Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review
Abstract
:1. Introduction
- (1)
- We overview motor learning studies using tACS over a single brain region.
- (2)
- We discuss the tACS approach targeting multiple concurrent brain regions to enhance motor learning by manipulating oscillatory brain communication.
- (3)
- We review the abnormal oscillatory brain activity and communication associated with motor deficits in patients with stroke and PD, and then discuss the potential of tACS to ameliorate behavioral deficits by correcting abnormal oscillatory brain activity and promoting appropriate oscillatory communication.
- (4)
- We discuss the future of tACS, which may harness novel approaches such as personalized stimulation parameters and dual brain stimulation, considering interpersonal interactions to stabilize and facilitate motor learning processes.
2. Motor Learning by tACS over Single Site
2.1. Primary Motor Cortex (M1)
2.2. Non-Primary Motor Cortex and Cerebellum
3. Motor Learning by tACS Targeting Brain Communication
3.1. Communication between Bilateral M1s
3.2. Communication between M1 and Cerebellar Cortex
3.3. Communication between Frontal and Parietal Cortices
4. tACS Approach for Motor Deficits in Stroke and PD Patients
4.1. Stroke
4.2. PD
5. Future tACS Approaches to Stabilize and Promote Motor Learning
5.1. Focal and Personalized tACS for Appropriate Stimulation
5.2. tACS Considering Interpersonal Interaction
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yarrow, K.; Brown, P.; Krakauer, J.W. Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nat. Rev. Neurosci. 2009, 10, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, C.D.; Irvine, T.A.; Sims, J.L.; Wang, Y.L.; Su, A.W.; Norris, D.O. Complex hand dexterity: A review of biomechanical methods for measuring musical performance. Front. Psychol. 2014, 5, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winstein, C.J.; Kay, D.B. Translating the science into practice: Shaping rehabilitation practice to enhance recovery after brain damage. Prog. Brain Res. 2015, 218, 331–360. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, J.W.; Hadjiosif, A.M.; Xu, J.; Wong, A.L.; Haith, A.M. Motor Learning. Compr. Physiol. 2019, 9, 613–663. [Google Scholar] [CrossRef] [PubMed]
- Dayan, E.; Cohen, L.G. Neuroplasticity subserving motor skill learning. Neuron 2011, 72, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Hikosaka, O.; Nakamura, K.; Sakai, K.; Nakahara, H. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 2002, 12, 217–222. [Google Scholar] [CrossRef]
- Hardwick, R.M.; Rottschy, C.; Miall, R.C.; Eickhoff, S.B. A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 2013, 67, 283–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halakoo, S.; Ehsani, F.; Hosnian, M.; Zoghi, M.; Jaberzadeh, S. The comparative effects of unilateral and bilateral transcranial direct current stimulation on motor learning and motor performance: A systematic review of literature and meta-analysis. J. Clin. Neurosci. 2020, 72, 8–14. [Google Scholar] [CrossRef]
- O’Brien, A.T.; Bertolucci, F.; Torrealba-Acosta, G.; Huerta, R.; Fregni, F.; Thibaut, A. Non-invasive brain stimulation for fine motor improvement after stroke: A meta-analysis. Eur. J. Neurol. 2018, 25, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Gaetz, W.; Edgar, J.C.; Wang, D.J.; Roberts, T.P.L. Relating MEG measured motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration. Neuroimage 2011, 55, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Muthukumaraswamy, S.D. Functional properties of human primary motor cortex gamma oscillations. J. Neurophysiol. 2010, 104, 2873–2885. [Google Scholar] [CrossRef] [Green Version]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Lopes da Silva, F.H. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006, 31, 153–159. [Google Scholar] [CrossRef]
- Davis, N.J.; Tomlinson, S.P.; Morgan, H.M. The Role of Beta-Frequency Neural Oscillations in Motor Control. J. Neurosci. 2012, 32, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Pollok, B.; Latz, D.; Krause, V.; Butz, M.; Schnitzler, A. Changes of motor-cortical oscillations associated with motor learning. Neuroscience 2014, 275, 47–53. [Google Scholar] [CrossRef]
- Vosskuhl, J.; Struber, D.; Herrmann, C.S. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front. Hum. Neurosci. 2018, 12, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Vöröslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, R.F.; Schneider, T.R.; Rach, S.; Trautmann-Lengsfeld, S.A.; Engel, A.K.; Herrmann, C.S. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 2014, 24, 333–339. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, M.D.; Abbott, D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 2009, 5, e1000348. [Google Scholar] [CrossRef] [Green Version]
