Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review
Abstract
:1. Background
2. Acetylcholine, Cognition, and Plasticity
3. Neural Substrate of Language and Related Cognitive Domains
4. Cholinergic Pathways in Basal Forebrain-and Perisylvian Language-Related Regions
5. Cholinergic Treatment in Aphasia
5.1. Donepezil
5.1.1. Acute versus Chronic Phase of Post-Stroke Aphasia
5.1.2. Positive Effects on Language and Other Cognitive Domains
6. Lesion Site, Pharmacotherapy, and Synaptic Gain
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedersen, P.M.; Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Aphasia in acute stroke: Incidence, determinants, and recovery. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1995, 38, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.; Urban, S. Age and aphasia: A review of presence, type, recovery and clinical outcomes. Top. Stroke Rehabil. 2016, 23, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.A.; Ralph, L.M.A.; Woollams, A.M. Capturing multidimensionality in stroke aphasia: Mapping principal behavioural components to neural structures. Brain 2014, 137, 3248–3266. [Google Scholar] [CrossRef] [PubMed]
- Kasselimis, D.; Angelopoulou, G.; Simos, P.; Petrides, M.; Peppas, C.; Velonakis, G.; Tavernarakis, A.; Evdokimidis, I.; Potagas, C. Working memory impairment in aphasia: The issue of stimulus modality. J. Neurolinguistics 2018, 48, 104–116. [Google Scholar] [CrossRef]
- Potagas, C.; Kasselimis, D.; Evdokimidis, I. Short-term and working memory impairments in aphasia. Neuropsychologia 2011, 49, 2874–2878. [Google Scholar] [CrossRef]
- Baker, C.; Worrall, L.; Rose, M.; Hudson, K.; Ryan, B.; O’Byrne, L. A systematic review of rehabilitation interventions to prevent and treat depression in post-stroke aphasia. Disabil. Rehabil. 2018, 40, 1870–1892. [Google Scholar] [CrossRef]
- van Dijk, M.J.; de Man-van Ginkel, J.M.; Hafsteinsdóttir, T.B.; Schuurmans, M.J. Identifying depression post-stroke in patients with aphasia: A systematic review of the reliability, validity and feasibility of available instruments. Clin. Rehabil. 2016, 30, 795–810. [Google Scholar] [CrossRef]
- Li, R.; Mukadam, N.; Kiran, S. Functional MRI evidence for reorganization of language networks after stroke. Handb. Clin. Neurol. 2022, 185, 131–150. [Google Scholar]
- Hartwigsen, G.; Saur, D. Neuroimaging of stroke recovery from aphasia–Insights into plasticity of the human language network. Neuroimage 2019, 190, 14–31. [Google Scholar] [CrossRef]
- Saur, D.; Lange, R.; Baumgaertner, A.; Schraknepper, V.; Willmes, K.; Rijntjes, M.; Weiller, C. Dynamics of language reorganization after stroke. Brain 2006, 129, 1371–1384. [Google Scholar] [CrossRef]
- Stockbridge, M.D. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. Handb. Clin. Neurol. 2022, 185, 261–272. [Google Scholar] [PubMed]
- Yourganov, G.; Stark, B.C.; Fridriksson, J.; Bonilha, L.; Rorden, C. Effect of stroke on contralateral functional connectivity. Brain Connect. 2021, 11, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Stockert, A.; Wawrzyniak, M.; Klingbeil, J.; Wrede, K.; Kümmerer, D.; Hartwigsen, G.; Kaller, C.P.; Weiller, C.; Saur, D. Dynamics of language reorganization after left temporo-parietal and frontal stroke. Brain 2020, 143, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Basso, A. Aphasia and Its Therapy; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Picano, C.; Quadrini, A.; Pisano, F.; Marangolo, P. Adjunctive approaches to aphasia rehabilitation: A review on efficacy and safety. Brain Sci. 2021, 11, 41. [Google Scholar] [CrossRef]
- Kasselimis, D.S.; Potagas, C. Language disorders, treatment and remediation of. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; Volume 13, pp. 329–336. [Google Scholar]
