ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Endophenotypes
2.3. DNA Extraction and Genotyping
2.4. Family-Based Association Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cardo, E.; Servera-Barcelo, M. The prevalence of attention deficit hyperactivity disorder. Rev. Neurol. 2005, 40 (Suppl. 1), S11–S15. [Google Scholar]
- Biederman, J. Attention-deficit/hyperactivity disorder: A selective overview. Biol. Psychiatry 2005, 57, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Cornejo Ochoa, J.W.; Osío, O.; Sánchez, Y.; Carrizosa, J.; Sánchez, G.; Grisales, H.; Castillo-Parra, H.; Holguín, J. Prevalencia del trastorno por déficit de atención- hiperactividad en niños y adolescentes Colombianos. Rev. Neurol. 2005, 40, 716–722. [Google Scholar] [CrossRef]
- Van Meerbeke, A.V.; Gutiérrez, C.T.; Reyes, R.G.; Pinilla, M.I. Prevalencia de trastorno por déficit de atención con hiperactividad en estudiantes de escuelas de Bogotá, Colombia. Acta Neurol. Colomb. 2008, 24, 6–12. [Google Scholar]
- DSM-IV. In Masson; Barcelona: 2002. Manual Diagnóstico y Estadístico de los Trastornos Mentales, Texto Revisado; American Psychiatric Association: Washington, DC, USA, 2015.
- Thapar, A.; Holmes, J.; Poulton, K.; Harrington, R. Genetic basis of attention deficit and hyperactivity. Br. J. Psychiatry 1999, 174, 105–111. [Google Scholar] [CrossRef]
- Thapar, A.; O’Donovan, M.; Owen, M.J. The genetics of attention deficit hyperactivity disorder. Hum. Mol. Genet. 2005, 14 (Suppl. 2), R275–R282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos, F.X.; Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat. Rev. Neurosci. 2002, 3, 617–628. [Google Scholar] [CrossRef]
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Flint, J.; Munafò, M.R. The endophenotype concept in psychiatric genetics. Psychol. Med. 2007, 37, 163–180. [Google Scholar] [CrossRef]
- Walters, J.T.R.; Owen, M.J. Endophenotypes in psychiatric genetics. Mol. Psychiatry 2007, 12, 886–890. [Google Scholar] [CrossRef]
- Cannon, T.D.; Gasperoni, T.L.; van Erp, T.G.; Rosso, I.M. Quantitative neural indicators of liability to schizophrenia: Implications for molecular genetic studies. Am. J. Med. Genet. 2001, 105, 16–19. [Google Scholar] [CrossRef]
- Goos, L.M.; Crosbie, J.; Payne, S.; Schachar, R. Validation and extension of the endophenotype model in ADHD patterns of inheritance in a family study of inhibitory control. Am. J. Psychiatry 2009, 166, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Naj, A.C.; Jun, G.; Reitz, C.; Kunkle, B.W.; Perry, W.; Park, Y.S.; Beecham, G.W.; Rajbhandary, R.A.; Hamilton-Nelson, K.L.; Wang, L.-S.; et al. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: A genome-wide association study. JAMA Neurol. 2014, 71, 1394–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, M.L.; Burton, V.J.; Shapiro, B.K. Developmental Disabilities and Metabolic Disorders. In Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Pineda, D.A.; Lopera, F.; Puerta, I.C.; Trujillo-Orrego, N.; Aguirre-Acevedo, D.C.; Hincapie-Henao, L.; Arango, C.P.; Acosta, M.T.; Holzinger, S.I.; Palacio, J.D.; et al. Potential cognitive endophenotypes in multigenerational families: Segregating ADHD from a genetic isolate. Atten. Defic. Hyperact. Disord. 2011, 3, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastronardi, C.A.; Pillai, E.; Pineda, D.A.; Martinez, A.F.; Lopera, F.; Velez, J.I.; Palacio, J.D.; Patel, H.; Easteal, S.; Acosta, M.T.; et al. Linkage and association analysis of ADHD endophenotypes in extended and multigenerational pedigrees from a genetic isolate. Mol. Psychiatry 2016, 21, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.E.; Faraone, S.V.; Seidman, L.J.; Willcutt, E.G.; Nigg, J.T.; Waldman, I.D.; Pennington, B.F.; Peart, J.; Biederman, J. Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? J. Child Psychol. Psychiatry 2005, 46, 774–803. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Addison Wesley Longman: Harlow, UK, 1996. [Google Scholar]
- Saito, Y.; Nakao, K.; Sugawara, A.; Nishimura, K.; Sakamoto, M.; Morii, N.; Yamada, T.; Itoh, H.; Shiono, S.; Kuriyama, T.; et al. Atrial natriuretic polypeptide during exercise in healthy man. Acta Endocrinol. Copenh. 1987, 116, 59–65. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B.; Davis, K.A. On the ability to inhibit simple and choice reaction time responses: A model and a method. J. Exp. Psychol. Hum. Percept. Perform. 1984, 10, 276–291. [Google Scholar] [CrossRef]
- Nikolas, M.A.; Nigg, J.T. Moderators of neuropsychological mechanism in attention-deficit hyperactivity disorder. J. Abnorm. Child Psychol. 2015, 43, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Suarez, I.; De Los Reyes Aragón, C.; Diaz, E.; Iglesias, T.; Barcelo, E.; Velez, J.I.; Casini, L. How Is Temporal Processing Affected in Children with Attention-deficit/hyperactivity Disorder? Dev. Neuropsychol. 2020, 45, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V.; Abikoff, H.; Sonuga-Barke, E.; Schachar, R.; Logan, G.D.; Wigal, T.; Hechtman, L.; Hinshaw, S.; Turkel, E. The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: A supplement to the NIMH multimodal treatment study of AD/HD. J. Abnorm. Child Psychol. 2001, 29, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, P.H.; Gokhale, P.A.; Mehta, H.B.; Shah, C.J. A comparative study of simple auditory reaction time in blind (congenitally) and sighted subjects. Indian J. Psychol. Med. 2013, 35, 273–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uebel, H.; Albrecht, B.; Asherson, P.; Borger, N.A.; Butler, L.; Chen, W.; Christiansen, H.; Heise, A.; Kuntsi, J.; Schäfer, U.; et al. Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. J. Child Psychol. Psychiatry 2010, 51, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Figueroa, G.; Ardila-Duarte, C.; Pineda, D.A.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Pineda-Alhucema, W.; Cervantes-Gutiérrez, J.; Quintero-Ibarra, M.; Sánchez-Rojas, M.; Vélez, J.I.; et al. Prepotent response inhibition and reaction times in children with attention deficit/hyperactivity disorder from a Caribbean community. Atten. Defic. Hyperact. Disord. 2017, 9, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Panagiotidi, M.; Overton, P.G.; Stafford, T. The relationship between ADHD traits and sensory sensitivity in the general population. Compr. Psychiatry 2018, 80, 179–185. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Glizer, D.; Tannock, R.; Woltering, S. EEG alpha power during maintenance of information in working memory in adults with ADHD and its plasticity due to working memory training: A randomized controlled trial. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016, 127, 1307–1320. [Google Scholar] [CrossRef]
- Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008, 169, 323–338. [Google Scholar]
- Cowan, N. Working Memory Capacity, Classic ed.; Psychology Press: London, UK, 2016. [Google Scholar]
- Baddeley, A. Working memory. Curr. Biol. 2010, 20, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Engle, R. Role of Working Memory Capacity in Cognitive Control. Curr. Anthropol. 2010, 51 (Suppl. 1), S17–S26. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.W.; Kane, M.J. Executive attention, working memory capacity, and a two-factor theory of cognitive control. In The Psychology of Learning and Motivation: Advances in Research and Theory; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 44, pp. 145–199. [Google Scholar]
- Barbot, A.; Liu, S.; Kimchi, R.; Carrasco, M. Attention enhances apparent perceptual organization. Psychon. Bull. Rev. 2018, 25, 1824–1832. [Google Scholar] [CrossRef]
- Koziol, L.F.; Budding, D. ADHD and sensory processing disorders: Placing the diagnostic issues in context. Appl. Neuropsychol. Child 2012, 1, 137–144. [Google Scholar] [CrossRef]
- Sirois, S.; Brisson, J. Pupillometry. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Van der Wel, P.; van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Alamia, A.; VanRullen, R.; Pasqualotto, E.; Mouraux, A.; Zenon, A. Pupil-Linked Arousal Responds to Unconscious Surprisal. J. Neurosci. 2019, 39, 5369–5376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papesh, M.H.; Goldinger, S.D. Pupil-BLAH-metry: Cognitive effort in speech planning reflected by pupil dilation. Atten. Percept. Psychophys. 2012, 74, 754–765. [Google Scholar] [CrossRef]
- Redondo, B.; Molina, R.; Cano-Rodríguez, A.; Vera, J.; García, J.A.; Muñoz-Hoyos, A.; Jiménez, R. Visual Perceptual Skills in Attention-deficit/Hyperactivity Disorder Children: The Mediating Role of Comorbidities. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2019, 96, 655–663. [Google Scholar] [CrossRef]
- Small, D.J.; Eaton, V.; Koh, W.Y.; Langlais, A.; Bergquist, I.; Mokler, D.; Prudovsky, I. Increased Locomotor Activity is Associated with Enhanced Tyrosine Hydroxylase Expression in Mice Expressing an Endothelial Cell-Specific Fibroblast Growth Factor 1 Transgene. FASEB J. 2018, 32 (Suppl. 1), 805–823. [Google Scholar] [CrossRef]
- Bhaduri, N.; Das, M.; Sinha, S.; Chattopadhyay, A.; Gangopadhyay, P.K.; Chaudhuri, K.; Singh, M.; Mukhopadhyay, K. Association of dopamine D4 receptor (DRD4) polymorphisms with attention deficit hyperactivity disorder in Indian population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2006, 141, 61–66. [Google Scholar] [CrossRef]
- Rayner, K.; Duffy, S.A. Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Mem. Cognit. 1986, 14, 191–201. [Google Scholar] [CrossRef]
- Wainstein, G.; Rojas-Líbano, D.; Crossley, N.A.; Carrasco, X.; Aboitiz, F.; Ossandón, T. Pupil Size Tracks Attentional Performance in Attention-Deficit/Hyperactivity Disorder. Sci. Rep. 2017, 7, 8228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sable, J.J.; Kyle, M.R.; Knopf, K.L.; Schully, L.T.; Brooks, M.M.; Parry, K.H.; Diamond, R.E.; Flink, L.A.; Stowe, R.; Suna, E.; et al. The Sensory Gating Inventory as a potential diagnostic tool for attention-deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2012, 4, 141–144. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.-A.; Vaillant, F.; Lopez, R.; Peri, P.; Baillif, A.; Brandejsky, L.; Steffen, M.L.; Boyer, L.; Richieri, R.; Cermolacce, M.; et al. Sensory gating in adult with attention-deficit/hyperactivity disorder: Event-evoked potential and perceptual experience reports comparisons with schizophrenia. Biol. Psychol. 2015, 107, 16–23. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.A.; Lopez, R.; Vaillant, F.; Richieri, R.; El-Kaim, A.; Bioulac, S.; Philip, P.; Boyer, L.; Lancon, C. Perceptual abnormalities related to sensory gating deficit are core symptoms in adults with ADHD. Psychiatry Res. 2015, 230, 357–363. [Google Scholar] [CrossRef]
