Neural Correlates of Letter and Semantic Fluency in Primary Progressive Aphasia
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Materials and Procedures
2.3. MRI Data Acquisition
2.4. Statistical Analyses
2.4.1. Demographic Differences between Variants
2.4.2. Behavioral Differences in Letter and Semantic Fluency between PPA Variants
2.4.3. Predictive Factors of Letter and Category Fluency
3. Results
3.1. Demographic Differences between Variants
3.2. Behavioral Differences in Letter and Semantic Fluency between PPA Variants
3.3. Predictors of Letter Fluency
3.4. Predictors of Semantic Fluency
4. Discussion
4.1. Behavioral Differences in Letter and Semantic Fluency between PPA Variants
4.2. Predictors of Letter Fluency
4.3. Predictors of Semantic Fluency
4.4. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lezak, M.; Loring, D.; Howieson, D. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004; Volume 4. [Google Scholar]
- Miyake, A.; Friedman, N.P. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.D.; Crawford, J.R. A Meta-Analytic Review of Verbal Fluency Performance Following Focal Cortical Lesions. Neuropsychology 2004, 18, 284. [Google Scholar] [CrossRef] [Green Version]
- Troyer, A.; Moscovitch, M.; Winocur, G.; Alexander, M.; Stuss, D. Clustering and Switching on Verbal Fluency: The Effects of Focal Frontal-and Temporal-Lobe Lesions. Neuropsychologia 1998, 36, 499–504. [Google Scholar] [CrossRef]
- Baldo, J.V.; Shimamura, A.P. Letter and Category Fluency in Patients with Frontal Lobe Lesions. Neuropsychology 1998, 12, 259–267. [Google Scholar] [CrossRef]
- Baldo, J.V.; Schwartz, S.; Wilkins, D.; Dronkers, N.F. Role of Frontal versus Temporal Cortex in Verbal Fluency as Revealed by Voxel-Based Lesion Symptom Mapping. J. Int. Neuropsychol. Soc. 2006, 12, 896–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuss, D.T.; Alexander, M.P.; Hamer, L.; Palumbo, C.; Dempster, R.; Binns, M.; Levine, B.; Izukawa, D. The Effects of Focal Anterior and Posterior Brain Lesions on Verbal Fluency. J. Int. Neuropsychol. Soc. JINS 1998, 4, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Milner, B. Some Cognitive Effects of Frontal-Lobe Lesions in Man. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 298, 211–226. [Google Scholar]
- Benton, A.L. Differential Behavioral Effects in Frontal Lobe Disease. Neuropsychologia 1968, 6, 53–60. [Google Scholar] [CrossRef]
- Martin, R.C.; Loring, D.W.; Meador, K.J.; Lee, G.P. The Effects of Lateralized Temporal Lobe Dysfunction on Formal and Semantic Word Fluency. Neuropsychologia 1990, 28, 823–829. [Google Scholar] [CrossRef]
- Loring, D. Effects of Temporal Lobectomy on Generative Fluency and Other Language Functions. Arch. Clin. Neuropsychol. 1994, 9, 229–238. [Google Scholar] [CrossRef]
- Catani, M.; Mesulam, M.M.; Jakobsen, E.; Malik, F.; Martersteck, A.; Wieneke, C.; Thompson, C.K.; Thiebaut de Schotten, M.; Dell’Acqua, F.; Weintraub, S. A Novel Frontal Pathway Underlies Verbal Fluency in Primary Progressive Aphasia. Brain 2013, 136, 2619–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, N.L.; Patterson, K.; Hodges, J.R. When More Yields Less: Speaking and Writing Deficits in Nonfluent Progressive Aphasia. Neurocase 2004, 10, 141–155. [Google Scholar] [CrossRef]
- Rogalski, E.; Cobia, D.; Harrison, T.M.; Wieneke, C.; Weintraub, S.; Mesulam, M.-M. Progression of Language Decline and Cortical Atrophy in Subtypes of Primary Progressive Aphasia. Neurology 2011, 76, 1804–1810. [Google Scholar] [CrossRef] [Green Version]