- Kasselimis, D.S.; Papageorgiou, G.; Angelopoulou, G.; Tsolakopoulos, D.; Potagas, C. Translational neuroscience of aphasia and adult language rehabilitation. In Translational Neuroscience of Speech and Language Disorders; Springer: Cham, Germany, 2020; pp. 5–20. [Google Scholar]
- Laska, A.C.; Hellblom, A.; Murray, V.; Kahan, T.; Von Arbin, M. Aphasia in acute stroke and relation to outcome. J. Intern. Med. 2001, 249, 413–422. [Google Scholar] [CrossRef]
- Lazar, R.M.; Minzer, B.; Antoniello, D.; Festa, J.R.; Krakauer, J.W.; Marshall, R.S. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke 2010, 41, 1485–1488. [Google Scholar] [CrossRef]
- Harvey, S.; Carragher, M.; Dickey, M.W.; Pierce, J.E.; Rose, M.L. Dose effects in behavioural treatment of post-stroke aphasia: A systematic review and meta-analysis. Disabil. Rehabil. 2020, 44, 2548–2559. [Google Scholar] [CrossRef]
- Rose, M.; Ferguson, A.; Power, E.; Togher, L.; Worrall, L. Aphasia rehabilitation in Australia: Current practices, challenges and future directions. Int. J. Speech-Lang. Pathol. 2014, 16, 169–180. [Google Scholar] [CrossRef]
- Zumbansen, A.; Thiel, A. Recent advances in the treatment of post-stroke aphasia. Neural. Regen. Res. 2014, 9, 703. [Google Scholar]
- Vitti, E.; Hillis, A.E. Treatment of post-stroke aphasia: A narrative review for stroke neurologists. Int. J. Stroke 2021, 16, 1002–1008. [Google Scholar] [CrossRef]
- Kennedy, N. Results of NI RCSLT Survey of Communication Needs after Stroke; Royal College of Speech and Language Therapists: London, UK, 2018. [Google Scholar]
- Palmer, R.; Witts, H.; Chater, T. What speech and language therapy do community dwelling stroke survivors with aphasia receive in the UK? PLoS ONE. 2018, 13, e0200096. [Google Scholar] [CrossRef] [PubMed]
- Chadd, K.; Moyse, K.; Enderby, P. Impact of COVID-19 on the speech and language therapy profession and their patients. Front. Neurol. 2021, 12, 629190. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R.; Dimairo, M.; Cooper, C.; Enderby, P.; Brady, M.; Bowen, A.; Latimer, N.; Julious, S.; Cross, E.; Alshreef, A.; et al. Self-managed, computerised speech and language therapy for patients with chronic aphasia post-stroke compared with usual care or attention control (Big CACTUS): A multicentre, single-blinded, randomised controlled trial. Lancet Neurol. 2019, 18, 821–833. [Google Scholar] [CrossRef]
- Cacciante, L.; Kiper, P.; Garzon, M.; Baldan, F.; Federico, S.; Turolla, A.; Agostini, M. Telerehabilitation for people with aphasia: A systematic review and meta-analysis. J. Commun. Disord. 2021, 92, 106111. [Google Scholar] [CrossRef]
- Peñaloza, C.; Scimeca, M.; Gaona, A.; Carpenter, E.; Mukadam, N.; Gray, T.; Shamapant, S.; Kiran, S. Telerehabilitation for word retrieval deficits in bilinguals with aphasia: Effectiveness and reliability as compared to in-person language therapy. Front. Neurol. 2021, 12, 598. [Google Scholar] [CrossRef]
- Nikolaev, V.A.; Nikolaev, A.A. Recent trends in telerehabilitation of stroke patients: A narrative review. Neurol. Rehabil. 2022, 51, 1–22. [Google Scholar] [CrossRef]
- Boes, A.D.; Prasad, S.; Liu, H.; Liu, Q.; Pascual-Leone, A.; Caviness, V.S., Jr.; Fox, M.D. Network localization of neurological symptoms from focal brain lesions. Brain 2015, 138, 3061–3075. [Google Scholar] [CrossRef]
- Han, Z.; Ma, Y.; Gong, G.; He, Y.; Caramazza, A.; Bi, Y. White matter structural connectivity underlying semantic processing: Evidence from brain damaged patients. Brain 2013, 136, 2952–2965. [Google Scholar] [CrossRef]
- Hanna-Pladdy, B.; Choi, H.; Herman, B.; Haffey, S. Audiovisual lexical retrieval deficits following left hemisphere stroke. Brain Sci. 2018, 8, 206. [Google Scholar] [CrossRef]
- Crosson, B. Thalamic mechanisms in language: A reconsideration based on recent findings and concepts. Brain Lang. 2013, 126, 73–88. [Google Scholar] [CrossRef]