- Cervantes-Henríquez, M.L.; Acosta-López, J.E.; Martínez-Banfi, M.L.; Vélez, J.I.; Mejía-Segura, E.; Lozano-Gutiérrez, S.G.; Sánchez-Rojas, M.; Zurbarán, M.A.; Zurek, E.E.; Arcos-Burgos, M.; et al. ADHD Endophenotypes in Caribbean Families. J. Atten. Disord. 2018, 24, 2100–2114. [Google Scholar] [CrossRef] [Green Version]
- Villalón, J. Colonias Extranjeras En Barranquilla; Ediciones Uninorte: Barranquilla, Colombia, 2008. [Google Scholar]
- Mathias, R.A.; Taub, M.A.; Gignoux, C.R.; Fu, W.; Musharoff, S.; O’Connor, T.D.; Vergara, C.; Torgerson, D.G.; Pino-Yanes, M.; Shringarpure, S.S.; et al. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puentes-Rozo, P.J.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Martinez-Banfi, M.L.; Mejia-Segura, E.; Sanchez-Rojas, M.; Anaya-Romero, M.E.; Acosta-Hoyos, A.; García-Llinás, G.A.; Mastronardi, C.A.; et al. Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019, 8, 907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda, D.A.; Acosta, L.J.; Cervantes-Henríquez, M.L.; Jimenez-Figueroa, G.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Mejía-Segura, E.; Puentes-Rozo, J. Conglomerados de clases latentes en 408 miembros de 120 familias nucleares de Barranquilla con un caso índice afectado de trastorno de atención hiperactividad (TDAH). Acta Neurológica. Colomb. 2016, 32, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-Henríquez, M.L.; Acosta-López, J.; Aguirre-Acevedo, D.C.; Pineda-Álvarez, D.; Puentes Rozo, P. Fenotipo comportamental evaluado con una escala multidimensional de la conducta en niños y adolescentes de 30 familias con trastorno de atención-hiperactividad. Acta Neurol. Colomb. 2008, 24, 53–62. [Google Scholar]
- Ramírez, K.B.; Menco, A.V.; Torres, A. De Una Universidad Privada De La Ciudad De Barranquilla * Alcohol Use among Students in Third to Fifth Semester of Psychology Program At a Private. Psicogente 2014, 17, 460–476. [Google Scholar]
- Acosta-Lopez, J.; Cervantes-Henriquez, L.M.; Jiménez-Figueroa, G.; Nuñez Barragan, M.; Sanchez Rojas, M.; Puentes Rozo, P. Uso de una escala comportamental Wender Utah para evaluar en retrospectiva trastorno de atención-hiperactividad en adultos de la ciudad de Barranquilla. La Rev. Univ Y Salud. 2013, 15, 45–61. [Google Scholar]
- Reich, W. Diagnostic interview for children and adolescents (DICA). J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Arcos-Burgos, M.; Vélez, J.I.; Martinez, A.F.; Ribasés, M.; Ramos-Quiroga, J.A.; Sánchez-Mora, C.; Richarte, V.; Roncero, C.; Cormand, B.; Fernández-Castillo, N.; et al. ADGRL3 (LPHN3) variants predict substance use disorder. Transl. Psychiatry 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Acosta, M.T.; Vélez, J.I.; Bustamante, M.L.; Balog, J.Z.; Arcos-Burgos, M.; Muenke, M. A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Transl. Psychiatry 2011, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Burgos, M.; Jain, M.; Acosta, M.T.; Shively, S.; Stanescu, H.; Wallis, D.; Domené, S.; Vélez, J.I.; Karkera, J.D.; Balog, J.; et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 2010, 15, 1053–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, E.L.; Kofler, M.J.; Soto, E.F.; Schaefer, H.S.; Sarver, D.E. Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Res. Dev. Disabil. 2018, 72, 166–178. [Google Scholar] [CrossRef]
- Kouvatsou, Z.; Masoura, E.; Kiosseoglou, G.; Kimiskidis, V.K. Working memory profiles of patients with multiple sclerosis: Where does the impairment lie? J. Clin. Exp. Neuropsychol. 2019, 41, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Chrysochoou, E.; Bablekou, Z. Phonological loop and central executive contributions to oral comprehension skills of 5.5 to 9.5 years old children. Appl. Cogn. Psychol. 2011, 25, 576–583. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1974; pp. 47–89. [Google Scholar]
- Baddeley, A.D.; Hitch, G.; Bower, G.H. The Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Tirapu-Ustarroz, J.; Luna-Lario, P. Neuropsicología de las funciones ejecutivas. Man. Neuropsicol. 2008, 2, 219–259. [Google Scholar]
- Tirapu-Ustárroz, J.; García-Molina, A.; Luna Lario, P.; Verdejo García, A.; Ríos Lago, M. Funciones ejecutivas y regulación de la conducta. Neuropsicol. La Corteza. Prefrontal. Y Las Funciones. Ejecutivas. 2012, 89–120. [Google Scholar]
- Trujillo, N.; Pineda, D. Función Ejecutiva en la investigación de los trastornos del comportamiento del niño y del adolescente. Rev. Neuropsicol. Neuropsiquiatría. Y Neurociencias. 2008, 8, 77–94. [Google Scholar]
- Spielman, R.S.; McGinnis, R.E.; Ewens, W.J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 1993, 52, 506–516. [Google Scholar]
- Laird, N.M.; Horvath, S.; Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 2000, 19 (Suppl. 1), S36–S42. [Google Scholar] [CrossRef]
- Xu, X.; Rakovski, C.; Xu, X.; Laird, N. An efficient family-based association test using multiple markers. Genet. Epidemiol. 2006, 30, 620–626. [Google Scholar] [CrossRef]
- Lange, C.; Laird, N.M. On a general class of conditional tests for family-based association studies in genetics: The asymptotic distribution, the conditional power, and optimality considerations. Genet. Epidemiol. 2002, 23, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Laird, N.M. Power calculations for a general class of family-based association tests: Dichotomous traits. Am. J. Hum. Genet. 2002, 71, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Vélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A New Method for Detecting Significant p-values with Applications to Genetic Data. Rev. Colomb. Estadística. 2014, 37, 69–78. [Google Scholar] [CrossRef]