- Sonty, S.P.; Mesulam, M.M.; Thompson, C.K.; Johnson, N.A.; Weintraub, S.; Parrish, T.B.; Gitelman, D.R. Primary Progressive Aphasia: PPA and the Language Network. Ann. Neurol. 2003, 53, 35–49. [Google Scholar] [CrossRef]
- Thompson, C.K.; Lukic, S.; King, M.C.; Mesulam, M.M.; Weintraub, S. Verb and Noun Deficits in Stroke-Induced and Primary Progressive Aphasia: The Northwestern Naming Battery(). Aphasiology 2012, 26, 632–655. [Google Scholar] [CrossRef]
- Wilson, S.M.; Henry, M.L.; Besbris, M.; Ogar, J.M.; Dronkers, N.F.; Jarrold, W.; Miller, B.L.; Gorno-Tempini, M.L. Connected Speech Production in Three Variants of Primary Progressive Aphasia. Brain 2010, 133, 2069–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Themistocleous, C.; Webster, K.; Afthinos, A.; Tsapkini, K. Part of Speech Production in Patients With Primary Progressive Aphasia: An Analysis Based on Natural Language Processing. Am. J. Speech Lang. Pathol. 2021, 30, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Themistocleous, C.; Ficek, B.; Webster, K.; den Ouden, D.-B.; Hillis, A.E.; Tsapkini, K. Automatic Subtyping of Individuals with Primary Progressive Aphasia. J. Alzheimer’s Dis. 2021. [Google Scholar] [CrossRef]
- Nozari, N.; Faroqi-Shah, Y. Investigating the Origin of Nonfluency in Aphasia: A Path Modeling Approach to Neuropsychology. Cortex 2017, 95, 119–135. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of Primary Progressive Aphasia and Its Variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Mesulam, M.M. Slowly Progressive Aphasia without Generalized Dementia. Ann. Neurol. 1982, 11, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Rofes, A.; de Aguiar, V.; Ficek, B.; Wendt, H.; Webster, K.; Tsapkini, K. The Role of Word Properties in Performance on Fluency Tasks in People with Primary Progressive Aphasia. J. Alzheimers Dis. JAD 2019, 68, 1521–1534. [Google Scholar] [CrossRef]
- Hodges, J.R.; Patterson, K. Semantic Dementia: A Unique Clinicopathological Syndrome. Lancet Neurol. 2007, 6, 1004–1014. [Google Scholar] [CrossRef]
- Hoffman, P.; Lambon Ralph, M.A. Reverse Concreteness Effects Are Not a Typical Feature of Semantic Dementia: Evidence for the Hub-and-Spoke Model of Conceptual Representation. Cereb. Cortex 2011, 21, 2103–2112. [Google Scholar] [CrossRef] [Green Version]
- Adlam, A.-L.R.; Bozeat, S.; Arnold, R.; Watson, P.; Hodges, J.R. Semantic Knowledge in Mild Cognitive Impairment and Mild Alzheimer’s Disease. Cortex J. Devoted Study Nerv. Syst. Behav. 2006, 42, 675–684. [Google Scholar] [CrossRef]
- Butts, A.M.; Machulda, M.M.; Duffy, J.R.; Strand, E.A.; Whitwell, J.L.; Josephs, K.A. Neuropsychological Profiles Differ among the Three Variants of Primary Progressive Aphasia. J. Int. Neuropsychol. Soc. JINS 2015, 21, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Duffy, J.R.; Strand, E.A.; Machulda, M.M.; Senjem, M.L.; Master, A.V.; Lowe, V.J.; Jack Jr, C.R.; Whitwell, J.L. Characterizing a Neurodegenerative Syndrome: Primary Progressive Apraxia of Speech. Brain 2012, 135, 1522–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libon, D.J.; McMillan, C.; Gunawardena, D.; Powers, C.; Massimo, L.; Khan, A.; Morgan, B.; Farag, C.; Richmond, L.; Weinstein, J.; et al. Neurocognitive Contributions to Verbal Fluency Deficits in Frontotemporal Lobar Degeneration. Neurology 2009, 73, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marczinski, C.A.; Kertesz, A. Category and Letter Fluency in Semantic Dementia, Primary Progressive Aphasia, and Alzheimer’s Disease. Brain Lang. 2006, 97, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Scheffel, L.; Duffy, J.R.; Strand, E.A.; Josephs, K.A. Word Fluency Test Performance in Primary Progressive Aphasia and Primary Progressive Apraxia of Speech. Am. J. Speech Lang. Pathol. 2021, 30, 2635–2642. [Google Scholar] [CrossRef]
