Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Neurological Outcome Assessment
2.4. Data Collection
2.5. Statistical Methods
3. Results
3.1. Study Population
3.2. Prediction of Unfavorable Outcome for Each Predictor
3.3. Concordance of Different Prognostic Tools to Predict Unfavorable Outcome
3.4. Time-Dependent Prognostic Model to Predict Unfavorable Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berdowski, J.; Berg, R.A.; Tijssen, J.G.; Koster, R.W. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010, 81, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Stiell, I.G.; Nichol, G.; Leroux, B.G.; Rea, T.D.; Ornato, J.P.; Powell, J.; Christenson, J.; Callaway, C.; Kudenchuk, P.J.; Aufderheide, T.P.; et al. Early versus later rhythm analysis in patients with out-of-hospital cardiac arrest. N. Engl. J. Med. 2011, 365, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.P.; Sandroni, C.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Haywood, K.; Lilja, G.; Moulaert, V.R.; et al. European resuscitation council and European society of intensive care medicine guidelines 2021: Post-resuscitation care. Resuscitation 2021, 161, 220–269. [Google Scholar] [CrossRef]
- Neumar, R.W.; Nolan, J.P.; Adrie, C.; Aibiki, M.; Berg, R.A.; Bottiger, B.W.; Callaway, C.; Clark, R.S.; Geocadin, R.G.; Jauch, E.C.; et al. Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 2008, 118, 2452–2483. [Google Scholar]
- Laver, S.; Farrow, C.; Turner, D.; Nolan, J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensiv. Care Med. 2004, 30, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Dragancea, I.; Wise, M.P.; Al-Subaie, N.; Cranshaw, J.; Friberg, H.; Glover, G.; Pellis, T.; Rylance, R.; Walden, A.; Nielsen, N.; et al. Protocol-driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation 2017, 117, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [Green Version]
- Tortorici, M.A.; Kochanek, P.; Poloyac, S.M. Effects of hypothermia on drug disposition, metabolism, and response: A focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit. Care Med. 2007, 35, 2196–2204. [Google Scholar] [CrossRef]
- Westhall, E.; Rossetti, A.O.; Van Rootselaar, A.-F.; Kjaer, T.W.; Horn, J.; Ullén, S.; Friberg, H.; Nielsen, N.; Rosén, I.; Aneman, A.; et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 2016, 86, 1482–1490. [Google Scholar] [CrossRef]
- Stammet, P.; Collignon, O.; Hassager, C.; Wise, M.; Hovdenes, J.; Aneman, A.; Horn, J.; Devaux, Y.; Erlinge, D.; Kjaergaard, J.; et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. J. Am. Coll. Cardiol. 2015, 65, 2104–2114. [Google Scholar] [CrossRef]
- Oddo, M.; Sandroni, C.; Citerio, G.; Miroz, J.-P.; Horn, J.; Rundgren, M.; Cariou, A.; Payen, J.-F.; Storm, C.; Stammet, P.; et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: An international prospective multicenter double-blinded study. Intensiv. Care Med. 2018, 44, 2102–2111. [Google Scholar] [CrossRef] [Green Version]
- Sivaraju, A.A.; Gilmore, E.E.; Wira, C.C.; Stevens, A.A.; Rampal, N.N.; Moeller, J.J.; Greer, D.M.D.; Hirsch, L.L.; Gaspard, N. Prognostication of post-cardiac arrest coma: Early clinical and electroencephalographic predictors of outcome. Intensiv. Care Med. 2015, 41, 1264–1272. [Google Scholar] [CrossRef]