- Del Felice, A.; Castiglia, L.; Formaggio, E.; Cattelan, M.; Scarpa, B.; Manganotti, P.; Tenconi, E.; Masiero, S. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: A randomized cross-over trial. NeuroImage Clin. 2019, 22, 101768. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, A.; Gross, J. Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 2005, 6, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Violante, I.R.; Li, L.M.; Carmichael, D.W.; Lorenz, R.; Leech, R.; Hampshire, A.; Rothwell, J.C.; Sharp, D.J. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. eLife 2017, 6, e22001. [Google Scholar] [CrossRef]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, C.S.; Rach, S.; Neuling, T.; Struber, D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013, 7, 279. [Google Scholar] [CrossRef] [Green Version]
- Cabral-Calderin, Y.; Wilke, M. Probing the Link Between Perception and Oscillations: Lessons from Transcranial Alternating Current Stimulation. Neuroscientist 2020, 26, 57–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrien, D.J.; Cassidy, M.J.; Brown, P. The importance of the dominant hemisphere in the organization of bimanual movements. Hum. Brain Mapp. 2003, 18, 296–305. [Google Scholar] [CrossRef]
- Miyaguchi, S.; Inukai, Y.; Matsumoto, Y.; Miyashita, M.; Takahashi, R.; Otsuru, N.; Onishi, H. Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere. J. Clin. Neurosci. 2020, 78, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.; Spolidoro, M.; Proville, R.D.; Guyon, N.; Belliveau, L.; Léna, C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J. Neurosci. 2013, 33, 6552–6556. [Google Scholar] [CrossRef] [Green Version]
- Lange, R.K.; Braun, C.; Godde, B. Coordinate processing during the left-to-right hand transfer investigated by EEG. Exp. Brain Res. 2006, 168, 547–556. [Google Scholar] [CrossRef]
- Nicolo, P.; Rizk, S.; Magnin, C.; Pietro, M.D.; Schnider, A.; Guggisberg, A.G. Coherent neural oscillations predict future motor and language improvement after stroke. Brain 2015, 138, 3048–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Quinlan, E.B.; Dodakian, L.; McKenzie, A.; Kathuria, N.; Zhou, R.J.; Augsburger, R.; See, J.; Le, V.H.; Srinivasan, R.; et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 2015, 138, 2359–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swann, N.C.; de Hemptinne, C.; Aron, A.R.; Ostrem, J.L.; Knight, R.T.; Starr, P.A. Elevated synchrony in Parkinson disease detected with electroencephalography. Ann. Neurol. 2015, 78, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Brugger, F.; Wegener, R.; Walch, J.; Galovic, M.; Hägele-Link, S.; Bohlhalter, S.; Kägi, G. Altered activation and connectivity of the supplementary motor cortex at motor initiation in Parkinson’s disease patients with freezing. Clin. Neurophysiol. 2020, 131, 2171–2180. [Google Scholar] [CrossRef]
- Madrid, J.; Benninger, D.H. Non-invasive brain stimulation for Parkinson’s disease: Clinical evidence, latest concepts and future goals: A systematic review. J. Neurosci. Methods 2021, 347, 108957. [Google Scholar] [CrossRef]
- Ganguly, J.; Murgai, A.; Sharma, S.; Aur, D.; Jog, M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front. Neurosci. 2020, 14, 522. [Google Scholar] [CrossRef]
- Assenza, G.; Capone, F.; di Biase, L.; Ferreri, F.; Florio, L.; Guerra, A.; Marano, M.; Paolucci, M.; Ranieri, F.; Salomone, G.; et al. Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation. Front. Aging Neurosci. 2017, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Pollok, B.; Boysen, A.C.; Krause, V. The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning. Behav. Brain Res. 2015, 293, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Hara, M.; Matsushita, K.; Kawakami, K.; Kawakami, K.; Anan, M.; Sugata, H. Off-line effects of alpha-frequency transcranial alternating current stimulation on a visuomotor learning task. Brain Behav. 2020, 10, e01754. [Google Scholar] [CrossRef] [PubMed]
- Krause, V.; Meier, A.; Dinkelbach, L.; Pollok, B. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence. Front. Behav. Neurosci. 2016, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Sugata, H.; Yagi, K.; Yazawa, S.; Nagase, Y.; Tsuruta, K.; Ikeda, T.; Matsushita, K.; Hara, M.; Kawakami, K.; Kawakami, K. Modulation of Motor Learning Capacity by Transcranial Alternating Current Stimulation. Neuroscience 2018, 391, 131–139. [Google Scholar] [CrossRef]
- Rumpf, J.J.; Barbu, A.; Fricke, C.; Wegscheider, M.; Classen, J. Posttraining Alpha Transcranial Alternating Current Stimulation Impairs Motor Consolidation in Elderly People. Neural Plast. 2019, 2019, 2689790. [Google Scholar] [CrossRef] [Green Version]