- Laisney, M.; Matuszewski, V.; Mézenge, F.; Belliard, S.; de la Sayette, V.; Eustache, F.; Desgranges, B. The Underlying Mechanisms of Verbal Fluency Deficit in Frontotemporal Dementia and Semantic Dementia. J. Neurol. 2009, 256, 1083. [Google Scholar] [CrossRef]
- Tee, B.L.; Gorno-Tempini, M.L. Primary Progressive Aphasia: A Model for Neurodegenerative Disease. Curr. Opin. Neurol. 2019, 32, 255–265. [Google Scholar] [CrossRef]
- Bolla, K.I.; Lindgren, K.N.; Bonaccorsy, C.; Bleecker, M.L. Predictors of Verbal Fluency (FAS) in the Healthy Elderly. J. Clin. Psychol. 1990, 46, 623–628. [Google Scholar] [CrossRef]
- Crossley, M.; D’arcy, C.; Rawson, N.S.B. Letter and Category Fluency in Community-Dwelling Canadian Seniors: A Comparison of Normal Participants to Those with Dementia of the Alzheimer or Vascular Type. J. Clin. Exp. Neuropsychol. 1997, 19, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Ruff, R.M.; Light, R.H.; Parker, S.B.; Levin, H.S. The Psychological Construct of Word Fluency. Brain Lang. 1997, 57, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, A.; Loewenstein, D.A.; Barker, W.W.; Harwood, D.G.; Luis, C.; Bravo, M.; Hurwitz, D.A.; Aguero, H.; Greenfield, L.; Duara, R. Category Fluency Test: Normative Data for English- and Spanish-Speaking Elderly. J. Int. Neuropsychol. Soc. 2000, 6, 760–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, D.; Bates, M.E.; Labouvie, E. FAS and CFL Forms of Verbal Fluency Differ in Difficulty: A Meta-Analytic Study. Appl. Neuropsychol. 2008, 15, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Boone, K.; Ponton, M.; Gorsuch, R.; Gonzalez, J.; Miller, B. Factor Analysis of Four Measures of Prefrontal Lobe Functioning. Arch. Clin. Neuropsychol. 1998, 13, 585–595. [Google Scholar] [CrossRef]
- Tombaugh, T.N.; Kozak, J.; Rees, L. Normative Data Stratified by Age and Education for Two Measures of Verbal Fluency: FAS and Animal Naming. Arch. Clin. Neuropsychol. 1999, 14, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.A.; Ivnik, R.J.; Smith, G.E.; Bohac, D.L.; Tangalos, E.G.; Graff-Radford, N.R.; Petersen, R.C. Mayo’s Older Americans Normative Studies: Category Fluency Norms. J. Clin. Exp. Neuropsychol. 1998, 20, 194–200. [Google Scholar] [CrossRef]
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What Do Verbal Fluency Tasks Measure? Predictors of Verbal Fluency Performance in Older Adults. Front. Psychol. 2014, 5, 772. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, E.; Rademaker, A.; Weintraub, S. Primary Progressive Aphasia: Relationship Between Gender and Severity of Language Impairment. Cogn. Behav. Neurol. 2007, 20, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.D.; Ridgway, G.R.; Crutch, S.J.; Hailstone, J.; Goll, J.C.; Clarkson, M.J.; Mead, S.; Beck, J.; Mummery, C.; Ourselin, S.; et al. Progressive Logopenic/Phonological Aphasia: Erosion of the Language Network. NeuroImage 2010, 49, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riello, M.; Faria, A.V.; Ficek, B.; Webster, K.; Onyike, C.U.; Desmond, J.; Frangakis, C.; Tsapkini, K. The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia. Front. Aging Neurosci. 2018, 10. [Google Scholar] [CrossRef]
- Benton, A.L.; Hamsher, K.D.; Sivan, A. Multilingual Aphasia Examination. In Neuropsychology, Blocking, Schizophrenia; AJA Associates: Iowa City, IA, USA, 1989; p. 59. [Google Scholar]