- Berthier, M.L. Ten key reasons for continuing research on pharmacotherapy for post-stroke aphasia. Aphasiology 2021, 35, 824–858. [Google Scholar] [CrossRef]
- Berthier, M.L.; Santana-Moreno, D.; Beltrán-Corbellini, Á.; Criado-Álamo, J.C.; Edelkraut, L.; López-Barroso, D.; Dávila, G.; Torres-Prioris, M.J. Controlling the past, owning the present, and future: Cholinergic modulation decreases semantic perseverations in a person with post-stroke aphasia. Aphasiology 2021, 1–9. [Google Scholar] [CrossRef]
- Berthier, M.L.; Pulvermüller, F.; Dávila, G.; Casares, N.G.; Gutiérrez, A. Drug therapy of post-stroke aphasia: A review of current evidence. Neuropsychol. Rev. 2011, 21, 302–317. [Google Scholar] [CrossRef]
- Cichon, N.; Wlodarczyk, L.; Saluk-Bijak, J.; Bijak, M.; Redlicka, J.; Gorniak, L.; Miller, E. Novel advances to post-stroke aphasia pharmacology and rehabilitation. J. Clin. Med. 2021, 10, 3778. [Google Scholar] [CrossRef]
- Duncan, E.S.; Pradeep, A.A.; Small, S.L. A review of biological interventions in chronic aphasia. Ann. Indian Acad. Neurol. 2020, 23 (Suppl. S2), S82. [Google Scholar]
- Gill, S.K.; Leff, A.P. Dopaminergic therapy in aphasia. Aphasiology 2014, 28, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Moscowitch, L.; McNamara, P.; Albert, M.L. Neurochemical correlates of aphasia. Neurology 1991, 41, 410. [Google Scholar]
- Seniów, J.; Litwin, M.; Litwin, T.; Leśniak, M.; Członkowska, A. New approach to the rehabilitation of post-stroke focal cognitive syndrome: Effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J. Neurol. Sci. 2009, 283, 214–218. [Google Scholar] [CrossRef]
- Small, S.L.; Llano, D.A. Biological approaches to aphasia treatment. Curr. Neurol. Neurosci. Rep. 2009, 9, 443–450. [Google Scholar] [CrossRef]
- Tanaka, Y.; Miyazaki, M. Effects of increased cholinergic activity on naming in aphasia. Lancet 1997, 350, 116–117. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, B.; Zhang, D.; Huang, L.; Fu, Q.; Du, G. The efficacy and safety of pharmacological treatments for post-stroke aphasia. CNS Neurol. Disord. -Drug Targets 2018, 17, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Llano, D.A.; Small, S.L. The thalamus and language. In Neurobiology of Language; Small, S., Hickok, G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 95–114. [Google Scholar]
- Hughes, J.D.; Jacobs, D.H.; Heilman, K.M. Neuropharmacology and linguistic neuroplasticity. Brain Lang. 2000, 71, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Sarter, M.; Hasselmo, M.E.; Bruno, J.P.; Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Rev. 2005, 48, 98–111. [Google Scholar] [CrossRef]
- Sarter, M.; Albin, R.L.; Kucinski, A.; Lustig, C. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp. Neurol. 2014, 257, 120–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarter, M.; Bruno, J.P. Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Res. Rev. 1997, 23, 28–46. [Google Scholar] [CrossRef]
- Craik, F.I.; Luo, L.; Sakuta, Y. Effects of aging and divided attention on memory for items and their contexts. Psychol. Aging 2010, 25, 968. [Google Scholar] [CrossRef]
- Gotti, C.; Zoli, M.; Clementi, F. Brain nicotinic acetylcholine receptors: Native subtypes and their relevance. Trends Pharmacol. Sci. 2006, 27, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, L.; Savoia, P.; Bono, F.; Fiorentini, C.; Missale, C. Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: Relevance for neuroplasticity. Eur. Neuropsychopharmacol. 2017, 27, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.F.; Grosch, J.; Fregni, F.; Paulus, W.; Nitsche, M.A. Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. J. Neurosci. 2007, 27, 14442–14447. [Google Scholar] [CrossRef]
- Buccafusco, J.J.; Letchworth, S.R.; Bencherif, M.; Lippiello, P.M. Long-lasting cognitive improvement with nicotinic receptor agonists: Mechanisms of pharmacokinetic–pharmacodynamic discordance. Trends Pharmacol. Sci. 2005, 26, 352–360. [Google Scholar] [CrossRef]
