanen, J.; Lassila, A. Cumulative Inaccuracies in Implementation of Additive Manufacturing Through Medical Imaging, 3D Thresholding, and 3D Modeling: A Case Study for an End-Use Implant. Appl. Sci. 2020, 10, 2968. [Google Scholar] [CrossRef]
- Huotilainen, E.; Jaanimets, R.; Valášek, J.; Marcián, P.; Salmi, M.; Tuomi, J.; Mäkitie, A.; Wolff, J. Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process. J. Craniomaxillofac. Surg. 2014, 42, e259–e265. [Google Scholar] [CrossRef]
- Ravi, T.; Ranganathan, R.; Pugalendhi, A.; Arumugam, S. 3D Printed Patient Specific Models from Medical Imaging—A General Workflow. Mater. Today Proc. 2020, 22, 1237–1243. [Google Scholar] [CrossRef]
- Błaszczyk, M.; Jabbar, R.; Szmyd, B.; Radek, M. 3D Printing of Rapid, Low-Cost and Patient-Specific Models of Brain Vasculature for Use in Preoperative Planning in Clipping of Intracranial Aneurysms. J. Clin. Med. 2021, 10, 1201. [Google Scholar] [CrossRef]
- Anderson, J.R.; Thompson, W.L.; Alkattan, A.K.; Diaz, O.; Klucznik, R.; Zhang, Y.J.; Britz, G.W.; Grossman, R.G.; Karmonik, C. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J. Neurointerv. Surg. 2016, 8, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Ionita, C.N.; Mokin, M.; Varble, N.; Bednarek, D.R.; Xiang, J.; Snyder, K.V.; Siddiqui, A.H.; Levy, E.I.; Meng, H.; Rudin, S. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9038, 90380M. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstock, P.; Prabhu, S.P.; Flynn, K.; Orbach, D.B.; Smith, E. Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J. Neurosurg. Pediatr. 2015, 16, 584–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabzadeh-Oghaz, H.; Varble, N.; Shallwani, H.; Tutino, V.M.; Mowla, A.; Shakir, H.J.; Vakharia, K.; Atwal, G.S.; Siddiqui, A.H.; Davies, J.M.; et al. Computer-Assisted Three-Dimensional Morphology Evaluation of Intracranial Aneurysms. World Neurosurg. 2018, 119, e541–e550. [Google Scholar] [CrossRef] [PubMed]
- Javan, R.; Herrin, D.; Tangestanipoor, A. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis. Acad. Radiol. 2016, 23, 1183–1189. [Google Scholar] [CrossRef]
- Govsa, F.; Yagdi, T.; Ozer, M.A.; Eraslan, C.; Alagoz, A.K. Building 3D anatomical model of coiling of the internal carotid artery derived from CT angiographic data. Eur. Arch. Otorhinolaryngol. 2017, 274, 1097–1102. [Google Scholar] [CrossRef]
- Hoffman, A. In House Enhanced 3D Printing of Complex AAA for EVAR Treatment Planning and Preoperative Simulation. J. Cardiovasc. Dis. Diagn. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Tam, M.D.; Latham, T.R.; Lewis, M.; Khanna, K.; Zaman, A.; Parker, M.; Grunwald, I.Q. A Pilot Study Assessing the Impact of 3-D Printed Models of Aortic Aneurysms on Management Decisions in EVAR Planning. Vasc. Endovascular. Surg. 2016, 50, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, W.J.; Sprengers, M.E.; de Gast, A.N.; Peluso, J.P.; Sluzewski, M. 3D Rotational Angiography: The New Gold Standard in the Detection of Additional Intracranial Aneurysms. AJNR. Am. J. Neuroradiol. 2008, 29, 976–979. [Google Scholar] [CrossRef] [Green Version]
- Torres, I.; De Luccia, N. Artificial vascular models for endovascular training (3D printing). Innov. Surg. Sci. 2018, 3, 225–234. [Google Scholar] [CrossRef]
MD2 | MD3 | |
---|---|---|
MD1 | 0.703 | 0.640 |
MD2 | - | 0.486 |
MD2 | MD3 | |
---|---|---|
MD1 | 0.852 | 0.700 |
MD2 | - | 0.724 |
Aneurysm Location | MD1—Decision Changes | MD2—Decision Changes | MD3—Decision Changes | |
---|---|---|---|---|
MCA | 22 | 2 | 4 | 5 |
AcoA | 20 | 1 | 3 | 4 |
ICA | 18 | 4 | 2 | 3 |
Other | 16 | 2 | 1 | 4 |
Total decision changes | 9 | 10 | 16 | |
11.84% | 13.15% | 21.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciuc, E.A.; Dobrovat, B.I.; Popescu, R.M.; Dobrin, N.; Chiriac, A.; Marciuc, D.; Eva, L.; Haba, D. 3D Printed Models—A Useful Tool in Endovascular Treatment of Intracranial Aneurysms. Brain Sci. 2021, 11, 598. https://doi.org/10.3390/brainsci11050598
Marciuc EA, Dobrovat BI, Popescu RM, Dobrin N, Chiriac A, Marciuc D, Eva L, Haba D. 3D Printed Models—A Useful Tool in Endovascular Treatment of Intracranial Aneurysms. Brain Sciences. 2021; 11(5):598. https://doi.org/10.3390/brainsci11050598
Chicago/Turabian StyleMarciuc, Emilia Adriana, Bogdan Ionut Dobrovat, Roxana Mihaela Popescu, Nicolaie Dobrin, Alexandru Chiriac, Daniel Marciuc, Lucian Eva, and Danisia Haba. 2021. "3D Printed Models—A Useful Tool in Endovascular Treatment of Intracranial Aneurysms" Brain Sciences 11, no. 5: 598. https://doi.org/10.3390/brainsci11050598
APA StyleMarciuc, E. A., Dobrovat, B. I., Popescu, R. M., Dobrin, N., Chiriac, A., Marciuc, D., Eva, L., & Haba, D. (2021). 3D Printed Models—A Useful Tool in Endovascular Treatment of Intracranial Aneurysms. Brain Sciences, 11(5), 598. https://doi.org/10.3390/brainsci11050598