- Peluso, L.; Belloni, I.; Calabro’, L.; Dell’Anna, A.M.; Nobile, L.; Creteur, J.; Vincent, J.-L.; Taccone, F.S. Oxygen and carbon dioxide levels in patients after cardiac arrest. Resuscitation 2020, 150, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.O.; Tovar Quiroga, D.F.; Juan, E.; Novy, J.; White, R.D.; Ben-Hamouda, N.; Britton, J.W.; Oddo, M.; Rabinstein, A.A. Electroencephalography predicts poor and good outcomes after cardiac arrest: A two-center study. Crit. Care Med. 2017, 45, e674–e682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Benarous, L.; Gavaret, M.; Diop, M.S.; Tobarias, J.; Bourmont, S.D.G.D.; Allez, C.; Bouzana, F.; Gainnier, M.; Trebuchon, A. Sources of interrater variability and prognostic value of standardized EEG features in post-anoxic coma after resuscitated cardiac arrest. Clin. Neurophysiol. Pract. 2019, 4, 20–26. [Google Scholar] [CrossRef]
- Amorim, E.; Rittenberger, J.C.; Baldwin, M.E.; Callaway, C.W.; Popescu, A. Post Cardiac Arrest S: Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation 2015, 90, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Westhall, E.; Rosén, I.; Rundgren, M.; Bro-Jeppesen, J.; Kjaergaard, J.; Hassager, C.; Lindehammar, H.; Horn, J.; Ullén, S.; Nielsen, N.; et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin. Neurophysiol. 2018, 129, 1660–1668. [Google Scholar] [CrossRef]
- Rundgren, M.; Westhall, E.; Cronberg, T.; Rosén, I.; Friberg, H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit. Care Med. 2010, 38, 1838–1844. [Google Scholar] [CrossRef]
- Streitberger, K.J.; Leithner, C.; Wattenberg, M.; Tonner, P.H.; Hasslacher, J.; Joannidis, M.; Pellis, T.; Di Luca, E.; Fodisch, M.; Krannich, A.; et al. Neuron-specific enolase predicts poor outcome after cardiac arrest and targeted temperature management: A multicenter study on 1053 Patients. Crit. Care Med. 2017, 45, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.O.; Carrera, E.; Oddo, M. Early EEG correlates of neuronal injury after brain anoxia. Neurology 2012, 78, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Oddo, M.; Rossetti, A.O. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit. Care Med. 2014, 42, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Scarpino, M.; Lanzo, G.; Lolli, F.; Carrai, R.; Moretti, M.; Spalletti, M.; Cozzolino, M.; Peris, A.; Amantini, A.; Grippo, A. Data on multimodal approach for early poor outcome (Cerebral Performance Categories 3-5) prediction after cardiac arrest. Data Brief 2018, 19, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, M.J.; You, J.S.; Lee, H.S.; Park, Y.S.; Park, I.C.; Chung, S.P. Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management. Resuscitation 2019, 134, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseby-Knappe, M.; Westhall, E.; Backman, S.; Mattsson-Carlgren, N.; Dragancea, I.; Lybeck, A.; Friberg, H.; Stammet, P.; Lilja, G.; Horn, J.; et al. Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. Intensiv. Care Med. 2020, 46, 1852–1862. [Google Scholar] [CrossRef]
- Cronberg, T.; Rundgren, M.; Westhall, E.; Englund, E.; Siemund, R.; Rosén, I.; Widner, H.; Friberg, H. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology 2011, 77, 623–630. [Google Scholar] [CrossRef]
- Bongiovanni, F.; Romagnosi, F.; Barbella, G.; Di Rocco, A.; Rossetti, A.O.; Taccone, F.S.; Sandroni, C.; Oddo, M. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. Intensiv. Care Med. 2020, 46, 963–972. [Google Scholar] [CrossRef]
