Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System
Abstract
:1. Introduction
2. B. burgdorferi ss Transmission Cycle and the Importance of Outer-Surface Proteins
3. Gene Specificity Allows for B. burgdorferi ss Infectivity of Brain Cells
4. Mechanisms of B. burgdorferi ss Entrance into the Nervous System
5. Informative Post-Treatment Lyme Disease Genes and Antibiotic-Resistant LNB
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Van den Wijngaard, C.C.; Hofhuis, A.; Simões, M.; Rood, E.; Van Pelt, W.; Zeller, H.; Van Bortel, B. Surveillance perspective on Lyme borreliosis across the European Union and European economic area. Eurosurveillance 2017, 22, 30569. [Google Scholar] [CrossRef] [PubMed]
- Cairns, V.; Wallenhorst, C.; Rietbrock, S.; Martinez, C. Incidence of Lyme disease in the UK: A population-based cohort study. BMJ Open 2019, 9, e025916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M. Estimating the frequency of Lyme disease diagnoses—United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A. Use of commercial claims data for evaluating trends in Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Radolf, J.D.; Caimano, M.J.; Stevenson, B.; Hu, L.T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012, 10, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD). Available online: www.cdc.gov (accessed on 28 May 2021).
- Smith, R.P.; Schoen, R.T.; Rahn, D.W.; Sikand, V.K.; Nowakowski, J.; Parenti, D.L.; Holman, M.S.; Persing, D.H. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann. Intern. Med. 2002, 136, 421–428. [Google Scholar] [CrossRef]
- Hengge, U.R.; Tannapfel, A.; Tyring, S.K.; Erbel, R.; Arendt, G.; Ruzicka, T. Lyme borreliosis. Lancet Infect. Dis. 2003, 3, 489–500. [Google Scholar] [CrossRef]
- Wormser, G.P. Early Lyme disease. N. Engl. J. Med. 2006, 354, 2794–2801. [Google Scholar] [CrossRef]
- Steere, A.C.; Strle, F.; Wormser, G.P.; Hu, L.T.; Branda, J.A.; Hovius, J.W.; Li, X.; Mead, P.S. Lyme borreliosis. Nat. Rev. Dis. Primers 2016, 2, 1–19. [Google Scholar] [CrossRef]
- Logigian, E.L.; Kaplan, R.F.; Steere, A.C. Chronic neurologic manifestations of Lyme disease. N. Engl. J. Med. 1990, 323, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Stanek, G.; Wormser, G.P.; Gray, J.; Strle, F. Lyme borreliosis. Lancet 2012, 379, 461–473. [Google Scholar] [CrossRef]
- Cardenas-de la Garza, J.A.; De la Cruz-Valadez, E.; Ocampo-Candiani, J.; Welsh, O. Clinical spectrum of Lyme disease. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 201–208. [Google Scholar] [CrossRef]
- Radolf, J.D.; Strle, K.; Lemieux, J.E.; Strle, F. Lyme Disease in Humans. Curr. Issues Mol. Biol. 2021, 42, 333–384. [Google Scholar]
- Garin, C.; Bujadoux, A. Paralysis by Ticks. Clin. Infect. Dis. 1993, 16, 168–169. [Google Scholar] [CrossRef] [Green Version]
- Pachner, A.R.; Steere, A.C. The triad of neurologic manifestations of Lyme disease: Meningitis, cranial neuritis, and radiculoneuritis. Neurology 1984, 35, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Knudtzen, F.C.; Andersen, N.S.; Jensen, T.G.; Skarphedinsson, S. Characteristics and clinical outcome of Lyme Neuroborreliosis in a high endemic area, 1995-2014: A retrospective cohort study in Denmark. Clin. Infect. Dis. 2017, 65, 1489–1495. [Google Scholar] [CrossRef]
- Halperin, J.J.; Shapiro, E.D.; Logigian, E.; Belman, A.L.; Dotevall, L.; Wormser, G.P.; Krupp, L.; Gronseth, G.; Bever, C.T. Practice parameter: Treatment of nervous system Lyme disease (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2007, 69, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristoferitsch, W. Neurological manifestations of Lyme borreliosis. Infection 1991, 19, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Kruger, H.; Reuss, K.; Pulz, M.; Rohrbach, E.; Pflughaupt, K.W.; Martin, R.; Mertens, H.G. Meningoradiculitis and encephalomyelitis due to Borrelia burgdorferi: A follow-up study of 72 patients over 27 years. J. Neurol. 1989, 236, 322–328. [Google Scholar] [CrossRef]
- Van Dam, A.P.; Kuiper, H.; Vos, K.; Widjojokusumo, A.; De Jongh, B.M.; Spanjaard, L.; Ramselaar, A.C.; Kramer, M.D.; Dankert, J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 1993, 17, 708–717. [Google Scholar] [CrossRef]
- Wilske, B. Epidemiology and diagnosis of Lyme borreliosis. Ann. Med. 2005, 37, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Brisson, D.; Drecktrah, D.; Eggers, C.H.; Samuels, D.S. Genetics of Borrelia burgdorferi. Ann. Rev. Genet. 2012, 46, 515–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerar, T.; Strle, F.; Stupica, D.; Ruzic-Sabljic, E.; McHugh, G.; Steere, A.C.; Strle, K. Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg. Infect. Dis. 2016, 22, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reik, L.; Steere, A.C.; Bartenhagen, N.H.; Shope, R.E.; Malawista, S.E. Neurologic abnormalities of Lyme disease. Medicine 1979, 58, 281–294. [Google Scholar] [CrossRef]