- Rashid, H.; Mahboob, A.; Ahmed, T. Role of cholinergic receptors in memory retrieval depends on gender and age of memory. Behav. Brain Res. 2017, 331, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Knipper, M.; da Penha Berzaghi, M.; Blöchl, A.; Breer, H.; Thoenen, H.; Lindholm, D. Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur. J. Neurosci. 1994, 6, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 2012, 76, 116–129. [Google Scholar] [CrossRef]
- Saur, D.; Kreher, B.W.; Schnell, S.; Kümmerer, D.; Kellmeyer, P.; Vry, M.S.; Umarova, R.; Musso, M.; Glauche, V.; Abel, S.; et al. Ventral and dorsal pathways for language. Proc. Natl. Acad. Sci. USA 2008, 105, 18035–18040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickok, G.; Poeppel, D. Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition 2004, 92, 67–99. [Google Scholar] [CrossRef]
- Barbeau, E.B.; Descoteaux, M.; Petrides, M. Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci. Rep. 2020, 10, 8186. [Google Scholar] [CrossRef]
- Weiller, C.; Reisert, M.; Peto, I.; Hennig, J.; Makris, N.; Petrides, M.; Rijntjes, M.; Egger, K. The ventral pathway of the human brain: A continuous association tract system. NeuroImage 2021, 234, 117977. [Google Scholar] [CrossRef]
- Petrides, M.; Tomaiuolo, F.; Yeterian, E.H.; Pandya, D.N. The prefrontal cortex: Comparative architectonic organization in the human and the macaque monkey brains. Cortex 2012, 48, 46–57. [Google Scholar] [CrossRef]
- Petrides, M.; Pandya, D.N. Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol. 2009, 7, e1000170. [Google Scholar] [CrossRef]
- Indefrey, P.; Levelt, W.J. The spatial and temporal signatures of word production components. Cognition 2004, 92, 101–144. [Google Scholar] [CrossRef]
- Ackermann, H.; Riecker, A. The contribution(s) of the insula to speech production: A review of the clinical and functional imaging literature. Brain Struct. Funct. 2010, 214, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Llano, D.A. Functional imaging of the thalamus in language. Brain Lang. 2013, 126, 62–72. [Google Scholar] [CrossRef]
- Oh, A.; Duerden, E.G.; Pang, E.W. The role of the insula in speech and language processing. Brain Lang. 2014, 135, 96–103. [Google Scholar] [CrossRef]
- De Witte, L.; Brouns, R.; Kavadias, D.; Engelborghs, S.; De Deyn, P.P.; Mariën, P. Cognitive, affective and behavioural disturbances following vascular thalamic lesions: A review. Cortex 2011, 47, 273–319. [Google Scholar] [CrossRef]
- Hebb, A.O.; Ojemann, G.A. The thalamus and language revisited. Brain Lang. 2013, 126, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Dronkers, N.F. A new brain region for coordinating speech articulation. Nature 1996, 384, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Dell, G.S.; Schwartz, M.F.; Nozari, N.; Faseyitan, O.; Coslett, H.B. Voxel-based lesion-parameter mapping: Identifying the neural correlates of a computational model of word production. Cognition 2013, 128, 380–396. [Google Scholar] [CrossRef]
- Halai, A.D.; Woollams, A.M.; Ralph, M.A. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex 2017, 86, 275–289. [Google Scholar] [CrossRef]
- Lacey, E.H.; Skipper-Kallal, L.M.; Xing, S.; Fama, M.E.; Turkeltaub, P.E. Mapping common aphasia assessments to underlying cognitive processes and their neural substrates. Neurorehabil. Neural Repair 2017, 31, 442–450. [Google Scholar] [CrossRef]
- Mirman, D.; Chen, Q.; Zhang, Y.; Wang, Z.; Faseyitan, O.K.; Coslett, H.; Schwartz, M.F. Neural organization of spoken language revealed by lesion–symptom mapping. Nat. Commun. 2015, 6, 6762. [Google Scholar] [CrossRef]
- Thye, M.; Mirman, D. Relative contributions of lesion location and lesion size to predictions of varied language deficits in post-stroke aphasia. NeuroImage Clin. 2018, 20, 1129–1138. [Google Scholar] [CrossRef]