- Ramos-Quiroga, J.A.; Casas Brugue, M. Do we pay sufficient attention to the lack of care of hyperactivity in adults? Aten. Primaria. 2009, 41, 67–68. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, A.; Gray, J.R. ADHD and the DRD4 exon III 7-repeat polymorphism: An international meta-analysis. Soc. Cogn. Affect. Neurosci. 2010, 5, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, L.E. La poblacion Afro en el departamento de Bolivar. Rev. Cult. Unilibre. 2012, 1, 53–58. [Google Scholar]
- Arcos-Burgos, M.; Castellanos, F.X.; Pineda, D.; Lopera, F.; Palacio, J.D.; Palacio, L.G.; Rapoport, J.L.; Berg, K.; Bailey-Wilson, J.E.; Muenke, M. Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet. 2004, 75, 998–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Sham, P.C.; Owen, M.J.; He, L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet. 2006, 15, 2276–2284. [Google Scholar] [CrossRef]
- Banaschewski, T.; Becker, K.; Scherag, S.; Franke, B.; Coghill, D. Molecular genetics of attention-deficit/hyperactivity disorder: An overview. Eur. Child Adolesc. Psychiatry 2010, 19, 237–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolat, H.; Ercan, E.S.; Ünsel-Bolat, G.; Tahillioğlu, A.; Yazici, K.U.; Bacanli, A.; Pariltay, E.; Jafari, D.A.; Kosova, B.; Özgül, S.; et al. DRD4 genotyping may differentiate symptoms of attention-deficit/hyperactivity disorder and sluggish cognitive tempo. Braz. J. Psychiatry 2020, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bruxel, E.M.; Salatino-Oliveira, A.; Akutagava-Martins, G.C.; Tovo-Rodrigues, L.; Genro, J.P.; Zeni, C.P.; Muenke, M. LPHN3 and attention-deficit/hyperactivity disorder: A susceptibility and pharmacogenetic study. Genes Brain Behav. 2015, 14, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J.M.; Flodman, P.; Kennedy, J.; Spence, M.A.; Moyzis, R.; Schuck, S.; Murias, M.; Moriarity, J.; Barr, C.; Smith, M.; et al. Dopamine genes and ADHD. Neurosci. Biobehav. Rev. 2000, 24, 21–25. [Google Scholar] [CrossRef]
- Swanson, J.M.; Sunohara, G.A.; Kennedy, J.L.; Regino, R.; Fineberg, E.; Wigal, T.; Lerner, M.; Williams, L.; LaHoste, G.J.; Wigal, S. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): A family-based approach. Mol. Psychiatry 1998, 3, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Velez, J.I.; Acosta, M.T.; Palacio, L.G.; Balog, J.; Roessler, E.; Pineda, D.; Londoño, A.C.; Palacio, J.D.; Arbelaez, A. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol. Psychiatry 2012, 17, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Arcos-Burgos, M.; Vélez, J.I.; Solomon, B.D.; Muenke, M. A common genetic network underlies substance use disorders and disruptive or externalizing disorders. Hum. Genet. 2012, 131, 917–929. [Google Scholar] [CrossRef] [Green Version]
- Blomquist, H.K. The role of the Child Health Services in the identification of children with possible attention deficit hyperactivity disorder/deficits in attention, motor control and perception (ADHD/DAMP). Acta Paediatr. Suppl. 2000, 89, 24–32. [Google Scholar] [CrossRef]
- Bruxel, E.M.; Moreira-Maia, C.R.; Akutagava-Martins, G.C.; Quinn, T.P.; Klein, M.; Franke, B.; Ribasés, M.; Rovira, P.; Sánchez-Mora, C.; Kappel, D.B.; et al. Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Mol. Psychiatry 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, Q.; Gu, X.; Hou, Y.; Wang, M.; Chen, X.; Wu, J. LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: A two-stage case-control association study and gene-environment interactions. Eur. Child Adolesc. Psychiatry 2019, 28, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.F.; Abe, Y.; Hong, S.; Molyneux, K.; Yarnell, D.; Lohr, H.; Driever, W.; Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. An Ultraconserved Brain-Specific Enhancer within ADGRL3 (LPHN3) Underpins Attention-Deficit/Hyperactivity Disorder Susceptibility. Biol. Psychiatry 2016, 80, 943–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domene, S.; Stanescu, H.; Wallis, D.; Tinloy, B.; Pineda, D.E.; Kleta, R.; Arcos-Burgos, M.; Roessler, E.; Muenke, M. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Bosch, R.; Richarte, V.; Palomar, G.; Gastaminza, X.; Bielsa, A.; Arcos-Burgos, M.; Muenke, M.; et al. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: A replication study. Genes Brain Behav. 2011, 10, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Archer, T.; Oscar-Berman, M.; Blum, K. Epigenetics in Developmental Disorder: ADHD and Endophenotypes. J. Genet. Syndr. Gene Ther. 2011, 2, 1000104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rommelse, N.N.J. Endophenotypes in the genetic research of ADHD over the last decade: Have they lived up to their expectations? Expert Rev. Neurother. 2008, 8, 1425–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, M.J.; Engle, R.W. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychon. Bull. Rev. 2002, 9, 637–671. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, K.; Rindskopf, D.; O’Neill, S.; Marks, D.J.; Nomura, Y.; Halperin, J.M. Neuropsychological functioning and severity of ADHD in early childhood: A four-year cross-lagged study. J. Abnorm. Psychol. 2013, 122, 1179–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinlan, P.T. Visual Feature Integration Theory: Past, Present, and Future. Psychol. Bull. 2003, 129, 643–673. [Google Scholar] [CrossRef] [Green Version]