- Koedel, U.; Fingerle, V.; Pfister, H.W. Lyme neuroborreliosis—Epidemiology, diagnosis and management. Nat. Rev. Neurol. 2015, 11, 446–456. [Google Scholar] [CrossRef]
- DeLong, A.; Hsu, M.; Kotsoris, H. Estimation of cumulative number of post-treatment Lyme disease cases in the US, 2016 and 2020. BMC Public Health 2019, 19, 352. [Google Scholar] [CrossRef]
- Shah, A.; O’Horo, J.C.; Wilson, J.W.; Granger, D.; Theel, E.S. An unusual cluster of neuroinvasive Lyme disease cases presenting with Bannwarth Syndrome in the Midwest United States. Open Forum Infect. Dis. 2017, 5, ofx276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddens, T.; Kaplan, D.J.; Anderson, A.J.; Nowalk, A.J.; Campfield, B.T. Insights from the geographic spread of the Lyme Disease epidemic. Clin. Infect. Dis. 2019, 68, 426–434. [Google Scholar] [CrossRef]
- Morrissette, M.; Pitt, N.; Gonzalez, A.; Strandwitz, P.; Caboni, M.; Rebman, A.W.; Knight, R.; D’Onofrio, A.; Aucott, J.N.; Soloski, M.J.; et al. A distinct microbiome signature in posttreatment Lyme disease patients. MBio 2020, 11, e02310-20. [Google Scholar] [CrossRef]
- Kan, L.; Sood, S.K.; Maytal, J. Pseudotumore cerebri in Lyme disease: A case report and literature review. Pediatr. Neurol. 1998, 18, 439–441. [Google Scholar] [CrossRef]
- Steenhoff, A.P.; Smith, M.J.; Shah, S.S.; Coffin, S.E. Neuroborreliosis with progression from pseudotumore cerebri to aseptic meningitis. Pediatr. Infect. Dis. 2006, 25, 91–92. [Google Scholar] [CrossRef]
- Moses, J.M.; Riseberg, R.S.; Mansbach, J.M. Lyme disease presenting with persistent headache. Pediatrics 2003, 112, e466–e479. [Google Scholar] [CrossRef]
- Ewers, E.C.; Dennison, D.H.; Stagliano, D.R. A unique case of adolescent neuroborreliosis presenting with multiple cranial neuritis and cochlear inflammation on magnetic resonance imaging. Pediatr. Neurol. 2015, 52, 107–109. [Google Scholar] [CrossRef]
- Walker, A.R.; Morales-Yurick, T. A noteworthy case report of neuroborreliosis in an unvaccinated pediatric patient. Clin. Pract. Cases Emerg. Med. 2020, 4, 671–674. [Google Scholar] [CrossRef]
- Ramgopal, S.; Obeid, R.; Zuccoli, G.; Cleves-Bayon, C.; Nowalk, A. Lyme disease-related intracranial hypertension in children: Clinical and imaging findings. J. Neurol. 2016, 263, 500–507. [Google Scholar] [CrossRef]
- Bransfield, R.C.; Aidlen, D.M.; Cook, M.J.; Javia, S. A clinical diagnostic system for late-stage neuropsychiatric Lyme Borreliosis based upon an analysis of 100 patients. Healthcare 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Halperin, J.J. Chronic Lyme disease: Misconceptions and challenges for patient management. Infect. Drug. Resist. 2015, 8, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Monco, J.C.; Benach, J.L. Lyme Neuroborreliosis: Clinical outcomes, controversy, pathogenesis, and polymicrobial infections. Ann. Neurol. 2019, 85, 21–31. [Google Scholar] [CrossRef]
- Henriksson, A.; Link, H.; Cruz, M.; Stiernstedt, G. Immunoglobulin abnormalities in cerebrospinal fluid and blood over the course of lymphocytic meningoradiculitis (Bannwarth’s syndrome). Ann. Neurol. 1986, 20, 337–345. [Google Scholar] [CrossRef]
- Kalish, R.A.; McHugh, G.; Granquist, J.; Shea, B.; Ruthazer, R.; Steere, A.C. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis. 2001, 33, 780–785. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.A.; Taber, K.H. Acute and chronic Lyme disease: Controversies for neuropsychiatry. J. Neuropsychiatry Clin. Neurosci. 2008, 20, iv-6. [Google Scholar] [CrossRef]
- Newberg, A.; Hassan, A.; Alavi, A. Cerebral metabolic changes associated with Lyme disease. Nucl. Med. Commun. 2002, 23, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Paparone, P.W. Neuropsychiatric manifestations of Lyme disease. J. Am. Osteopath. Assoc. 1998, 98, 373–378. [Google Scholar] [PubMed]
- Krupp, L.B.; Hyman, L.G.; Grimson, R.; Coyle, P.K.; Melville, P.; Ahnn, S.; Dattwyler, R.; Chandler, B. Study and treatment of post Lyme disease (STOP-LD): A randomized double masked clinical trial. Neurology 2003, 60, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Klempner, M.S.; Baker, P.J.; Shapiro, E.D.; Marques, A.; Dattwyler, R.J.; Halperin, J.J.; Wormser, G.P. Treatment trials for post-Lyme Disease symptoms revisited. Am. J. Med. 2014, 126, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Ljostad, U.; Mygland, A. Remaining complaints 1 year after treatment for acute Lyme neuroborreliosis; frequency, pattern and risk factors. Eur. J. Neurol. 2010, 17, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Brown, A.V.; Matluck, N.E.; Hu, L.T.; Lewis, K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob. Agents Chem. 2015, 59, 4616–4624. [Google Scholar] [CrossRef] [Green Version]