- Efthymiopoulou, E.; Kasselimis, D.S.; Ghika, A.; Kyrozis, A.; Peppas, C.; Evdokimidis, I.; Petrides, M.; Potagas, C. The effect of cortical and subcortical lesions on spontaneous expression of memory-encoded and emotionally infused information: Evidence for a role of the ventral stream. Neuropsychologia 2017, 101, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Selden, N.R.; Gitelman, D.R.; Salamon-Murayama, N.; Parrish, T.B.; Mesulam, M.M. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain A J. Neurol. 1998, 121, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1990, 28, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Beeson, P.M.; Bayles, K.A.; Rubens, A.B.; Kaszniak, A.W. Memory impairment and executive control in individuals with stroke-induced aphasia. Brain Lang. 1993, 45, 253–275. [Google Scholar] [CrossRef] [PubMed]
- Leff, A.P.; Schofield, T.M.; Crinion, J.T.; Seghier, M.L.; Grogan, A.; Green, D.W.; Price, C.J. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: Evidence from 210 patients with stroke. Brain 2009, 132, 3401–3410. [Google Scholar] [CrossRef]
- Kreisler, A.; Godefroy, O.; Delmaire, C.; Debachy, B.; Leclercq, M.; Pruvo, J.P.; Leys, D. The anatomy of aphasia revisited. Neurology 2000, 54, 1117–1123. [Google Scholar] [CrossRef]
- Dronkers, N.F.; Wilkins, D.P.; Van Valin, R.D., Jr.; Redfern, B.B.; Jaeger, J.J. Lesion analysis of the brain areas involved in language comprehension. Cognition 2004, 92, 145–177. [Google Scholar] [CrossRef]
- Gerton, B.K.; Brown, T.T.; Meyer-Lindenberg, A.; Kohn, P.; Holt, J.L.; Olsen, R.K.; Berman, K.F. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 2004, 42, 1781–1787. [Google Scholar] [CrossRef]
- Wager, T.D.; Smith, E.E. Neuroimaging studies of working memory. Cogn. Affect. Behav. Neurosci. 2003, 3, 255–274. [Google Scholar] [CrossRef]
- Salmelin, R. Clinical neurophysiology of language: The MEG approach. Clin. Neurophysiol. 2007, 118, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Price, C.J. The anatomy of language: Contributions from functional neuroimaging. J. Anat. 2000, 197, 335–359. [Google Scholar] [CrossRef] [PubMed]
- Kasselimis, D.S.; Simos, P.G.; Economou, A.; Peppas, C.; Evdokimidis, I.; Potagas, C. Are memory deficits dependent on the presence of aphasia in left brain damaged patients? Neuropsychologia 2013, 51, 1773–1776. [Google Scholar] [CrossRef] [PubMed]
- Laures-Gore, J.; Marshall, R.S.; Verner, E. Performance of individuals with left hemisphere stroke and aphasia and individuals with right brain damage on forward and backward digit span tasks. Aphasiology 2011, 25, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, N.; Ayala, J. Measurements of auditory-verbal STM span in aphasia: Effects of item, task, and lexical impairment. Brain Lang. 2004, 89, 464–483. [Google Scholar] [CrossRef] [PubMed]
- Lugtmeijer, S.; Lammers, N.A.; de Haan, E.H.; de Leeuw, F.E.; Kessels, R.P. Post-stroke working memory dysfunction: A meta-analysis and systematic review. Neuropsychol. Rev. 2021, 31, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Caplan, D. Aphasic deficits in syntactic processing. Cortex 2006, 42, 797–804. [Google Scholar] [CrossRef]
- Mesulam, M.M. The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog. Brain Res. 1996, 109, 285–297. [Google Scholar]
- Mesulam, M.M.; Geula, C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol. 1988, 275, 216–240. [Google Scholar] [CrossRef]
- Abreu-Villaça, Y.; Filgueiras, C.C.; Manhães, A.C. Developmental aspects of the cholinergic system. Behav. Brain Res. 2011, 221, 367–378. [Google Scholar] [CrossRef]
- Kitt, C.A.; Mitchell, S.J.; DeLong, M.R.; Wainer, B.H.; Price, D.L. Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res. 1987, 406, 192–206. [Google Scholar] [CrossRef]