- Mathewson, K.E.; Lleras, A.; Beck, D.M.; Fabiani, M.; Ro, T.; Gratton, G. Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front. Psychol. 2011, 2, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, O.; Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, A.N.; Huang, B.S.; Macisaac, S.E.; Mody, I.; Carmichael, S.T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 2010, 468, 305–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresnoza, S.; Christova, M.; Bieler, L.; Körner, C.; Zimmer, U.; Gallasch, E.; Ischebeck, A. Age-Dependent Effect of Transcranial Alternating Current Stimulation on Motor Skill Consolidation. Front. Aging Neurosci. 2020, 12, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giustiniani, A.; Tarantino, V.; Bonaventura, R.E.; Smirni, D.; Turriziani, P.; Oliveri, M. Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Behav. Brain Res. 2019, 376, 112170. [Google Scholar] [CrossRef]
- Bologna, M.; Guerra, A.; Paparella, G.; Colella, D.; Borrelli, A.; Suppa, A.; Di Lazzaro, V.; Brown, P.; Berardelli, A. Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Motor Learning in Healthy Humans. Neuroscience 2019, 411, 130–139. [Google Scholar] [CrossRef]
- Akkad, H.; Dupont-Hadwen, J.; Frese, A.; Tetkovic, I.; Barrett, L.; Bestmann, S.; Stagg, C.J. Increasing motor skill acquisition by driving theta-gamma coupling. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Roshchupkina, L.; Stee, W.; Peigneux, P. Beta-tACS does not impact the dynamics of motor memory consolidation. Brain Stimul. 2020, 13, 1489–1490. [Google Scholar] [CrossRef] [PubMed]
- Joundi, R.A.; Jenkinson, N.; Brittain, J.S.; Aziz, T.Z.; Brown, P. Driving oscillatory activity in the human cortex enhances motor performance. Curr. Biol. 2012, 22, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Pogosyan, A.; Gaynor, L.D.; Eusebio, A.; Brown, P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr. Biol. 2009, 19, 1637–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wischnewski, M.; Schutter, D.; Nitsche, M.A. Effects of beta-tACS on corticospinal excitability: A meta-analysis. Brain Stimul. 2019, 12, 1381–1389. [Google Scholar] [CrossRef] [Green Version]
- Moisa, M.; Polania, R.; Grueschow, M.; Ruff, C.C. Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations. J. Neurosci. 2016, 36, 12053–12065. [Google Scholar] [CrossRef] [Green Version]
- Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 2009, 32, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Berntsen, M.B.; Cooper, N.R.; Hughes, G.; Romei, V. Prefrontal transcranial alternating current stimulation improves motor sequence reproduction. Behav. Brain Res. 2019, 361, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.Y.; Zanto, T.P.; Gazzaley, A. Parametric effects of transcranial alternating current stimulation on multitasking performance. Brain Stimul. 2019, 12, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The role of executive function and attention in gait. Mov. Disord. 2008, 23, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, N.; Mori, T.; Suzukamo, Y.; Tanaka, N.; Izumi, S. Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking. BMC Neurosci. 2016, 17, 9. [Google Scholar] [CrossRef] [Green Version]
- Toyokura, M.; Muro, I.; Komiya, T.; Obara, M. Activation of Pre–Supplementary Motor Area (SMA) and SMA Proper during Unimanual and Bimanual Complex Sequences: An Analysis Using Functional Magnetic Resonance Imaging. J. Neuroimaging 2002, 12, 172–178. [Google Scholar] [CrossRef]
- Wilson, T.W.; Kurz, M.J.; Arpin, D.J. Functional specialization within the supplementary motor area: A fNIRS study of bimanual coordination. Neuroimage 2014, 85, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Miyaguchi, S.; Inukai, Y.; Takahashi, R.; Miyashita, M.; Matsumoto, Y.; Otsuru, N.; Onishi, H. Effects of stimulating the supplementary motor area with a transcranial alternating current for bimanual movement performance. Behav. Brain Res. 2020, 393, 112801. [Google Scholar] [CrossRef]
- Naro, A.; Leo, A.; Russo, M.; Cannavò, A.; Milardi, D.; Bramanti, P.; Calabrò, R.S. Does Transcranial Alternating Current Stimulation Induce Cerebellum Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological Approach. Brain Stimul. 2016, 9, 388–395. [Google Scholar] [CrossRef]
- Wessel, M.J.; Draaisma, L.R.; de Boer, A.F.W.; Park, C.H.; Maceira-Elvira, P.; Durand-Ruel, M.; Koch, P.J.; Morishita, T.; Hummel, F.C. Cerebellar transcranial alternating current stimulation in the gamma range applied during the acquisition of a novel motor skill. Sci. Rep. 2020, 10, 11217. [Google Scholar] [CrossRef]
- Penhune, V.B.; Doyon, J. Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage 2005, 26, 801–812. [Google Scholar] [CrossRef]
- Camus, M.; Ragert, P.; Vandermeeren, Y.; Cohen, L.G. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin. Neurophysiol. 2009, 120, 1859–1865. [Google Scholar] [CrossRef] [Green Version]
- Mary, A.; Wens, V.; Op de Beeck, M.; Leproult, R.; De Tiège, X.; Peigneux, P. Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities. Cereb. Cortex 2017, 27, 4923–4932. [Google Scholar] [CrossRef]