- Ogrinc, K.; Lusa, L.; Lotric-Furlan, S.; Bogovic, P.; Stupica, D.; Cerar, T.; Ruzic-Sabljic, E.; Strle, F. Course and outcome of early European Lyme neuroborreliosis (Bannwarth syndrome): Clinical and laboratory findings. Rev. Infect. Dis. 2016, 63, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Eikeland, R.; Ljostad, U.; Helgeland, G.; Sand, G.; Flemmen, H.O.; Bo, M.H.; Nordaa, L.; Owe, J.F.; Mygland, A.; Lorentzen, A.R. Patient-reported outcome after treatment for definite Lyme neuroborreliosis. Brain Behav. 2020, 10, e01595. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, C.L.; Bodilsen, J.; Knudtzen, F.C.; Storgaard, M.; Brandt, C.; Wiese, L.; Hansen, B.R.; Andersen, A.B.; Nielsen, H.; Lebech, A.-M.; et al. Lyme neuroborreliosis in adults: A nationwide prospective cohort study. Ticks Tick Borne Dis 2020, 11, 101411. [Google Scholar] [CrossRef]
- Liang, F.T.; Yan, J.; Mbow, M.L.; Sviat, S.L.; Gilmore, R.D.; Mamula, M.; Fikrig, E. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect. Immun. 2004, 72, 5759–5767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtenbach, K.; Hanincova, K.; Tsao, J.I.; Margos, G.; Fish, D.; Ogden, N.H. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 2006, 4, 660–669. [Google Scholar] [CrossRef]
- Mather, T.N.; Wilson, M.L.; Moore, S.I.; Ribeiro, J.M.C.; Spielman, A. Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). Am. J. Epidemiol. 1989, 130, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Telford, S.R., III; Mather, T.N.; Adler, G.H.; Spielman, A. Short-tailed shrews as reservoirs of the agents of Lyme disease and human babesiosis. J. Parasitol. 1990, 76, 681–683. [Google Scholar] [PubMed]
- Levin, M.; Levine, J.F.; Apperson, C.S.; Norris, D.E.; Howard, P.B. Reservoir competence of the rice rat (Rodentia: Cricetidae) for Borrelia burgdorferi. J. Med. Entomol. 1995, 32, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R. Reservoir competence of the meadow vole (Rodentia: Cricetidae) for the Lyme disease spirochete Borrelia burgdorferi. J. Med. Entomol. 1998, 35, 804–808. [Google Scholar] [CrossRef]
- Richter, D.; Spielman, A.; Komar, N.; Matuschka, F.R. Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg. Infect. Dis. 2000, 6, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Brisson, D.; Dykhuizen, D.E. ospC diversity in Borrelia burgdorferi: Different hosts are different niches. Genetics 2004, 168, 713–722. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, S.; Buckley, F.G. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 2005, 42, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, R.S.; Mun, J.; Eisen, R.J.; Eisen, L. Western gray squirrel (Rodentia: Sciuridae): A primary reservoir host of Borrelia burgdorferi in Californian oak woodlands? J. Med. Entomol. 2005, 42, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Hamer, S.A.; Hickling, G.J.; Sidge, J.L.; Rosen, M.E.; Walker, E.D.; Tsao, J.I. Diverse Borrelia burgdorferi strains in a bird-tick cryptic cycle. Appl. Environ. Microbiol. 2011, 77, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Hersh, M.H.; Ostfeld, R.S.; McHenry, D.J.; Tibbetts, M.; Brunner, J.L.; Killilea, M.E.; LoGiudice, K.; Schmidt, K.A.; Keesing, F. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PLoS ONE 2014, 9, e99348. [Google Scholar] [CrossRef]
- Vuong, H.B.; Canham, C.D.; Fonseca, D.M.; Brisson, D.; Morin, P.J.; Smouse, P.E.; Ostfeld, R.S. Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife. Infect. Genet. Evol. 2014, 27, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufts, D.M.; Hart, T.M.; Chen, G.F.; Kolokotronis, S.-O.; Diuk-Wasser, M.A.; Lin, Y.-P. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Mol. Microbiol. 2019, 111, 868–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tracy, K.E.; Baumgarth, N. Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front. Immunol. 2017, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Piesman, J. Dynamics of Borrelia burgdorferi transmission by nymphal Ixodes dammini ticks. J. Infect. Dis. 1993, 167, 1082–1085. [Google Scholar] [CrossRef]
- Peavey, C.A.; Lane, R.S. Transmission of Borrelia burgdorferi by Ixodes pacificus nymphs and reservoir competence of deer mice (Peromyscus maniculatus) infected by tick-bite. J. Parasitol. 1995, 81, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Crippa, M.; Rais, O.; Gern, L. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoonot. Dis. 2002, 2, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.F.; Pal, U.; Alani, S.M.; Fikrig, E.; Norgard, M.V. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J. Exp. Med. 2004, 199, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Neelakanta, G.; Li, X.; Pal, U.; Liu, X.; Beck, D.S.; DePonte, K.; Fish, D.; Kantor, F.S.; Fikrig, E. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog. 2007, 3, e33. [Google Scholar] [CrossRef]