- Benton, A.L. Development of a Multilingual Aphasia Battery. Progress and Problems. J. Neurol. Sci. 1969, 9, 39–48. [Google Scholar] [CrossRef]
- Knopman, D.S.; Kramer, J.H.; Boeve, B.F.; Caselli, R.J.; Graff-Radford, N.R.; Mendez, M.F.; Miller, B.L.; Mercaldo, N. Development of Methodology for Conducting Clinical Trials in Frontotemporal Lobar Degeneration. Brain 2008, 131, 2957–2968. [Google Scholar] [CrossRef] [Green Version]
- Burke, W.J.; Miller, J.P.; Rubin, E.H.; Morris, J.C.; Coben, L.A.; Duchek, J.; Wittels, I.G.; Berg, L. Reliability of the Washington University Clinical Dementia Rating. Arch. Neurol. 1988, 45, 31–32. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Waring, S.C.; Cullum, C.M.; Hall, J.; Lacritz, L.; Massman, P.J.; Lupo, P.J.; Reisch, J.S.; Doody, R. Texas Alzheimer’s Research Consortium Staging Dementia Using Clinical Dementia Rating Scale Sum of Boxes Scores: A Texas Alzheimer’s Research Consortium Study. Arch. Neurol. 2008, 65, 1091–1095. [Google Scholar] [CrossRef] [Green Version]
- Yeo, C.Y.Y.; Chan, M.P.C.; Lim, W.S.; Chong, M.S. P2-100: Clinical Utility of the Clinical Dementia Rating Sum of Boxes in Mild Cognitive Impairment and Dementia in an Asian Population. Alzheimers Dement. 2010, 6, S342. [Google Scholar] [CrossRef]
- Mori, S.; Wu, D.; Ceritoglu, C.; Li, Y.; Kolasny, A.; Vaillant, M.A.; Faria, A.V.; Oishi, K.; Miller, M.I. MRICloud: Delivering High-Throughput MRI Neuroinformatics as Cloud-Based Software as a Service. Comput. Sci. Eng. 2016, 18, 21–35. [Google Scholar] [CrossRef]
- Tang, X.; Crocetti, D.; Kutten, K.; Ceritoglu, C.; Albert, M.S.; Mori, S.; Mostofsky, S.H.; Miller, M.I. Segmentation of Brain Magnetic Resonance Images Based on Multi-Atlas Likelihood Fusion: Testing Using Data with a Broad Range of Anatomical and Photometric Profiles. Front. Neurosci. 2015, 9, 61. [Google Scholar] [CrossRef]
- Miller, M.I.; Beg, M.F.; Ceritoglu, C.; Stark, C. Increasing the Power of Functional Maps of the Medial Temporal Lobe by Using Large Deformation Diffeomorphic Metric Mapping. Proc. Natl. Acad. Sci. USA 2005, 102, 9685–9690. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Beg, F.; Ratnanather, T.; Ceritoglu, C.; Younes, L.; Morris, J.C.; Csernansky, J.G.; Miller, M.I. Large Deformation Diffeomorphism and Momentum Based Hippocampal Shape Discrimination in Dementia of the Alzheimer Type. IEEE Trans. Med. Imaging 2007, 26, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Mori, S.; Oishi, K.; Faria, A.V.; Miller, M.I. Atlas-Based Neuroinformatics via MRI: Harnessing Information from Past Clinical Cases and Quantitative Image Analysis for Patient Care. Annu. Rev. Biomed. Eng. 2013, 15, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Mori, S.; Oishi, K.; Jiang, H.; Jiang, L.; Li, X.; Akhter, K.; Hua, K.; Faria, A.V.; Mahmood, A.; Woods, R.; et al. Stereotaxic White Matter Atlas Based on Diffusion Tensor Imaging in an ICBM Template. NeuroImage 2008, 40, 570–582. [Google Scholar] [CrossRef] [Green Version]
- Oishi, K.; Faria, A.; Jiang, H.; Li, X.; Akhter, K.; Zhang, J.; Hsu, J.T.; Miller, M.I.; van Zijl, P.C.; Albert, M.; et al. Atlas-Based Whole Brain White Matter Analysis Using Large Deformation Diffeomorphic Metric Mapping: Application to Normal Elderly and Alzheimer’s Disease Participants. NeuroImage 2009, 46, 486–499. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Dronkers, N.F.; Rankin, K.P.; Ogar, J.M.; Phengrasamy, L.; Rosen, H.J.; Johnson, J.K.; Weiner, M.W.; Miller, B.L. Cognition and Anatomy in Three Variants of Primary Progressive Aphasia. Ann. Neurol. 2004, 55, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Hillis, A.E.; Tuffiash, E.; Wityk, R.J.; Barker, P.B. Regions of Neural Dysfunction Associated with Impaired Naming of Actions and Objects in Acute Stroke. Cogn. Neuropsychol. 2002, 19, 523–534. [Google Scholar] [CrossRef]