- Perez, M.A.; Wise, S.P.; Willingham, D.T.; Cohen, L.G. Neurophysiological mechanisms involved in transfer of procedural knowledge. J. Neurosci. 2007, 27, 1045–1053. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Kwon, J.W.; Park, J.W. Changes in brain activation patterns according to cross-training effect in serial reaction time task: An functional MRI study. Neural Regen. Res. 2013, 8, 639–646. [Google Scholar] [CrossRef]
- von Rein, E.; Hoff, M.; Kaminski, E.; Sehm, B.; Steele, C.J.; Villringer, A.; Ragert, P. Improving motor performance without training: The effect of combining mirror visual feedback with transcranial direct current stimulation. J. Neurophysiol. 2015, 113, 2383–2389. [Google Scholar] [CrossRef] [Green Version]
- Garry, M.I.; Loftus, A.; Summers, J.J. Mirror, mirror on the wall: Viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp. Brain Res. 2005, 163, 118–122. [Google Scholar] [CrossRef]
- Takeuchi, N.; Mizoe, A. Synchronous oscillatory entrainment of neural activity between bilateral motor cortices alter intermanual transfer. In Proceedings of the Virtual ISPRM 2021 Congress, Online, 12–15 June 2021. [Google Scholar]
- Lange, R.K.; Godde, B.; Braun, C. EEG correlates of coordinate processing during intermanual transfer. Exp. Brain Res. 2004, 159, 161–171. [Google Scholar] [CrossRef]
- Heise, K.F.; Monteiro, T.S.; Gijbels, V.; Leunissen, I.H.; Mantni, D.; Swinnen, S.P. Modulation of interhemispheric connectivity by alternating current stimulation and its impact on transitions between bimanual movements of varying stability. Brain Stimul. 2017, 10, 452. [Google Scholar] [CrossRef]
- Heise, K.F.; Monteiro, T.S.; Leunissen, I.; Mantini, D.; Swinnen, S.P. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Sci. Rep. 2019, 9, 3144. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, N.; Oouchida, Y.; Izumi, S. Motor Control and Neural Plasticity through Interhemispheric Interactions. Neural Plast. 2012, 2012, 823285. [Google Scholar] [CrossRef]
- Jackson, A.K.; de Albuquerque, L.L.; Pantovic, M.; Fischer, K.M.; Guadagnoli, M.A.; Riley, Z.A.; Poston, B. Cerebellar Transcranial Direct Current Stimulation Enhances Motor Learning in a Complex Overhand Throwing Task. Cerebellum 2019, 18, 813–816. [Google Scholar] [CrossRef]
- Naro, A.; Bramanti, A.; Leo, A.; Manuli, A.; Sciarrone, F.; Russo, M.; Bramanti, P.; Calabrò, R.S. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct. Funct. 2017, 222, 2891–2906. [Google Scholar] [CrossRef]
- Brass, M.; Heyes, C. Imitation: Is cognitive neuroscience solving the correspondence problem? Trends Cogn. Sci. 2005, 9, 489–495. [Google Scholar] [CrossRef]
- Buccino, G.; Vogt, S.; Ritzl, A.; Fink, G.R.; Zilles, K.; Freund, H.J.; Rizzolatti, G. Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 2004, 42, 323–334. [Google Scholar] [CrossRef]
- Iacoboni, M. Imitation, empathy, and mirror neurons. Annu. Rev. Psychol. 2009, 60, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Caspers, S.; Zilles, K.; Laird, A.R.; Eickhoff, S.B. ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 2010, 50, 1148–1167. [Google Scholar] [CrossRef] [Green Version]
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 2012, 36, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolatti, G.; Cattaneo, L.; Fabbri-Destro, M.; Rozzi, S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol. Rev. 2014, 94, 655–706. [Google Scholar] [CrossRef]
- Takeuchi, N.; Terui, Y.; Izumi, S.I. Oscillatory entrainment of neural activity between inferior frontoparietal cortices alters imitation performance. Neuropsychologia 2021, 150, 107702. [Google Scholar] [CrossRef] [PubMed]
- Donkervoort, M.; Dekker, J.; Deelman, B. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes. Clin. Rehabil. 2006, 20, 1085–1093. [Google Scholar] [CrossRef] [Green Version]
- Dovern, A.; Fink, G.R.; Saliger, J.; Karbe, H.; Koch, I.; Weiss, P.H. Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. J. Neurosci. 2011, 31, 8102–8108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Srinivasan, R.; Kaur, A.; Cramer, S.C. Resting-state cortical connectivity predicts motor skill acquisition. Neuroimage 2014, 91, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Fries, P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends Cogn. Sci. 2005, 9, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Thut, G.; Miniussi, C.; Gross, J. The functional importance of rhythmic activity in the brain. Curr. Biol. 2012, 22, R658–R663. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.M.; Vezoli, J.; Fries, P. Communication through coherence with inter-areal delays. Curr. Opin. Neurobiol. 2015, 31, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, H.E.; Boudrias, M.H.; Ward, N.S. Do movement-related beta oscillations change after stroke? J. Neurophysiol. 2014, 112, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- van Putten, M.J.; Hofmeijer, J. EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications. J. Clin. Neurophysiol. 2016, 33, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, J.M.; Wodeyar, A.; Wu, J.; Kaur, K.; Masuda, A.K.; Srinivasan, R.; Cramer, S.C. Low-Frequency Oscillations Are a Biomarker of Injury and Recovery After Stroke. Stroke 2020, 51, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Foreman, B.; Claassen, J. Quantitative EEG for the detection of brain ischemia. Crit. Care 2012, 16, 216. [Google Scholar] [CrossRef] [Green Version]