- Sandroni, C.; Cariou, A.; Cavallaro, F.; Cronberg, T.; Friberg, H.; Hoedemaekers, C.; Horn, J.; Nolan, J.P.; Rossetti, A.O.; Soar, J. Prognostication in comatose survivors of cardiac arrest: An advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation 2014, 85, 1779–1789. [Google Scholar] [CrossRef]
- Sandroni, C.; D’Arrigo, S.; Cacciola, S.; Hoedemaekers, C.W.E.; Kamps, M.J.A.; Oddo, M.; Taccone, F.S.; Di Rocco, A.; Meijer, F.J.A.; Westhall, E.; et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: A systematic review. Intensiv. Care Med. 2020, 46, 1803–1851. [Google Scholar] [CrossRef]
- Backman, S.; Cronberg, T.; Friberg, H.; Ullén, S.; Horn, J.; Kjaergaard, J.; Hassager, C.; Wanscher, M.; Nielsen, N.; Westhall, E. Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial. Resuscitation 2018, 131, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Sondag, L.; Ruijter, B.J.; Tjepkema-Cloostermans, M.C.; Beishuizen, A.; Bosch, F.H.; Van Til, J.A.; Van Putten, M.J.A.M.; Hofmeijer, J. Early EEG for outcome prediction of postanoxic coma: Prospective cohort study with cost-minimization analysis. Crit. Care 2017, 21, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, C.S.; Callaway, C.W.; Rittenberger, J.C. Combination of initial neurologic examination, quantitative brain imaging and electroencephalography to predict outcome after cardiac arrest. Resuscitation 2017, 110, 120–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All Patients (n = 137) | FO (n = 34) | UO (n = 103) | p Value | |
---|---|---|---|---|
Male gender, n (%) | 95 (69) | 26 (77) | 69 (67) | 0.39 |
Age, years | 65 (54–72) | 60 (50–67) | 67 (55–73) | <0.01 |
CARDIAC ARREST | ||||
Witnessed, n (%) | 116 (85) | 33 (97) | 83 (81) | 0.03 |
Bystander CPR, n (%) | 84 (61) | 23 (68) | 61 (59) | 0.42 |
Out-of-Hospital Cardiac arrest, n (%) | 98 (72) | 28 (82) | 70 (68) | 0.13 |
Time to ROSC, min | 21 (15–32) | 15 (10–21) | 25 (18–35) | <0.01 |
Epinephrine, mg | 3 (2–6) | 2 (1–5) | 4 (2–7) | <0.01 |
Non-cardiac Origin, n (%) | 68 (50) | 8 (24) | 60 (58) | <0.01 |
Shockable Rhythm, n (%) | 50 (37) | 21 (62) | 29 (28) | <0.01 |
COMORBID DISEASES | ||||
Chronic Heart Failure, n (%) | 21 (15) | 6 (18) | 15 (15) | 0.78 |
Hypertension, n (%) | 53 (39) | 11 (32) | 42 (41) | 0.42 |
Coronary Artery Disease, n (%) | 43 (31) | 14 (41) | 29 (28) | 0.20 |
Diabetes, n (%) | 33 (24) | 7 (21) | 26 (25) | 0.65 |
COPD/Asthma, n (%) | 23 (17) | 6 (18) | 17 (17) | 0.99 |
Previous neurological disease, n (%) | 13 (10) | 3 (9) | 10 (10) | 0.99 |
Chronic Renal Failure, n (%) | 10 (7) | 2 (6) | 8 (8) | 0.99 |
Liver Cirrhosis, n (%) | 3 (2) | 0 | 3 (3) | 0.57 |
Others immunosuppressive agents, n (%) | 2 (2) | 0 | 2 (2) | 0.99 |
DURING ICU STAY | ||||
Arterial Lactate on admission (mEq/L) | 6.8 (4.4–9.4) | 4.8 (3.5–6.5) | 7.3 (5.1–10.7) | <0.01 |
Creatinine on admission (mg/dL) | 1.3 (1.0–1.7) | 1.2 (0.9–1.4) | 1.3 (1.1–1.8) | 0.04 |
TTM, n (%) | 116 (85) | 29 (85) | 87 (84) | 0.99 |
MV, n (%) | 137 (100) | 34 (100) | 103 (100) | 1.00 |
RRT, n (%) | 16 (12) | 3 (9) | 13 (13) | 0.76 |
Vasopressor any time, n (%) | 117 (85) | 27 (79) | 90 (87) | 0.27 |
Dobutamine any time, n (%) | 71 (52) | 15 (44) | 56 (54) | 0.33 |
Shock, n (%) | 62 (45) | 12 (35) | 50 (49) | 0.23 |