- Mummery, C.J.; Patterson, K.; Hodges, J.R.; Price, C.J. Functional Neuroanatomy of the Semantic System: Divisible by What? J. Cogn. Neurosci. 1998, 10, 766–777. [Google Scholar] [CrossRef]
- Hillis, A.E.; Kleinman, J.T.; Newhart, M.; Heidler-Gary, J.; Gottesman, R.; Barker, P.B.; Aldrich, E.; Llinas, R.; Wityk, R.; Chaudhry, P. Restoring Cerebral Blood Flow Reveals Neural Regions Critical for Naming. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 8069–8073. [Google Scholar] [CrossRef]
- Gordon, E.; Rohrer, J.D.; Fox, N.C. Advances in Neuroimaging in Frontotemporal Dementia. J. Neurochem. 2016, 138, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Oishi, K.; Faria, A.V.; Jiang, H.; Li, X.; Akhter, K.; Rosa-Neto, P.; Pike, G.B.; Evans, A.; et al. Atlas-Guided Tract Reconstruction for Automated and Comprehensive Examination of the White Matter Anatomy. NeuroImage 2010, 52, 1289–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMarco, A.T.; Turkeltaub, P.E. A Multivariate Lesion Symptom Mapping Toolbox and Examination of Lesion-Volume Biases and Correction Methods in Lesion-Symptom Mapping. Hum. Brain Mapp. 2018, 39, 4169–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, J.R.; Patterson, K. Nonfluent Progressive Aphasia and Semantic Dementia: A Comparative Neuropsychological Study. J. Int. Neuropsychol. Soc. 1996, 2, 511–524. [Google Scholar] [CrossRef]
- Kertesz, A.; Davidson, W.; McCabe, P.; Takagi, K.; Munoz, D. Primary Progressive Aphasia: Diagnosis, Varieties, Evolution. J. Int. Neuropsychol. Soc. JINS 2003, 9, 710–719. [Google Scholar] [CrossRef]
- Lara, E.; Miret, M.; Sanchez-Niubo, A.; Haro, J.M.; Koskinen, S.; Leonardi, M.; Tobiasz-Adamczyk, B.; Chatterji, S.; Ayuso-Mateos, J.L. Episodic Memory and Verbal Fluency Tasks: Normative Data from Nine Nationally Representative Samples. J. Int. Neuropsychol. Soc. 2021, 27, 89–98. [Google Scholar] [CrossRef]
- Clark, D.G.; Wadley, V.G.; Kapur, P.; DeRamus, T.P.; Singletary, B.; Nicholas, A.P.; Blanton, P.D.; Lokken, K.; Deshpande, H.; Marson, D. Lexical Factors and Cerebral Regions Influencing Verbal Fluency Performance in MCI. Neuropsychologia 2014, 54, 98–111. [Google Scholar] [CrossRef]
- Sharp, D.J.; Scott, S.K.; Wise, R.J. Retrieving Meaning after Temporal Lobe Infarction: The Role of the Basal Language Area. Ann. Neurol. 2004, 56, 836–846. [Google Scholar] [CrossRef]
- Schmidt, C.S.M.; Nitschke, K.; Bormann, T.; Römer, P.; Kümmerer, D.; Martin, M.; Umarova, R.M.; Leonhart, R.; Egger, K.; Dressing, A.; et al. Dissociating Frontal and Temporal Correlates of Phonological and Semantic Fluency in a Large Sample of Left Hemisphere Stroke Patients. NeuroImage Clin. 2019, 23, 101840. [Google Scholar] [CrossRef] [PubMed]
- Ramier, A.M.; Hécaen, H. Rôle Respectif Des Atteintes Frontales et de La Latéralisation Lésionnelle Dans Les Déficits de La “fluence Verbale”. Rev. Neurol. 1970, 133, 17–22. [Google Scholar]
- Pendleton, M.G.; Heaton, R.K.; Lehman, R.A.W.; Hulihan, D. Diagnostic Utility of the Thurstone Word Fluency Test in Neuropsychological Evaluations. J. Clin. Neuropsychol. 1982, 4, 307–317. [Google Scholar] [CrossRef]