- Pal, U.; Li, X.; Wang, T.; Montgomery, R.R.; Ramamoorthi, N.; DeSilva, A.M.; Bao, F.; Yang, X.; Pypaert, M.; Pradhan, D.; et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004, 119, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Caimano, M.J.; Drecktrah, D.; Kung, F.; Samuels, D.S. Interaction of the Lyme disease spirochete with its tick vector. Cell. Microbiol. 2016, 18, 919–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, J.A. Borrelia burgdorferi keeps moving and carries on: A review of Borrelial dissemination and invasion. Front. Immunol. 2017, 8, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubner, A.; Yang, X.; Nolen, D.M.; Popova, T.G.; Cabello, F.C.; Norgard, M.V. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. Proc. Natl. Acad. Sci. USA 2001, 98, 12724–12729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.Y.; De Silva, A.M. Reciprocal expression of ospA and ospC in single cells of Borrelia burgdorferi. J. Bacteriol. 2008, 190, 3429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, S.E.; Yang, Y.; Troxell, B.; Yang, X.; Pal, U.; Yang, X.F. Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis. Emerg. Microbes Infect. 2015, 4, e54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, F.T.; Jacobs, M.B.; Bowers, L.C.; Philipp, M.T. An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J. Exp. Med. 2002, 195, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D.; Eggers, C.H.; Caimano, M.J.; Tilly, K.; Stewart, P.E.; Elias, A.F.; Radolf, J.D.; Rosa, P. A Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect. Immun. 2004, 72, 5938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, U.; Yang, X.; Chen, M.; Bockenstedt, L.K.; Anderson, J.F.; Flavell, R.A.; Norgard, M.V.; Fikrig, E. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 2004, 113, 220–230. [Google Scholar] [CrossRef]
- Tilly, K.; Krum, J.G.; Bestor, A.; Jewett, M.W.; Grimm, D.; Bueschel, D.; Byram, R.; Dorward, D.; VanRaden, M.J.; Stewart, P.; et al. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect. Immun. 2006, 74, 3554–3564. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; McShan, K.; Liang, F.T. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol. Microbiol. 2008, 69, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, R.D.; Kappel, K.J.; Dolan, M.C.; Burkot, T.R.; Johnson, B.J. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: Evidence for a conformational protective epitope in OspC. Infect. Immun. 1996, 64, 2234–2239. [Google Scholar] [CrossRef] [Green Version]
- Zeidner, N.S.; Schneider, B.S.; Nuncio, M.S.; Gern, L.; Piesman, J. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species–specific. J. Parasitol. 2002, 88, 1276–1278. [Google Scholar] [PubMed]
- Anguita, J.; Hedrick, M.N.; Fikrig, E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol. Rev. 2003, 27, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Schuijt, T.J.; Hovius, J.W.; Van Burgel, N.D.; Ramamoorthi, N.; Fikrig, E.; Van Dam, A.P. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect. Immun. 2008, 76, 2888–2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Booth, C.J.; Paley, M.A.; Wang, X.; DePonte, K.; Fikrig, E.; Narasimhan, S.; Montgomery, R.R. Inhibition of neutrophil function by two tick salivary proteins. Infect. Immun. 2009, 77, 2320–2329. [Google Scholar] [CrossRef] [Green Version]
- Mason, L.M.; Veerman, C.C.; Geijtenbeek, T.B.; Hovius, J.W. Menage a trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol. 2014, 30, 95–103. [Google Scholar] [CrossRef]
- Seinost, G.; Dykhuizen, D.E.; Dattwyler, R.J.; Golde, W.T.; Dunn, J.J.; Wang, I.N.; Wormser, G.P.; Schriefer, M.E.; Luft, B.J. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 1999, 67, 3518–3524. [Google Scholar] [CrossRef] [Green Version]
- Wormser, G.P.; Brisson, D.; Liveris, D.; Hanincova, K.; Sandigursky, S.; Nowakowski, J.; Nadelman, R.B.; Ludin, S.; Schwartz, I. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J. Infect. Dis. 2008, 198, 1358–1364. [Google Scholar] [CrossRef] [Green Version]
- Barbour, A.G.; Bunikis, J.; Travinsky, B.; Hoen, A.G.; Diuk-Wasser, M.A.; Fish, D.; Tsao, J.I. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am. J. Trop. Med. Hyg. 2009, 81, 1120–1131. [Google Scholar] [CrossRef] [Green Version]
- Mechai, S.; Margos, G.; Feil, E.J.; Barairo, N.; Lindsay, L.R.; Michel, P.; Ogden, N.H. Evidence for host-genotype associations of Borrelia burgdorferi sensu stricto. PLoS ONE 2016, 11, e0149345. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ojaimi, C.; Wu, H.; Saksenberg, V.; Iyer, R.; Liveris, D.; McClain, S.A.; Wormser, G.P.; Schwartz, I. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J. Infect. Dis. 2002, 186, 782–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earnhart, C.G.; Buckles, E.L.; Dumler, J.S.; Marconi, R.T. Demonstration of OspC type diversity in invasive human Lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect. Immun. 2005, 73, 7869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisson, D.; Dykhuizen, D.E. A modest model explains the distribution and abundance of Borrelia burgdorferi strains. Am. J. Trop. Med. Hyg. 2006, 74, 615–622. [Google Scholar] [CrossRef]