- Stinear, C.M. Prediction of motor recovery after stroke: Advances in biomarkers. Lancet Neurol. 2017, 16, 826–836. [Google Scholar] [CrossRef]
- Grefkes, C.; Nowak, D.A.; Eickhoff, S.B.; Dafotakis, M.; Küst, J.; Karbe, H.; Fink, G.R. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 2008, 63, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Vahdat, S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke 2015, 46, 296–301. [Google Scholar] [CrossRef]
- Westlake, K.P.; Hinkley, L.B.; Bucci, M.; Guggisberg, A.G.; Byl, N.; Findlay, A.M.; Henry, R.G.; Nagarajan, S.S. Resting state alpha-band functional connectivity and recovery after stroke. Exp. Neurol. 2012, 237, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Pichiorri, F.; Petti, M.; Caschera, S.; Astolfi, L.; Cincotti, F.; Mattia, D. An EEG index of sensorimotor interhemispheric coupling after unilateral stroke: Clinical and neurophysiological study. Eur. J. Neurosci. 2018, 47, 158–163. [Google Scholar] [CrossRef]
- Mottaz, A.; Solcà, M.; Magnin, C.; Corbet, T.; Schnider, A.; Guggisberg, A.G. Neurofeedback training of alpha-band coherence enhances motor performance. Clin. Neurophysiol. 2015, 126, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Naros, G.; Gharabaghi, A. Physiological and behavioral effects of β-tACS on brain self-regulation in chronic stroke. Brain Stimul. 2017, 10, 251–259. [Google Scholar] [CrossRef]
- Koganemaru, S.; Kitatani, R.; Fukushima-Maeda, A.; Mikami, Y.; Okita, Y.; Matsuhashi, M.; Ohata, K.; Kansaku, K.; Mima, T. Gait-Synchronized Rhythmic Brain Stimulation Improves Poststroke Gait Disturbance: A Pilot Study. Stroke 2019, 50, 3205–3212. [Google Scholar] [CrossRef]
- Asamoah, B.; Khatoun, A.; Mc Laughlin, M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat. Commun. 2019, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yuan, K.; Chu, W.C.; Tong, R.K. The Effects of 10 Hz and 20 Hz tACS in Network Integration and Segregation in Chronic Stroke: A Graph Theoretical fMRI Study. Brain Sci. 2021, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Pollok, B.; Krause, V.; Martsch, W.; Wach, C.; Schnitzler, A.; Südmeyer, M. Motor-cortical oscillations in early stages of Parkinson’s disease. J. Physiol. 2012, 590, 3203–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoffers, D.; Bosboom, J.L.W.; Deijen, J.B.; Wolters, E.C.; Stam, C.J.; Berendse, H.W. Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: An MEG study. Neuroimage 2008, 41, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Szurhaj, W.; Reyns, N.; Labyt, E.; Houdayer, E.; Bourriez, J.L.; Cassim, F.; Krystkowiak, P.; Blond, S.; Destée, A.; et al. Predominance of the contralateral movement-related activity in the subthalamo-cortical loop. Clin. Neurophysiol. 2006, 117, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Florin, E.; Erasmi, R.; Reck, C.; Maarouf, M.; Schnitzler, A.; Fink, G.R.; Timmermann, L. Does increased gamma activity in patients suffering from Parkinson’s disease counteract the movement inhibiting beta activity? Neuroscience 2013, 237, 42–50. [Google Scholar] [CrossRef]
- Tinkhauser, G.; Torrecillos, F.; Duclos, Y.; Tan, H.; Pogosyan, A.; Fischer, P.; Carron, R.; Welter, M.-L.; Karachi, C.; Vandenberghe, W.; et al. Beta burst coupling across the motor circuit in Parkinson’s disease. Neurobiol. Dis. 2018, 117, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Kühn, A.A.; Tsui, A.; Aziz, T.; Ray, N.; Brücke, C.; Kupsch, A.; Schneider, G.-H.; Brown, P. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 2009, 215, 380–387. [Google Scholar] [CrossRef]
- Toledo, J.B.; López-Azcárate, J.; Garcia-Garcia, D.; Guridi, J.; Valencia, M.; Artieda, J.; Obeso, J.; Alegre, M.; Rodriguez-Oroz, M. High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiol. Dis. 2014, 64, 60–65. [Google Scholar] [CrossRef]
- Sharott, A.; Gulberti, A.; Zittel, S.; Tudor Jones, A.A.; Fickel, U.; Münchau, A.; Köppen, J.A.; Gerloff, C.; Westphal, M.; Buhmann, C.; et al. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J. Neurosci. 2014, 34, 6273–6285. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Tijssen, M.; van Bruggen, G.; Bosch, A.; Insola, A.; Lazzaro, V.D.; Mazzone, P.; Oliviero, A.; Quartarone, A.; Speelman, H.; et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 2002, 125, 1558–1569. [Google Scholar] [CrossRef]