- Zhang, H.; Sachdev, P.S.; Wen, W.; Kochan, N.A.; Crawford, J.D.; Brodaty, H.; Slavin, M.J.; Reppermund, S.; Kang, K.; Trollor, J.N. Grey Matter Correlates of Three Language Tests in Non-Demented Older Adults. PLoS ONE 2013, 8, e80215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zangwill, O.L. Psychological Deficits Associated with Frontal Lobe Lesions. Int J. Neurol. Calle B. Aires 363 Montev. Urug. 1966, 5, 395–402. [Google Scholar]
- Migliaccio, R.; Boutet, C.; Valabregue, R.; Ferrieux, S.; Nogues, M.; Lehéricy, S.; Dormont, D.; Levy, R.; Dubois, B.; Teichmann, M. The Brain Network of Naming: A Lesson from Primary Progressive Aphasia. PLoS ONE 2016, 11, e0148707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butters, N.; Granholm, E.; Salmon, D.P.; Grant, I.; Wolfe, J. Episodic and Semantic Memory: A Comparison of Amnesic and Demented Patients. J. Clin. Exp. Neuropsychol. 1987, 9, 479–497. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. The Unique Role of the Visual Word Form Area in Reading. Trends Cogn. Sci. 2011, 15, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Price, C.J.; Devlin, J.T. The Interactive Account of Ventral Occipitotemporal Contributions to Reading. Trends Cogn. Sci. 2011, 15, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Tsapkini, K.; Vindiola, M.; Rapp, B. Patterns of Brain Reorganization Subsequent to Left Fusiform Damage: FMRI Evidence from Visual Processing of Words and Pseudowords, Faces and Objects. NeuroImage 2011, 55, 1357–1372. [Google Scholar] [CrossRef] [Green Version]
TOT (N = 35) | Lv (N = 10) | Nfv (N = 17) | Sv (N = 8) | p-Values | |
---|---|---|---|---|---|
Demographic | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Age | 67.74 (7.6) | 66.8 (9.7) | 68 (7.6) | 68.37 (4.8) | 0.899 |
Gender | 16F | 6F | 6F | 4F | 0.5 |
Education (yrs) | 16.38 (2.3) | 16.2 (2.5) | 16.7 (2.3) | 15.93 (2.4) | 0.734 |
Onset (yrs) | 4.34 (2.8) | 4.69 (3.3) | 3.39 (2.1) | 5.9 (3.1) | 0.112 |
Language score (FTDL-CDR 0–3) | 1.77 (0.8) | 1.8 (1) | 1.58 (0.8) | 2.12 (0.8) | 0.377 |
Total Severity (FTDL-CDR 0–24) | 6.78 (5.4) | 8.25 (5.2) | 5.38 (4.8) | 7.93 (6.6) | 0.34 |
Lv (N = 10) | Nfv (N = 17) | Sv (N = 8) | |
---|---|---|---|
Tasks | |||
Letter fluency (F,A,S) | 35 (23.46) | 25.49 (15) a | 34.16 (23.78) |
Category fluency (animals, fruits, vegetables) | 29.66 (20.42) | 37.54 (21.11) | 18.33 (9.55) b |
Variable | B (SE) | β | p-Value | Model R² | “Added” R² |
---|---|---|---|---|---|
Severity L | −16.211 (2.877) | −5.635 | <0.001 | 0.38 | |
L STG | −3515.876 (1527.765) | −2.301 | 0.028 | 0.50 | 0.12 |
R DLPFC | 4253.253 (1850.83) | 2.298 | 0.028 | 0.55 | 0.5 |
Variable | B (SE) | β | p-Value | Model R² | “Added” R² | ||
---|---|---|---|---|---|---|---|
Severity T | −2.4277 (0.4232) | −5.737 | <0.001 | 0.47 | |||
L ITG | 3315.3047 (1277.38) | 2.595 | 0.014 | 0.54 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riello, M.; Frangakis, C.E.; Ficek, B.; Webster, K.T.; Desmond, J.E.; Faria, A.V.; Hillis, A.E.; Tsapkini, K. Neural Correlates of Letter and Semantic Fluency in Primary Progressive Aphasia. Brain Sci. 2022, 12, 1. https://doi.org/10.3390/brainsci12010001
Riello M, Frangakis CE, Ficek B, Webster KT, Desmond JE, Faria AV, Hillis AE, Tsapkini K. Neural Correlates of Letter and Semantic Fluency in Primary Progressive Aphasia. Brain Sciences. 2022; 12(1):1. https://doi.org/10.3390/brainsci12010001
Chicago/Turabian StyleRiello, Marianna, Constantine E. Frangakis, Bronte Ficek, Kimberly T. Webster, John E. Desmond, Andreia V. Faria, Argye E. Hillis, and Kyrana Tsapkini. 2022. "Neural Correlates of Letter and Semantic Fluency in Primary Progressive Aphasia" Brain Sciences 12, no. 1: 1. https://doi.org/10.3390/brainsci12010001