- Loose, R.; Lutz, K.; Specht, K.; Shah, N.J.; Jancke, L. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn. Brain Res. 2000, 10, 51–66. [Google Scholar]
- Toplak, M.E.; Tannock, R. Time perception: Modality and duration effects in attention-deficit/hyperactivity disorder (ADHD). J. Abnorm. Child Psychol. 2005, 33, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.R.; O’Shea, J.; Jensen, O.; Bergmann, T.O. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. J. Neurosci. 2015, 35, 1638–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, T.R.; Bergmann, T.O.; Jensen, O. Frontoparietal Structural Connectivity Mediates the Top-Down Control of Neuronal Synchronization Associated with Selective Attention. PLoS Biol. 2015, 13, e1002272. [Google Scholar] [CrossRef] [Green Version]
- Shang, C.Y.; Lin, H.Y.; Tseng, W.Y.; Gau, S.S. A haplotype of the dopamine transporter gene modulates regional homogeneity, gray matter volume, and visual memory in children with attention-deficit/hyperactivity disorder. Psychol. Med. 2018, 48, 2530–2540. [Google Scholar] [CrossRef] [Green Version]
- Sowell, E.R.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W.; Peterson, B.S. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003, 362, 1699–1707. [Google Scholar] [CrossRef]
- Perchet, C.; Revol, O.; Fourneret, P.; Mauguière, F.; Garcia-Larrea, L. Attention shifts and anticipatory mechanisms in hyperactive children: An ERP study using the Posner paradigm. Biol. Psychiatry 2001, 50, 44–57. [Google Scholar] [CrossRef]
- Van der Stelt, O.; van der Molen, M.; Boudewijn, G.W.; Kok, A. Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Brain Res. Cogn. Brain Res. 2001, 12, 245–264. [Google Scholar] [CrossRef]
- Johnson, K.A.; Dáibhis, A.; Tobin, C.T.; Acheson, R.; Watchorn, A.; Mulligan, A.; Barry, E.; Bradshaw, J.L.; Gill, M.; Robertson, I.H. Right-sided spatial difficulties in ADHD demonstrated in continuous movement control. Neuropsychologia 2010, 48, 1255–1264. [Google Scholar] [CrossRef]
- Rubia, K.; Smith, A.B.; Brammer, M.J.; Taylor, E. Temporal lobe dysfunction in medication-naïve boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol. Psychiatry 2007, 62, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Vance, A.; Silk, T.J.; Casey, M.; Rinehart, N.J.; Bradshaw, J.L.; Bellgrove, M.A.; Cunnington, R. Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: A functional MRI study. Mol. Psychiatry 2007, 12, 826–832. [Google Scholar] [CrossRef] [Green Version]
- Mihali, A.; Young, A.G.; Adler, L.A.; Halassa, M.M.; Ma, W.J. A Low-Level Perceptual Correlate of Behavioral and Clinical Deficits in ADHD. Comput. Psychiatry 2018, 2, 141–163. [Google Scholar] [CrossRef]
- Solé, P.M.; Pérez, Z.L.; Puigcerver, L.; Esperalba, I.N.; Sanchez, G.C.; Romeo, A.; Crespillo, J.C.; Supèr, H. Attention-Related Eye Vergence Measured in Children with Attention Deficit Hyperactivity Disorder. PLoS ONE 2015, 10, e0145281. [Google Scholar]
- Guo, J.; Luo, X.; Wang, E.; Li, B.; Chang, Q.; Sun, L.; Song, Y. Abnormal alpha modulation in response to human eye gaze predicts inattention severity in children with ADHD. Dev. Cogn. Neurosci. 2019, 38, 100671. [Google Scholar] [CrossRef]
- Poltavski, D.V.; Biberdorf, D.; Petros, T.V. Accommodative response and cortical activity during sustained attention. Vision Res. 2012, 63, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Crawford, S.G.; Kaplan, B.J.; Dewey, D. Effects of coexisting disorders on cognition and behavior in children with ADHD. J. Atten. Disord. 2006, 10, 192–199. [Google Scholar] [CrossRef]
- Caspersen, I.D.; Petersen, A.; Vangkilde, S.; Plessen, K.J.; Habekost, T. Perceptual and response-dependent profiles of attention in children with ADHD. Neuropsychology 2017, 31, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Fuermaier, A.B.M.; Hupen, P.; De Vries, S.M.; Muller, M.; Kok, F.M.; Koerts, J.; Heutink, J.; Tucha, L.; Gerlach, M.; Tucha, O. Perception in attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2018, 10, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Peskin, V.A.; Ordonez, A.; Mackin, R.S.; Delucchi, K.; Monge, S.; McGough, J.J.; Chavira, D.A.; Berrocal, M.; Cheung, E.; Fournier, E. Neuropsychological and dimensional behavioral trait profiles in Costa Rican ADHD sib pairs: Potential intermediate phenotypes for genetic studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijlenga, D.; Tjon-Ka-Jie, J.Y.M.; Schuijers, F.; Kooij, J.J.S. Atypical sensory profiles as core features of adult ADHD, irrespective of autistic symptoms. Eur. Psychiatry 2017, 43, 51–57. [Google Scholar] [CrossRef]
- Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Crawford, S.G.; Dewey, D. Co-occurring disorders: A possible key to visual perceptual deficits in children with developmental coordination disorder? Hum. Mov. Sci. 2008, 27, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fair, D.A.; Bathula, D.; Nikolas, M.A.; Nigg, J.T. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc. Natl. Acad. Sci. USA 2012, 109, 6769–6774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Weibman, D.; Halperin, J.M.; Li, X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci. 2019, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. Attention deficit/hyperactivity disorder (ADHD): Complex phenotype, simple genotype? Genet. Med. 2004, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pironti, V.A.; Lai, M.C.; Muller, U.; Dodds, C.M.; Suckling, J.; Bullmore, E.T.; Sahakian, B.J. Neuroanatomical abnormalities and cognitive impairments are shared by adults with attention-deficit/hyperactivity disorder and their unaffected first-degree relatives. Biol. Psychiatry 2014, 76, 639–647. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, K.L.; Harmon, S.; Tang, L.; Todd, R.D. The rat dopamine D4 receptor: Sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol. 1992, 4, 137–146. [Google Scholar]