- Dykhuizen, D.E.; Brisson, D.; Sandigursky, S.; Wormser, G.P.; Nowakowski, J.; Nadelman, R.B.; Schwartz, I. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am. J. Trop. Med. Hyg. 2008, 78, 806–810. [Google Scholar] [CrossRef]
- Brisson, D.; Baxamusa, N.; Schwartz, I.; Wormser, G.P. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS ONE 2011, 6, e22926. [Google Scholar] [CrossRef] [Green Version]
- Hanincova, K.; Mukherjee, P.; Ogden, N.H.; Margos, G.; Wormser, G.P.; Reed, K.D.; Meece, J.K.; Vandermause, M.F.; Schwartz, I. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS ONE 2013, 8, e73066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coipan, E.C.; Jahfari, S.; Fonville, M.; Oei, G.A.; Spanjaard, L.; Takumi, K.; Hovius, J.W.R.; Sprong, H. Imbalanced presence of Borrelia burgdorferi sl multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect. Genet. Evol. 2016, 42, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Liveris, D.; Wormser, G.P.; Nowakowski, J.; Nadelman, R.; Bittker, S.; Cooper, D.; Varde, S.; Moy, F.H.; Forseter, G.; Pavia, C.S.; et al. Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 1996, 34, 1306. [Google Scholar] [CrossRef] [Green Version]
- Peavey, C.A.; Lane, R.S. Comparison of infectivities of six tick-derived isolates of Borrelia burgdorferi for rodents and ticks. J. Clin. Microbiol. 1996, 34, 71. [Google Scholar] [CrossRef] [Green Version]
- Baranton, G.; Seinost, G.; Theodore, G.; Postic, D.; Dykhuizen, D. Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res. Microbiol. 2001, 152, 149–156. [Google Scholar] [CrossRef]
- Thomas, V.; Anguita, J.; Barthold, S.W.; Fikrig, E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect. Immun. 2001, 69, 3359. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.; Yang, Y.; Du, J.; Lin, T.; Chen, T.; Yang, X.F.; Lou, Y. Investigation of ospC expression variation among Borrelia burgdorferi strains. Front. Cell. Infect. Microbiol. 2017, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Bunikis, J.; Garpmo, U.; Tsao, J.; Berglund, J.; Fish, D.; Barbour, A.G. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 2004, 150, 1741–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travinsky, B.; Bunikis, J.; Barbour, A.G. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg. Infect. Dis. 2010, 16, 1147–1150. [Google Scholar] [CrossRef]
- Ogden, N.H.; Margos, G.; Aanensen, D.M.; Drebot, M.A.; Feil, E.J.; Hanincova, K.; Schwartz, I.; Tyler, S.; Lindsay, L.R. Investigation of genotypes of Borrelia burgdorferi in Ixodes scapularis ticks collected during surveillance in Canada. Appl. Environ. Microbiol. 2011, 77, 3244. [Google Scholar] [CrossRef] [Green Version]
- States, S.L.; Brinkerhoff, R.J.; Carpi, G.; Steeves, T.K.; Folsom-O’Keefe, C.; DeVeaux, M.; Diuk-Wasser, M.A. Lyme disease risk not amplified in a species-poor vertebrate community: Similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies. Infect. Genet. Evol. 2014, 27, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Di, L.; Wan, Z.; Akther, S.; Ying, C.; Larracuente, A.; Li, L.; Di, C.; Nunez, R.; Cucura, D.M.; Goddard, N.L.; et al. Genotyping and quantifying Lyme pathogen strains by deep sequencing of the outer surface protein C (ospC) locus. J. Clin. Microbiol. 2018, 56, e00940-18. [Google Scholar] [CrossRef] [Green Version]
- Rynkiewicz, E.C.; Brown, J.; Tufts, D.M.; Huang, C.I.; Kampen, H.; Bent, S.J.; Fish, D.; Diuk-Wassler, M.A. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasites Vectors 2017, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- States, S.L.; Huang, C.I.; Davis, S.; Tufts, D.M.; Diuk-Wasser, M.A. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent. Epidemics 2017, 19, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Adelson, M.E.; Rao, R.V.S.; Tilton, R.C.; Cabets, K.; Eskow, E.; Fein, L.; Occi, J.L.; Mordechai, E. Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey. J. Clin. Microbiol. 2004, 42, 2799–2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, T.L.; Graham, C.B.; Maes, S.E.; Hojgaard, A.; Fleshman, A.; Boegler, K.A.; Delory, M.J.; Slater, K.S.; Karpathy, S.E.; Bjork, J.K.; et al. Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks Tick Borne Dis. 2018, 9, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Bhanot, P. Babesia microti-Borrelia burgdorferi coinfection. Pathogens 2019, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Little, E.A.H.; Molaei, G. Passive tick surveillance: Exploring spatiotemporal associations of Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum infection in Ixodes scapularis. Vector Borne Zoonot. Dis. 2020, 20, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Lehane, A.; Maes, S.E.; Graham, C.B.; Jones, E.; Delorey, M.; Eisen, R.J. Prevalence of single and coinfections of human pathogens in Ixodes ticks from five geographical regions in the United States, 2013–2019. Ticks Tick Borne Dis. 2021, 12, 101637. [Google Scholar] [CrossRef]