- Brittain, J.S.; Probert-Smith, P.; Aziz, T.Z.; Brown, P. Tremor suppression by rhythmic transcranial current stimulation. Curr. Biol. 2013, 23, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Brittain, J.S.; Cagnan, H.; Mehta, A.R.; Saifee, T.A.; Edwards, M.J.; Brown, P. Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J. Neurosci. 2015, 35, 795–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, A.; Asci, F.; D’Onofrio, V.; Sveva, V.; Bologna, M.; Fabbrini, G.; Berardelli, A.; Suppa, A. Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson’s Disease. J. Neurosci. 2020, 40, 4788–4796. [Google Scholar] [CrossRef] [PubMed]
- Suppa, A.; Marsili, L.; Belvisi, D.; Conte, A.; Iezzi, E.; Modugno, N.; Fabbrini, G.; Berardelli, A. Lack of LTP-like plasticity in primary motor cortex in Parkinson’s disease. Exp. Neurol. 2011, 227, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, G.B.; Madsen, K.H.; Siebner, H.R.; Thielscher, A. How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation. Neuroimage 2017, 163, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Wansbrough, K.; Williams, A.G.; Nitsche, M.A.; Vallence, A.M.; Fujiyama, H. The importance of model-driven approaches to set stimulation intensity for multi-channel transcranial alternating current stimulation (tACS). Brain Stimul. 2020, 13, 1002–1004. [Google Scholar] [CrossRef]
- Opitz, A.; Yeagle, E.; Thielscher, A.; Schroeder, C.; Mehta, A.D.; Milham, M.P. On the importance of precise electrode placement for targeted transcranial electric stimulation. Neuroimage 2018, 181, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Goodman, T.A.; Visse, J.M.; Beckett, L.; Saito, N.; Lyeth, B.G.; Recanzone, G.H. Sex and Electrode Configuration in Transcranial Electrical Stimulation. Front. Psychiatry 2017, 8, 147. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Ghodratitoostani, I.; Delbem, A.C.B.; Ali, A.; Datta, A. Influence of gender-related differences in transcranial direct current stimulation: A Computational Study. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5196–5199. [Google Scholar] [CrossRef]
- Grossman, N.; Bono, D.; Dedic, N.; Kodandaramaiah, S.B.; Rudenko, A.; Suk, H.J.; Cassara, A.M.; Neufeld, E.; Kuster, N.; Tsai, L.H.; et al. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 2017, 169, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Kasten, F.H.; Dowsett, J.; Herrmann, C.S. Sustained Aftereffect of alpha-tACS Lasts Up to 70 min after Stimulation. Front. Hum. Neurosci. 2016, 10, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reato, D.; Rahman, A.; Bikson, M.; Parra, L.C. Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing. J. Neurosci. 2010, 30, 15067–15079. [Google Scholar] [CrossRef] [Green Version]
- Thut, G.; Bergmann, T.O.; Fröhlich, F.; Soekadar, S.R.; Brittain, J.S.; Valero-Cabré, A.; Sack, A.T.; Miniussi, C.; Antal, A.; Siebner, H.R.; et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin. Neurophysiol. 2017, 128, 843–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, S.; Casson, A.J. Removal of Gross Artifacts of Transcranial Alternating Current Stimulation in Simultaneous EEG Monitoring. Sensors 2019, 19, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canolty, R.T.; Knight, R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010, 14, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Zarubin, G.; Gundlach, C.; Nikulin, V.; Villringer, A.; Bogdan, M. Transient Amplitude Modulation of Alpha-Band Oscillations by Short-Time Intermittent Closed-Loop tACS. Front. Hum. Neurosci. 2020, 14, 366. [Google Scholar] [CrossRef]
- Holper, L.; Scholkmann, F.; Wolf, M. Between-brain connectivity during imitation measured by fNIRS. Neuroimage 2012, 63, 212–222. [Google Scholar] [CrossRef]
- Dumas, G.; Nadel, J.; Soussignan, R.; Martinerie, J.; Garnero, L. Inter-brain synchronization during social interaction. PLoS ONE 2010, 5, e12166. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Li, X.; Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Hum. Brain Mapp. 2015, 36, 2039–2048. [Google Scholar] [CrossRef]
- Dai, B.; Chen, C.; Long, Y.; Zheng, L.; Zhao, H.; Bai, X.; Liu, W.; Zhang, Y.; Liu, L.; Guo, T.; et al. Neural mechanisms for selectively tuning in to the target speaker in a naturalistic noisy situation. Nat. Commun. 2018, 9, 2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Dikker, S.; Goldstein, P.; Zhu, Y.; Yang, C.; Hu, Y. Instructor-learner brain coupling discriminates between instructional approaches and predicts learning. Neuroimage 2020, 211, 116657. [Google Scholar] [CrossRef]