- Meador-Woodruff, J.H.; Grandy, D.K.; Van Tol, H.H.; Damask, S.P.; Little, K.Y.; Civelli, O.; Watson, S.J. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 1994, 10, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Oak, J.N.; Oldenhof, J.; Van Tol, H.H. The dopamine D(4) receptor: One decade of research. Eur. J. Pharmacol. 2000, 405, 303–327. [Google Scholar] [CrossRef]
- Gehricke, J.-G.; Swanson, J.M.; Duong, S.; Nguyen, J.; Wigal, T.L.; Fallon, J.; Caburian, C.; Muftuler, L.T.; Moyzis, R.K. Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene. Psychiatry Res. 2015, 231, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Faraone, S.V.; Biederman, J. Neurobiology of attention-deficit hyperactivity disorder. Biol. Psychiatry 1998, 44, 951–958. [Google Scholar] [CrossRef]
- Qian, A.; Tao, J.; Wang, X.; Liu, H.; Ji, L.; Yang, C.; Ye, Q.; Chen, C.; Li, J.; Cheng, C.; et al. Effects of the 2-repeat allele of the DRD4 gene on neural networks associated with the prefrontal cortex in children with ADHD. Front. Hum. Neurosci. 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.Y.N.; Pola, A.L.; Juvier, R.T.; Cabal, R.R.; Soto, L.A.; Pérez García, E. Manifestaciones neuroftalmológicas en la enfermedad de Parkinson TT–Neurophthalmologic manifestations of Parkinson’s disease. Rev. Cuba Oftalmol. 2013, 26, 170–179. [Google Scholar]
- Müller, J.; Dreisbach, G.; Brocke, B.; Lesch, K.-P.; Strobel, A.; Goschke, T. Dopamine and cognitive control: The influence of spontaneous eyeblink rate, DRD4 exon III polymorphism and gender on flexibility in set-shifting. Brain Res. 2007, 1131, 155–162. [Google Scholar] [CrossRef]
- Beyer, C.; Banas, C.; Gonzalez-Flores, O.; Komisaruk, B.R. Blockage of substance P-induced scratching behavior in rats by the intrathecal administration of inhibitory amino acid agonists. Pharmacol. Biochem. Behav. 1989, 34, 491–495. [Google Scholar] [CrossRef]
- Saucedo, L.; Buffa, G.N.; Rosso, M.; Guillardoy, T.; Góngora, A.; Munuce, M.J.; Vazquez-Levin, M.H.; Marín-Briggiler, C. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation. PLoS ONE. 2015, 10, e0127297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford-Perriss, M.; Abud, H.; Murphy, M. Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol. 2001, 28, 493–503. [Google Scholar] [CrossRef]
- Itoh, N.; Ornitz, D.M. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J. Biochem. 2011, 149, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Dono, R. Fibroblast growth factors as regulators of central nervous system development and function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R867–R881. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA 2004, 101, 15506–15511. [Google Scholar] [CrossRef] [Green Version]
- Tekin, M.; Hişmi, B.O.; Fitoz, S.; Ozdağ, H.; Cengiz, F.B.; Sirmaci, A.; Aslan, İ.; İnceoğlu, B.; Yüksel-Konuk, E.B.; Yılmaz, S.T.; et al. Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia. Am. J. Hum. Genet. 2007, 80, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Picker, A.; Brand, M. Fgf signals from a novel signaling center determine axial patterning of the prospective neural retina. Development 2005, 132, 4951–4962. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-J. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin. Cell. Dev. Biol. 2004, 15, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Hyer, J.; Mima, T.; Mikawa, T. FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 1998, 125, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Gabay, S.; Pertzov, Y.; Henik, A. Orienting of attention, pupil size, and the norepinephrine system. Atten. Percept. Psychophys. 2011, 73, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of LPHN3 rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2015, 566, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Pronin, A.; Levay, K.; Velmeshev, D.; Faghihi, M.; Shestopalov, V.I.; Slepak, V.Z. Expression of olfactory signaling genes in the eye. PLoS ONE 2014, 9, e96435. [Google Scholar] [CrossRef] [PubMed]
- Fallgatter, A.J.; Ehlis, A.C.; Dresler, T.; Reif, A.; Jacob, C.P.; Arcos-Burgos, M.; Muenke, M.; Lesch, K.-P. Influence of a latrophilin 3 (LPHN3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (ADHD). Eur. Neuropsychopharmacol. 2013, 23, 458–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, A.F.; Muenke, M.; Arcos-Burgos, M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2011, 156, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mathiasen, S.; Palmisano, T.; Perry, N.A.; Stoveken, H.M.; Vizurraga, A.; McEwen, D.P.; Okashah, N.; Langenhan, T.; Inoue, A.; Lambert, N.A.; et al. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat. Chem. Biol. 2020, 16, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Norton, W.; Coolen, M.; Chaminade, M.; Merker, S.; Proft, F.; Schmitt, A.; Vernier, P.; Lesch, K.-P.; Bally-Cuif, L. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 2012, 17, 946–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesler, S.R.; Sheau, K.; Koovakkattu, D.; Reiss, A.L. Changes in frontal-parietal activation and math skills performance following adaptive number sense training: Preliminary results from a pilot study. Neuropsychol. Rehabil. 2011, 21, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Arsalidou, M.; Pawliw-Levac, M.; Sadeghi, M.; Pascual-Leone, J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Dev. Cogn. Neurosci. 2018, 30, 239–250. [Google Scholar] [CrossRef]