- Lin, Y.P.; Tufts, D.M.; Dupuis, A.P.; Combs, M.; Marcinkiewicz, A.L.; Hirsbrunner, A.D.; Diaz, A.J.; Stout, J.L.; Blom, A.M.; Strle, K.; et al. Host specialization in microparasites transmitted by generalist vectors: Insights into the cellular and immunological mechanisms. bioRxiv 2020. [Google Scholar] [CrossRef]
- Seifert, S.N.; Khatchikian, C.E.; Zhou, W.; Brisson, B. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi. Trends Genet. 2016, 31, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathigra, R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K.; et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997, 390, 580–586. [Google Scholar] [CrossRef]
- Casjens, S. Borrelia genomes in the year 2000. J. Molec. Microbiol. Biotechnol. 2000, 2, 401–410. [Google Scholar]
- Casjens, S.R.; Fraser-Liggett, C.M.; Mongodin, E.F.; Qiu, W.G.; Dunn, J.J.; Luft, B.J.; Schutzer, S.E. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J. Bacteriol. 2011, 193, 1489–1490. [Google Scholar] [CrossRef] [Green Version]
- Schutzer, S.E.; Fraser-Liggett, C.M.; Casjens, S.R.; Qiu, W.G.; Dunn, J.J.; Mongodin, E.F.; Luft, B.L. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J. Bacteriol. 2011, 193, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, P.E.; Rosa, P.A. Physiologic and genetic factors influencing the zoonotic cycle of Borrelia burgdorferi. In Spirochete Biology: The Post Genomic Era; Alder, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 63–82. [Google Scholar]
- Purser, J.E.; Norris, S.J. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 2000, 97, 13865–13870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraiczy, P.; Skerka, C.; Brade, V.; Zipfel, P.E. Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infect. Immun. 2001, 69, 7800–7809. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, K.; Corvey, C.; Skerka, C.; Kirschfink, M.; Karas, M.; Brade, V.; Miller, J.C.; Stevenson, B.; Wallich, R.; Zipfel, P.F. Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol. Microbiol. 2006, 61, 1220–1236. [Google Scholar] [CrossRef]
- Bykowski, T.; Woodman, M.E.; Cooley, A.E.; Brissette, C.A.; Brade, V.; Wallich, R.; Kraiczy, P.; Stevenson, B. Coordinated expression of Borrelia burgdorferi complement regulator-acquiring surface proteins during the Lyme disease spirochete’s mammal-tick infection cycle. Infect. Immun. 2007, 75, 4227–4236. [Google Scholar] [CrossRef] [Green Version]
- Kraiczy, P.; Stevenson, B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick Borne Dis. 2013, 4, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Bouquet, J.; Soloski, M.J.; Swei, A.; Cheadle, C.; Federman, S.; Billaud, J.N.; Rebman, A.W.; Kabre, B.; Halpert, R.; Boorgula, M.; et al. Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute Lyme disease. mBio 2016, 7, e00100–e00116. [Google Scholar] [CrossRef] [Green Version]
- Hart, T.; Nguyen, N.T.T.; Nowak, N.A.; Zhang, F.; Linhardt, R.J.; Diuk-Wasser, M.; Ram, S.; Kraiczy, P.; Lin, Y.-P. Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathog. 2018, 14, e1007106. [Google Scholar] [CrossRef] [Green Version]
- Schutzer, S.E.; Coye, P.K.; Krupp, L.B.; Deng, Z.; Belman, A.L.; Dattwyler, R.; Luft, B.J. Simultaneous expression of Borellia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J. Clin. Investig. 1997, 100, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Schutzer, S.E.; Angel, T.E.; Liu, T.; Schepmoes, A.A.; Clauss, T.R.; Adkins, J.N.; Camp, D.G.; Holland, B.K.; Bergquist, J.; Coyle, P.K.; et al. Distinct cerebrospinal fluid proteomes differentiate post-treatment Lyme disease from chronic fatigue syndrome. PLoS ONE 2011, 6, e17287. [Google Scholar] [CrossRef] [PubMed]
- Pachner, A.R.; Delaney, E.; O’Neil, T.; Major, E. Inoculation of nonhuman primates with the N40 strain of Borrelia burgdorferi leads to a model of Lyme neuroborreliosis faithful to the human model. Neurology 1995, 45, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Divan, A.; Casselli, T.; Narayanan, S.A.; Mukherjee, S.; Zawieja, D.C.; Watt, J.A.; Brissette, C.A.; Newell-Rogers, M.K. Borrelia burgdorferi adhere to blood vessels in the dura mater and are associated with increased meningeal T cells during murine disseminated borreliosis. PLoS ONE 2018, 13, e0196893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casselli, T.; Divan, A.; Vomhof-DeKrey, E.E.; Tourand, Y.; Pecoraro, H.L.; Brissette, C.A. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 2021, 17, e1009256. [Google Scholar] [CrossRef] [PubMed]
- Allal, J.; Thomas, P.; Mazzonelli, J. Borrelia isolated from cerebrospinal fluid in a French case of Lyme disease. Ann. Rheum. Dis. 1986, 45, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luft, B.J.; Steinman, C.R.; Neimark, H.C.; Muralidhar, B.; Rush, T.; Finkel, M.F.; Kunkel, M.; Dattwyler, R.J. Invasion of the central nervous system by Borrelia burgdorferi in acute disseminated infection. JAMA 1992, 267, 1364–1367. [Google Scholar] [CrossRef]