- Novembre, G.; Knoblich, G.; Dunne, L.; Keller, P.E. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation. Soc. Cogn. Affect. Neurosci. 2017, 12, 662–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymanski, C.; Müller, V.; Brick, T.R.; von Oertzen, T.; Lindenberger, U. Hyper-Transcranial Alternating Current Stimulation: Experimental Manipulation of Inter-Brain Synchrony. Front. Hum. Neurosci. 2017, 11, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, N.; Mori, T.; Suzukamo, Y.; Izumi, S.I. Integration of Teaching Processes and Learning Assessment in the Prefrontal Cortex during a Video Game Teaching-learning Task. Front. Psychol. 2017, 7, 2052. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, T.; Sakaki, K.; Ikeda, S.; Jeong, H.; Yamazaki, S.; Kawata, K.; Kawata, N.; Sasaki, Y.; Kulason, K.; Hirano, K.; et al. Prior physical synchrony enhances rapport and inter-brain synchronization during subsequent educational communication. Sci. Rep. 2019, 9, 12747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Novembre, G.; Song, B.; Zhu, Y.; Hu, Y. Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Soc. Cogn. Affect. Neurosci. 2021, 16, 210–221. [Google Scholar] [CrossRef]
- Keller, P.E.; Novembre, G.; Hove, M.J. Rhythm in joint action: Psychological and neurophysiological mechanisms for real-time interpersonal coordination. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130394. [Google Scholar] [CrossRef] [Green Version]
- Reddish, P.; Tong, E.M.; Jong, J.; Lanman, J.A.; Whitehouse, H. Collective synchrony increases prosociality towards non-performers and outgroup members. Br. J. Soc. Psychol. 2016, 55, 722–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevilacqua, D.; Davidesco, I.; Wan, L.; Chaloner, K.; Rowland, J.; Ding, M.; Poeppel, D.; Dikker, S. Brain-to-Brain Synchrony and Learning Outcomes Vary by Student-Teacher Dynamics: Evidence from a Real-world Classroom Electroencephalography Study. J. Cogn. Neurosci. 2019, 31, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Zee, M.; Koomen, H.M.; Van der Veen, I. Student-teacher relationship quality and academic adjustment in upper elementary school: The role of student personality. J. Sch. Psychol. 2013, 51, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, L.; Toppi, J.; De Vico Fallani, F.; Vecchiato, G.; Salinari, S.; Mattia, D.; Cincotti, F.; Babiloni, F. Neuroelectrical hyperscanning measures simultaneous brain activity in humans. Brain Topogr. 2010, 23, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Izumi, S. Combinations of stroke neurorehabilitation to facilitate motor recovery: Perspectives on Hebbian plasticity and homeostatic metaplasticity. Front. Hum. Neurosci. 2015, 9, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors | Study Design | Motor Training Task | Electrode Position | tACS Parameters | tACS Timing | Behavioral Results |
---|---|---|---|---|---|---|
Antal et al., 2008 [36] | Crossover n = 16 | SSRT | Active: left M1 (4 × 4 cm) Reference: right supraorbital (5 × 10 cm) | 1 Hz, 10 Hz, 15 Hz, 45 Hz, sham (0.4 mA, about 7 min) | tACS during motor training | 10-Hz tACS facilitated motor acquisition during stimulation, but there was no difference between the 10 Hz and sham groups at 1 h after tACS |
Pollok et al., 2015 [37] | Crossover n = 13 | SSRT | Active: left M1 (5 × 7 cm) Reference: right supraorbital (5 × 7 cm) | 10 Hz, 20 Hz, 35 Hz, sham (1 mA, about 12 min) | tACS during motor training | Both 10-Hz and 20-Hz tACS facilitated motor acquisition during stimulation compared to sham and 35-Hz tACS |
Krause et al., 2016 [39] | Randomly assigned n = 36 | SSRT | Active: left M1 (5 × 7 cm) Reference: right supraorbital (5 × 7 cm) | 10 Hz, 20 Hz, sham (1 mA, 10 min) | tACS during rest time between the first and second sessions of motor training | 20-Hz tACS facilitated retrieval of motor sequence in the early second session of motor training compared with 10-Hz and sham groups. However, there was no difference between tACS and sham at the late phase of the second session |
Sugata et al., 2018 [40] | Randomly assigned n = 52 | SSRT | Active: left M1 (5 × 7 cm) Reference: right supraorbital (5 × 7 cm) | 10 Hz, 20 Hz, 70 Hz, sham (1 mA, 10 min) | tACS during rest time between the first and second sessions of motor training | 70-Hz tACS improved capacity for motor learning in the second session of motor training compared to sham stimulation |
Giustiniani et al., 2019 [46] | Crossover n = 17 | SSRT | Active: left M1 (5 × 5 cm) Reference: right supraorbital (5 × 5 cm) | 1 Hz, 40 Hz, sham (2 mA, about 5 min) | tACS during motor training | 40-Hz tACS inhibited motor acquisition compared to sham stimulation |
Rumpf et al., 2019 [41] | Crossover n = 16 (10 Hz vs. sham) n = 17 (20 Hz vs. sham) | SSRT | Active: left M1 (radius 3.75 cm) Reference: right supraorbital (5 × 7 cm) | 10 Hz, 20 Hz, sham (1 mA, 15 min) | tACS immediately after motor training | 10-Hz tACS disrupted motor consolidation 6 hr after tACS compared to sham stimulation |
Bologna et al., 2019 [47] | Crossover n = 16 | Rapid abduction of index finger task | Active: left M1 (5 × 5 cm) Reference: Pz (5 × 5 cm) | 20 Hz, 70 Hz, sham (1 mA, about 15 min) | tACS during motor training | 20-Hz tACS had a detrimental effect on motor acquisition during stimulation, but there was no difference in motor retention after stimulation between 20 Hz and sham groups. 70-Hz tACS improved motor acquisition during stimulation, but it had a detrimental effect on motor retention |