- Ansari, D.; Dhital, B. Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. J. Cogn. Neurosci. 2006, 18, 1820–1828. [Google Scholar] [CrossRef]
- Serra-Grabulosa, J.M.; Adan, A.; Pérez-Pàmies, M.; Lachica, J.; Membrives, S. Neural bases of numerical processing and calculation. Rev. Neurol. 2010, 50, 39–46. [Google Scholar] [PubMed]
- Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental calculation. Cereb. Cortex. 2001, 11, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Rickard, T.C.; Romero, S.G.; Basso, G.; Wharton, C.; Flitman, S.; Grafman, J. The calculating brain: An fMRI study. Neuropsychologia 2000, 38, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.; Moeller, K.; Glauche, V.; Weiller, C.; Willmes, K. Processing Pathways in Mental Arithmetic-Evidence from Probabilistic Fiber Tracking. PLoS ONE 2013, 8, e55455. [Google Scholar] [CrossRef] [Green Version]
- Sokolowski, H.M.; Fias, W.; Mousa, A.; Ansari, D. Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. Neuroimage 2017, 146, 376–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieder, A.; Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 2009, 32, 185–208. [Google Scholar] [CrossRef] [Green Version]
- Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001, 24, 85–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geary, D.C.; Hoard, M.K.; Byrd-Craven, J.; DeSoto, M.C. Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. J. Exp. Child Psychol. 2004, 88, 121–151. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.; Tannock, R. Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment; Springer: Berlin, Germany, 2012; Volume 2, pp. 1–554. [Google Scholar]
- Sebastián, M.V.; Mediavilla, R. Amplitud verbal de dígitos en orden directo en población española. Psicothema 2015, 27, 93–98. [Google Scholar]
- Lang, R.A. Pathways regulating lens induction in the mouse. Int. J. Dev. Biol. 2004, 48, 783–791. [Google Scholar] [CrossRef]
- Webber, C.A.; Hyakutake, M.T.; McFarlane, S. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev. Biol. 2003, 263, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Kinkl, N.; Ruiz, J.; Vecino, E.; Frasson, M.; Sahel, J.; Hicks, D. Possible involvement of a fibroblast growth factor 9 (FGF9)-FGF receptor-3-mediated pathway in adult pig retinal ganglion cell survival in vitro. Mol. Cell Neurosci. 2003, 23, 39–53. [Google Scholar] [CrossRef]
- Blanco, R.E.; López-Roca, A.; Soto, J.; Blagburn, J.M. Basic fibroblast growth factor applied to the optic nerve after injury increases long-term cell survival in the frog retina. J. Comp. Neurol. 2000, 423, 646–658. [Google Scholar] [CrossRef]
- Castellanos, F.X.; Proal, E. Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends. Cogn. Sci. 2012, 16, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Ungerleider, L.G.; Mishkin, M. The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends. Cogn. Sci. 2013, 17, 26–49. [Google Scholar] [CrossRef] [Green Version]
- Ahrendts, J.; Rüsch, N.; Wilke, M.; Philipsen, A.; Eickhoff, S.B.; Glauche, V.; Perlov, E.; Ebert, D.; Hennig, J.; van Elst, L.T. Visual cortex abnormalities in adults with ADHD: A structural MRI study. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2011, 12, 260–270. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, C.; He, Y.; Zang, Y.; Cao, Q.; Zhang, H.; Zhong, Q.; Wang, Y. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2009, 30, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Silk, T.J.; Vance, A.; Rinehart, N.; Bradshaw, J.L.; Cunnington, R. Dysfunction in the Fronto-Parietal Network in Attention Deficit Hyperactivity Disorder (ADHD): An fMRI Study. Brain Imaging Behav. 2008, 2, 123–131. [Google Scholar] [CrossRef]
- Wechsler, D. WISC-V: Technical and Interpretive Manual, 5th ed.; Pearson Clinical Assessment, PsychCorp: London, UK, 2012; Volume 2. [Google Scholar]
- Fang, F.; Kersten, D.; Murray, S.O. Perceptual grouping and inverse fMRI activity patterns in human visual cortex. J. Vis. 2008, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Aboitz, F.; Castellanos, F. Attention deficit hyperactivity disorder, catecholamines, and the default mode of brain function: A reassessment of the dopaminergic hypothesis of ADHD. In Treating Attention Deficit Hyperactivity Disorder; Civic Research Institute Kingston: Princeton, NJ, USA, 2011; pp. 1–2. [Google Scholar]
- Hupé, J.-M.; Pressnitzer, D. The initial phase of auditory and visual scene analysis. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2012, 367, 942–953. [Google Scholar] [CrossRef]
- Knapen, T.; Brascamp, J.; Adams, W.J.; Graf, E.W. The spatial scale of perceptual memory in ambiguous figure perception. J. Vis. 2009, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Roelfsema, P.R.; Tolboom, M.; Khayat, P.S. Different processing phases for features, figures, and selective attention in the primary visual cortex. Neuron 2007, 56, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Nigg, J.T.; Casey, B.J. An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Dev. Psychopathol. 2005, 17, 785–806. [Google Scholar] [CrossRef]