- Rupprecht, T.A.; Koedel, U.; Fingerle, V.; Pfister, H.W. The pathogenesis of Lyme neuroborreliosis: From infection to inflammation. Mol. Med. 2008, 14, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Fallon, B.A.; Levin, E.S.; Schweitzer, P.J.; Hardesty, D. Inflammation and central nervous system Lyme disease. Neurobiol. Dis. 2010, 37, 534–541. [Google Scholar] [CrossRef]
- Zipfel, P.F.; Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immun. 2009, 9, 729–740. [Google Scholar] [CrossRef]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immun. 2010, 11, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Petzke, M.; Schwartz, I. Borrelia burgdorferi pathogenesis and the immune response. Clin. Lab. Med. 2015, 35, 745–764. [Google Scholar] [CrossRef]
- Verhaegh, D.; Joosten, L.A.; Oosting, M. The role of host immune cells and Borrelia burgdorferi antigens in the etiology of Lyme disease. Eur. Cytokine Netw. 2017, 28, 70–84. [Google Scholar] [CrossRef]
- Thompson, D.; Sorenson, J.; Greenmyer, J.; Brissette, C.A.; Watt, J.A. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. PLoS ONE 2020, 15, e0234993. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, M.; Tao, L.; Peng, Y.; Han, Y.; Sun, L.; Dai, X.; Ji, Z.; Bai, R.; Jian, M.; et al. Rhesus brain transcriptomic landscape in an ex vivo model of the interaction of live Borrelia burgdorferi with frontal cortex tissue explants. Front. Neurosci. 2019, 13, 651. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, G.; Borda, J.T.; Dufour, J.; Kaushal, D.; Ramamoorthy, R.; Lackner, A.A.; Philipp, M.T. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am. J. Pathol. 2008, 173, 1415–1427. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, G.; Borda, J.T.; Gill, A.; Ribka, E.P.; Morici, L.A.; Mottram, P.; Martin, D.S.; Jacobs, M.B.; Didier, P.J.; Philipp, M.T. Possible role of glial cells in the onset and progression of Lyme neuroborreliosis. J. Neuroinflam. 2009, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Parathasarathy, G.; Philipp, M.T. The MEK/ERK pathway is the primary conduit for Borrelia burgdorferi-induced inflammation and P53-mediated apoptosis in oligodendrocytes. Apoptosis 2014, 19, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Lantos, P.M. Chronic Lyme disease: The controversies and the science. Expert Rev. Anti-Infect. Ther. 2011, 9, 787–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maloney, E.L. Controversies in Persistent (Chronic) Lyme Disease. J. Infus. Nurs. 2016, 39, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, R. Chronic Lyme Disease: An unresolved controversy. Am. J. Med. 2017, 130, e423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gocko, X.; Tattevin, P.; Lemogne, C. Genesis and dissemination of a controversial disease: Chronic Lyme. Infect. Dis. Now 2021, 51, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Denk, S.; Wiegering, A. Targeting protein synthesis in colorectal cancer. Cancers 2020, 12, 1298. [Google Scholar] [CrossRef] [PubMed]
- Bilsborough, J.; Viney, J.L. GPR15: A tale of two species. Nat. Immunol. 2015, 16, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.-Q.; Hu, H.-L.; Ye, N.; Shen, Y.; Xu, Q. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr. Res. 2015, 166, 125–130. [Google Scholar] [CrossRef]
- Casselli, T.; Qureshi, H.; Peterson, E.; Perley, D.; Blake, E.; Jokinen, B.; Abbas, A.; Nechaev, S.; Watt, J.A.; Dhasarathy, A.; et al. MicroRNA and mRNA transcriptome profiling in primary human astrocytes infected with Borrelia burgdorferi. PLoS ONE 2017, 12, e0170961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Monco, J.C.; Fernandez-Villar, B.; Benach, J.L. Adherence of the Lyme disease spirochete to glial cells and cells of glial origin. J. Infect. Dis. 1989, 160, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.J.; Benach, J.L. Borrelia burgdorferi adherence and injury to undifferentiated and differentiated neural cells in vitro. J. Infect. Dis. 1997, 176, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulzova, L.; Kovac, A.; Mucha, R.; Mlynarcik, P.; Bencurova, E.; Madar, M.; Novak, M.; Bhide, M. OspA-CD40 dyad: Ligand-receptor interaction in the translocation of neuroinvasive Borrelia across the blood-brain barrier. Sci. Rep. 2011, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Palmore, G.T.R. Lipoproteins and diseases of the brain. Adv Lipopro Res. Rijeka: InTech 2017, 95, 108. [Google Scholar]
- Livengood, J.A.; Gilmore, R.D. Invasion of human neuronal glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect 2006, 8, 2832–2840. [Google Scholar] [CrossRef]
- MacDonald, A.B.; Miranda, J.M. Concurrent neocortical borreliosis and Alzheimer’s disease. Hum. Pathol. 1987, 18, 759–761. [Google Scholar] [CrossRef]
- MacDonald, A.B. Borrelia in the brains of patients dying with dementia. JAMA 1986, 256, 2195–2196. [Google Scholar] [CrossRef] [PubMed]