Akkad et al., 2019 [48] | Randomly assigned n = 58 | Thumb abduction | Active: right M1 (5 × 5 cm) Reference: Pz (5 × 5 cm) | Theta–gamma peak, theta–gamma trough, sham (75-Hz rhythm was amplitude-modulated by the peak or trough envelope of 6-Hz rhythm) (2 mA, 20 min) | tACS during motor training | Theta–gamma peak tACS improved motor acquisition compared with sham stimulation for 75 min after tACS |
Roshchupkina et al., 2020 [49] | Randomly assigned n = 62 | SSRT | Active: right M1 (5 × 5 cm) Reference: left deltoid (5 × 5 cm) | 20 Hz, sham (1 mA, about 10 min) | tACS immediately and 25 min after motor training | 20-Hz tACS did not influence early (at 4 hr) and long-term (at 24 hr) motor skill consolidation |
Harada et al., 2020 [38] | Randomly assigned n = 33 | Visuomotor adaptation task | Active: left M1 (5 × 7 cm) Reference: right supraorbital (5 × 7 cm) | 10 Hz, 20 Hz, sham(1 mA, 10 min) | tACS before motor training | 10-Hz tACS facilitated initial motor acquisition compared with 20-Hz tACS and sham stimulation. However, there was no significant difference in task performance at the late phase among the three groups |
Fresnoza et al., 2020 [45] | Crossover n = 20 (young group) n = 15 (old group) | SSRT | Active: left M1 (5 × 7 cm) Reference: right supraorbital (5 × 7 cm) | Individual‘s alpha, individual‘s alpha + 2 Hz, sham (1.5 mA, 15 min) | tACS during rest time between the first and three subsequent sessions of motor training (immediately, 60 min, and 120 min after tACS) | Both the individual’s alpha-tACS and the individual’s alpha + 2 Hz-tACS improved consolidation of general motor and sequence-specific skills during post-tACS training sessions in the old group. The individual’s alpha-tACS impaired consolidation of sequence-specific skills and the individual’s alpha + 2 Hz-tACS was detrimental to the consolidation of both skills in the young group |
Authors | Study Design | Motor Training Task | Electrode Position | tACS Parameters | tACS Timing | Behavioral Results |
---|---|---|---|---|---|---|
Naro et al., 2016 [62] | Crossover n = 25 | Sequential finger tapping | Active: right cerebellar cortex (5 × 5 cm) Reference: left buccinator muscle (5 × 5 cm) | 10, 50, 300 Hz, sham (2 mA, 5 min) | tACS during rest time between the first and two subsequent sessions of motor training (immediately and 30 min after tACS) | 50-Hz tACS enhanced motor acquisition immediately after tACS, but this improvement disappeared 30 min after tACS |
Hsu et al., 2019 [56] | Randomly assigned n = 59 | Visuomotor multitask | Active: bilateral prefrontal (radius 1 cm) Reference: Afz, Fz, FCz (radius 1 cm) | 6 Hz (in-phase), 6 Hz (anti-phase), sham (2 mA, 3 min × 4 sessions) Session interval: in-phase (1 min), anti-phase (5 min) | tACS during task | In-phase 6-Hz tACS enhanced multitasking performance, with an increase in posterior alpha and beta power. Anti-phase 6-Hz tACS had no effect |
Berntsen et al., 2019 [55] | Randomly assigned n = 60 | Bilateral hand motor sequence | Active: left M1 or left parietal or left prefrontal (3 × 3 cm) Reference: right frontopolar (3 × 3 cm) | Individual‘s alpha (M1, parietal, prefrontal), sham (1 mA, 20 min) | tACS during rest time between the first and second sessions of motor training | Individual‘s alpha-tACS over prefrontal enhanced motor acquisition compared with sham stimulation |
Miyaguchi et al., 2020 [61] | Crossover n = 32 | Bilateral pegboard task | Active: supplementary motor area (5 × 5 cm) Reference: left shoulder (5 × 5 cm) | 20 Hz, 80 Hz, sham (1 mA, 2 min × 3 sessions) Session: random order of three stimulation conditions with 2-min intervals | tACS during task | Participants with higher initial motor performances showed greater motor acquisition during 20-Hz tACS, while participants with lower initial motor performances showed greater motor acquisition during 80-Hz tACS |
Wessel et al., 2020 [63] | Crossover n = 15 | Sequential grip force modulation task | Active: left cerebeller cortex (5 × 5 cm) Reference: left buccinator muscle (5 × 5 cm) | 50 Hz, sham (2 mA, 20 min) | tACS during task | 50-Hz tACS did not enhance motor acquisition during tACS or motor retention 24 hr after tACS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeuchi, N.; Izumi, S.-I. Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sci. 2021, 11, 1095. https://doi.org/10.3390/brainsci11081095
Takeuchi N, Izumi S-I. Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sciences. 2021; 11(8):1095. https://doi.org/10.3390/brainsci11081095
Chicago/Turabian StyleTakeuchi, Naoyuki, and Shin-Ichi Izumi. 2021. "Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review" Brain Sciences 11, no. 8: 1095. https://doi.org/10.3390/brainsci11081095
APA StyleTakeuchi, N., & Izumi, S.-I. (2021). Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sciences, 11(8), 1095. https://doi.org/10.3390/brainsci11081095