Corticosteroids, n (%) | 21 (15) | 3 (9) | 18 (18) | 0.28 |
IABP, n (%) | 4 (3) | 2 (6) | 2 (2) | 0.26 |
ECMO, n (%) | 18 (13) | 4 (12) | 14 (14) | 1.00 |
OUTCOMES | ||||
ICU Stay, days | 4 (3–8) | 10 (6–13) | 4 (2–5) | <0.01 |
ICU Mortality, n (%) | 96 (70) | - | 96 (93) | <0.001 |
FO (n = 34) | UO (n = 103) | p Value | Sens Spec | PPV NPV | FPR | |
---|---|---|---|---|---|---|
CLINICAL | ||||||
Bilateral Absence of PLR Day 3, n (%) | 5 (15) | 21 (20) | 0.62 | 20% 85% | 81% 26% | 15% |
Poor Motor Response Day 3, n (%) | 16 (47) | 98 (95) | <0.01 | 95% 53% | 86% 78% | 47% |
Myoclonus Any Time, n (%) | 1 (3) | 28 (27) | <0.01 | 27% 97% | 97% 31% | 3% |
AUTOMATED PUPILLOMETRY | ||||||
NPi Day 1 | 4.5 (4.2–4.6) | 3.9 (0–4.4) | <0.01 | |||
NPi <2 Day 1, n (%) | 0 | 30 (29) | <0.01 | 29% 100% | 100% 32% | 0% |
NPI Day 2 | 4.6 (4.2–4.7) | 4.1 (0–4.5) | <0.01 | |||
NPi <2 Day 2, n (%) | 0 | 26 (25) | <0.01 | 25% 100% | 100% 31% | 0% |
EEG | ||||||
HMp Day 1, n (%) | 0 | 60/96 (63) | <0.01 | 63% 100% | 100% 47% | 0% |
HMp Day 2, n (%) | 0 | 19/82 (23) | <0.01 | 23% 100% | 100% 32% | 0% |
Unreactive EEG Day 1, n (%) | 9/32 (28) | 76/96 (79) | <0.01 | 79% 72% | 89% 53% | 28% |
Unreactive EEG Day 2, n (%) | 3/29 (10) | 48/82 (59) | <0.01 | 59% 90% | 94% 43% | 10% |
OTHERS | ||||||
Bilateral Absence of N20 Day 3, n (%) | 0 | 24/53 (45) | 0.04 | 45% 100% | 100% 19% | 0% |
NSE value > 75 μg/L | 0 | 38/85 (45) | <0.01 | 45% 100% | 100% 37% | 0% |
Highest NSE value over 3 days, mcg/L | 26 (21–38) | 59 (33–141) | <0.01 |
FO n = 34 | UO n = 30 | |
---|---|---|
NPi on day 1 | ||
Total of measurements, n Median [IQR] | 34 4.5 [4.2–4.6] | 30 4.2 [3.8–4.4] * |
EEG on day 2 | ||
Total of measurements, n Reactive, n (%) | 29 26 (90) | 29 22 (76) |
SSEP on day 2–3 | ||
Total of measurements, n (%) N20 bilaterally present, n (%) | 7 7 (100) | 13 13 (100) |
Highest values of NSE, mg/L | ||
Total of measurements, (%) Median [IQR] | 28 26 [16–27,33–38] | 25 32 [19–27,33–38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peluso, L.; Boisdenghien, T.; Attanasio, L.; Annoni, F.; Mateus Sanabria, L.; Severgnini, P.; Legros, B.; Gouvêa Bogossian, E.; Vincent, J.-L.; Creteur, J.; et al. Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience. Brain Sci. 2021, 11, 888. https://doi.org/10.3390/brainsci11070888
Peluso L, Boisdenghien T, Attanasio L, Annoni F, Mateus Sanabria L, Severgnini P, Legros B, Gouvêa Bogossian E, Vincent J-L, Creteur J, et al. Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience. Brain Sciences. 2021; 11(7):888. https://doi.org/10.3390/brainsci11070888
Chicago/Turabian StylePeluso, Lorenzo, Thomas Boisdenghien, Laila Attanasio, Filippo Annoni, Lili Mateus Sanabria, Paolo Severgnini, Benjamin Legros, Elisa Gouvêa Bogossian, Jean-Louis Vincent, Jacques Creteur, and et al. 2021. "Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience" Brain Sciences 11, no. 7: 888. https://doi.org/10.3390/brainsci11070888
APA StylePeluso, L., Boisdenghien, T., Attanasio, L., Annoni, F., Mateus Sanabria, L., Severgnini, P., Legros, B., Gouvêa Bogossian, E., Vincent, J. -L., Creteur, J., Oddo, M., Gaspard, N., & Taccone, F. S. (2021). Multimodal Approach to Predict Neurological Outcome after Cardiac Arrest: A Single-Center Experience. Brain Sciences, 11(7), 888. https://doi.org/10.3390/brainsci11070888