- Miklossy, J.; Khalili, K.; Gern, L.; Ericson, R.L.; Darekar, P.; Bolle, L.; Hurlimann, J.; Paster, B.J. Borrelia burgdorferi persists in the brain in chronic Lyme neuroborreliosis and may be associated with Alzheimers disease. J. Alzheimers Dis. 2004, 6, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, A.B. Plaques of Alzheimer’s disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete. Med. Hypotheses 2006, 67, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Miklossy, J.; Kass, S.; Zurn, A.D.; McCall, S.; Yu, S.; McGreer, P.L. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J. Neuroinflam. 2008, 5, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miklossy, J. Chronic or late Lyme neuroborreliosis: Analysis of evidence compared to chronic or late neurosyphilis. Open Neurol. J. 2012, 6, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Miklossy, J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapi, E.; Kasliwala, R.S.; Ismail, H.; Torres, J.P.; Oldakowski, M.; Markland, S.; Gaur, G.; Melillo, A.; Eisendle, K.; Liegner, K.B.; et al. The long-term persistence of Borrelia burgdorferi antigens and DNA in the tissues of a patient with Lyme Disease. Antibiotics 2019, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, A.B. Alzheimer plaques visualized by in situ DNA hybridization with molecular beacons specific for Borrelia–a novel histomorphologic application. Med. Clin. Res. 2021, 6, 388–390. [Google Scholar]
- Steere, A.C.; Grodzicki, R.L.; Kornblatt, A.N.; Craft, J.E.; Barbour, A.G.; Burgdorfer, W.; Schmid, G.P.; Johnson, E.; Malawista, S.E. The spirochetal etiology of Lyme disease. N. Engl. J. Med. 1983, 308, 733–740. [Google Scholar] [CrossRef]
- Stevenson, B.; El-Hage, N.; Hines, M.A.; Miller, J.C.; Babb, K. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: A possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect. Immun. 2002, 70, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.C.; Stevenson, B. Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int. J. Med. Microbiol. 2006, 40, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Jutras, B.L.; Chenail, A.M.; Stevenson, B. Changes in bacterial growth rate govern expression of Borrelia burgdorferi OspC and Erp infection-associated surface proteins. J. Bacteriol. 2013, 195, 757–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bransfield, R.C. The psychoimmunoloy of Lyme/tick-borne diseases and its association with neuropsychiatric symptoms. Open Neurol. J. 2012, 6, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacek, E.; Fallon, B.A.; Chandra, A.; Crow, M.K.; Wormser, G.P.; Alaedini, A. Increased IFNa activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J. Neuroimmunol. 2013, 255, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novak, P.; Felsenstein, D.; Mao, C.; Octavien, N.R.; Zubcevik, N. Association of small fiber neuropathy and post treatment Lyme disease syndrome. PLoS ONE 2019, 14, e0212222. [Google Scholar] [CrossRef] [Green Version]
- Lochhead, R.B.; Arvikar, S.L.; Aversa, J.M.; Sadreyev, R.I.; Strle, K.; Steere, A.C. Robus interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfections, Borrelia-burgdorferi-induced Lyme arthritis. Cell. Microbiol. 2019, 21, e12954. [Google Scholar] [CrossRef]
- Miller, J.C.; Von Lackum, K.; Woodman, M.E.; Stevenson, B. Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb. Pathog. 2006, 41, 43–47. [Google Scholar] [CrossRef]
Strain | OspC | RST | IGS | Source |
---|---|---|---|---|
B31, 2-39 | A | I | 1 | Bunikis et al., 2004; Travinsky et al., 2010 |
2206617 | A | I | 11 | Travinsky et al., 2010 |
CA4, CA6 | A | I | 10 | Travinsky et al., 2010 |
BL206, BL203, BL268, B479, B491, B515 | A | I | - | Wang et al., 2002 |
HII, IP1-3, P1F, L5, TXGW, MI2, Pka | A | I | - | Lin et al., 2002 |
I-24 | B | I | 3 | Bunikis et al., 2004 |
61BV3, BUR, DK7, Pbre, 35B808, OC2 | B | I | - | Lin et al., 2002 |
64b, B373 | Ba | I | 3 | Travinsky et al., 2010 |
51405UT | Ba | I | 6 | Travinsky et al., 2010 |
ZS7 | Bb | I | 16 | Travinsky et al., 2010 |
4-55/HB19 | I | III | 7 | Bunikis et al., 2004 |
OC10 | I | I | - | Lin et al., 2002 |
B500, B331 | Ia | III | 7 | Travinsky et al., 2010 |
WI91-23 | Ia | III | 7 | Travinsky et al., 2010 |
CA92-1096 | Ib | III | 7 | Travinsky et al., 2010 |
297, I-65 | K | II | 2 | Bunikis et al., 2004; Travinsky et al., 2010 |
149901 | K | II | 14 | Travinsky et al., 2010 |
272, KIPP, MUL, 28354, OC12-13 | K | I | - | Lin et al., 2002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ford, L.; Tufts, D.M. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci. 2021, 11, 789. https://doi.org/10.3390/brainsci11060789
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sciences. 2021; 11(6):789. https://doi.org/10.3390/brainsci11060789
Chicago/Turabian StyleFord, Lenzie, and Danielle M. Tufts. 2021. "Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System" Brain Sciences 11, no. 6: 789. https://doi.org/10.3390/brainsci11060789
APA StyleFord, L., & Tufts, D. M. (2021). Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sciences, 11(6), 789. https://doi.org/10.3390/brainsci11060789