- Sarkar, I.N. Biomedical informatics and translational medicine. J. Transl. Med. 2010, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalow, W. Pharmacogenetics and pharmacogenomics: Origin, status, and the hope for personalized medicine. Pharm. J. 2006, 6, 162–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenev, A.; Markovska-Simoska, S.; Kocarev, L.; Pop-Jordanov, J.; Müller, A.; Candrian, G. Machine learning approach for classification of ADHD adults. Int. J. Psychophysiol. 2014, 93, 162–166. [Google Scholar] [CrossRef]
- Kautzky, A.; Vanicek, T.; Philippe, C.; Kranz, G.S.; Wadsak, W.; Mitterhauser, M.; Hartmann, A.; Hahn, A.; Hacker, M.; Rujescu, D.; et al. Machine learning classification of ADHD and HC by multimodal serotonergic data. Transl. Psychiatry 2020, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vélez, J.I. Machine Learning based Psychology: Advocating for A Data-Driven Approach. Int. J. Psychol. Res. 2021, 14, 6–11. [Google Scholar] [CrossRef]
- Owens, J.; Jackson, H. Attention-deficit/hyperactivity disorder severity, diagnosis, & later academic achievement in a national sample. Soc. Sci. Res. 2017, 61, 251–265. [Google Scholar] [PubMed] [Green Version]
Coding a | Task | Affected (n = 236) | Unaffected (n = 172) | d | P | Heritability | |
---|---|---|---|---|---|---|---|
h2 (SE) | p | ||||||
Mental Control | Mean (SD) | Mean (SD) | |||||
T4 | Numbers from 20 to 1 (Score) | 2.13 (0.99) | 2.55 (0.7) | −0.483 | 0.034 | 0.351 (0.138) | 0.006 |
Semantic Verbal Fluency | |||||||
T32 | Token Test 36/36 | 31.36 (3.8) | 33.51 (2.68) | −0.637 | 0.001 | 0.355 (0.124) | 0.002 |
WISC-III and WAIS-III subtests | |||||||
T42 | Digit span total—Forward | 6.84 (1.73) | 7.8 (1.92) | −0.526 | 3.7 × 10−4 | 0.492 (0.107) | 1.0 × 10−5 |
T43 | Digit span total—Backward | 4.53 (1.88) | 5.24 (1.87) | −0.375 | 0.001 | 0.171 (0.102) | 0.048 |
T44 | Total punctuation (forward and backward) | 11.32 (3.06) | 13.12 (3.33) | −0.564 | 1.6 × 10−5 | 0.416 (0.109) | 6.8 × 10−5 |
T45 | Vocabulary | 28.28 (10.63) | 35.51 (10.99) | −0.670 | 0.005 | 0.452 (0.126) | 1.7 × 10−4 |
T46 | Comprehension | 17.75 (6.27) | 21.01 (5.88) | −0.533 | 0.019 | 0.210 (0.107) | 0.025 |
T47 | Arithmetic | 12.94 (4.52) | 12.87 (3.87) | 0.016 | 0.007 | 0.365 (0.116) | 0.001 |
T48 | Similarities (analogies) | 16.16 (6.98) | 20.55 (5.89) | −0.671 | 0.002 | 0.366 (0.130) | 0.003 |
T49 | Figure completion | 18.81 (4.86) | 20.58 (3.45) | −0.410 | 0.036 | 0.235 (0.133) | 0.039 |
T52 | Object assembly | 25.56 (8.8) | 29.92 (9.13) | −0.488 | 0.012 | 0.323 (0.132) | 0.007 |
Coding a | Chr | Marker | Gene | Position b | FBAT Results | |||||
---|---|---|---|---|---|---|---|---|---|---|
Allele | Cohort | PFBAT (NIF) | ||||||||
Frequency | Additive | Dominant | Recessive | HA | ||||||
T44 | 11 | rs916457 | DRD4 | 637,014 | T | 0.050 | 0.026 (27) | 0.025 (27) | ||
C | 0.950 | 0.025 (27) | ||||||||
T46 | 4 | rs10001410 | ADGRL3 | 62,474,229 | A | 0.327 | 0.047 (54) | |||
C | 0.673 | 0.047 (54) | ||||||||
T47 | 4 | rs1565902 | ADGRL3 | 62,408,620 | C | 0.495 | 0.014 (65) | |||
T | 0.505 | 0.014 (65) | ||||||||
5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.041 (32) | ||||
A | 0.458 | 0.041 (32) | ||||||||
T48 | 5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.004 (64) | 1.9 × 10−4 (32) | ||
A | 0.458 | 0.004 (64) | 1.9 × 10−4 (32) | |||||||
T49 | 11 | rs916457 | DRD4 | 637,014 | C | 0.950 | 0.005 (27) | 0.005 (27) | ||
T | 0.050 | 0.005 (27) | 0.005 (27) | |||||||
5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.006 (32) | ||||
A | 0.458 | 0.006 (32) | ||||||||
T52 | 5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.005 (64) | |||
A | 0.458 | 0.005 (64) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes-Henriquez, M.L.; Acosta-López, J.E.; Ahmad, M.; Sánchez-Rojas, M.; Jiménez-Figueroa, G.; Pineda-Alhucema, W.; Martinez-Banfi, M.L.; Noguera-Machacón, L.M.; Mejía-Segura, E.; De La Hoz, M.; et al. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci. 2021, 11, 854. https://doi.org/10.3390/brainsci11070854
Cervantes-Henriquez ML, Acosta-López JE, Ahmad M, Sánchez-Rojas M, Jiménez-Figueroa G, Pineda-Alhucema W, Martinez-Banfi ML, Noguera-Machacón LM, Mejía-Segura E, De La Hoz M, et al. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sciences. 2021; 11(7):854. https://doi.org/10.3390/brainsci11070854
Chicago/Turabian StyleCervantes-Henriquez, Martha L., Johan E. Acosta-López, Mostapha Ahmad, Manuel Sánchez-Rojas, Giomar Jiménez-Figueroa, Wilmar Pineda-Alhucema, Martha L. Martinez-Banfi, Luz M. Noguera-Machacón, Elsy Mejía-Segura, Moisés De La Hoz, and et al. 2021. "ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD" Brain Sciences 11, no. 7: 854. https://doi.org/10.3390/brainsci11070854
APA StyleCervantes-Henriquez, M. L., Acosta-López, J. E., Ahmad, M., Sánchez-Rojas, M., Jiménez-Figueroa, G., Pineda-Alhucema, W., Martinez-Banfi, M. L., Noguera-Machacón, L. M., Mejía-Segura, E., De La Hoz, M., Arcos-Holzinger, M., Pineda, D. A., Puentes-Rozo, P. J., Arcos-Burgos, M., & Vélez, J. I. (2021). ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sciences, 11(7), 854. https://doi.org/10.3390/brainsci11070854