- Mesulam, M.M. Principles of Behavioral and Cognitive Neurology; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Simić, G.; Mrzljak, L.; Fucić, A.; Winblad, B.; Lovrić, H.; Kostović, I. Nucleus subputaminalis (Ayala): The still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area. Neuroscience 1999, 89, 73–89. [Google Scholar] [CrossRef]
- Makris, N.; Pandya, D.N. The extreme capsule in humans and rethinking of the language circuitry. Brain Struct. Funct. 2009, 213, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Nolze-Charron, G.; Dufort-Rouleau, R.; Houde, J.C.; Dumont, M.; Castellano, C.A.; Cunnane, S.; Lorrain, D.; Fülöp, T.; Descoteaux, M.; Bocti, C. Tractography of the external capsule and cognition: A diffusion MRI study of cholinergic fibers. Exp. Gerontol. 2020, 130, 110792. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Zumbansen, A. The pathophysiology of post-stroke aphasia: A network approach. Restor. Neurol. Neurosci. 2016, 34, 507–518. [Google Scholar] [CrossRef]
- Solari, N.; Hangya, B. Cholinergic modulation of spatial learning, memory and navigation. Eur. J. Neurosci. 2018, 48, 2199–2230. [Google Scholar] [CrossRef]
- Parikh, V.; Sarter, M. Cholinergic mediation of attention: Contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann. N. Y. Acad. Sci. 2008, 1129, 225–235. [Google Scholar] [CrossRef]
- Mesulam, M.M. Cholinergic Pathways and the Ascending Reticular Activating System of the Human Brain a. Ann. N. Y. Acad. Sci. 1995, 757, 169–179. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J. Khachaturian ZS. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Haense, C.; Kalbe, E.; Herholz, K.; Hohmann, C.; Neumaier, B.; Krais, R.; Heiss, W.D. Cholinergic system function and cognition in mild cognitive impairment. Neurobiol. Aging 2012, 33, 867–877. [Google Scholar] [CrossRef]
- Luria, A.R.; Naydin, V.L.; Tsvetkova, L.S.; Vinarskaya, E.N. Restoration of Higher Cortical Function Following Local Brain Damage. In Handbook of Clinical Neurology; Vinken, P., Bruyn, G., Eds.; North Holland Publishing Company: Amsterdam, The Netherlands, 1969; pp. 368–433. [Google Scholar]
- Saxena, S.; Hillis, A.E. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev. Neurother. 2017, 17, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Berthier, M.L.; Pulvermüller, F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat. Rev. Neurol. 2011, 7, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.H.; Shuren, J.; Gold, M.; Adair, J.C.; Bowers, D.; Williamson, D.J.; Heilman, K.M. Physostigmine pharmacotherapy for anomia. Neurocase 1996, 2, 83–91. [Google Scholar] [CrossRef]
- Kabasawa, H.; Matsubara, M.; Kamimoto, K.; Hibino, H.; Banno, T.; Nagai, H. Effects of bifemelane hydrochloride on cerebral circulation and metabolism in patients with aphasia. Clin. Ther. 1994, 16, 471–482. [Google Scholar] [PubMed]
- Hong, J.M.; Shin, D.H.; Lim, T.S.; Lee, J.S.; Huh, K. Galantamine administration in chronic post-stroke aphasia. J. Neurol. Neurosurg. Psychiatry 2012, 83, 675–680. [Google Scholar] [CrossRef]
- Pasheka, G.V.; Bachman, D.L. Cognitive, linguistic and motor speech effects of donepezil hydrochloride in a patient with stroke-related aphasia and apraxia of speech. Brain Lang. 2003, 1, 179–180. [Google Scholar] [CrossRef]
- Berthier, M.L.; Hinojosa, J.; del Carmen Martín, M.; Fernández, I. Open-label study of donepezil in chronic poststroke aphasia. Neurology 2003, 60, 1218–1219. [Google Scholar] [CrossRef]
- Berthier, M.L.; Green, C.; Higueras, C.; Fernández, I.; Hinojosa, J.; Martín, M.C. A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 2006, 67, 1687–1689. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.S.; Wang, Z.Y.; Xu, Q.; Shi, G.W.; Lin, Y. The efficacy of donepezil for post-stroke aphasia: A pilot case control study. Zhonghua Nei Ke Za Zhi 2010, 49, 115–118. [Google Scholar]
- Berthier, M.L.; Davila, G.; Green-Heredia, C.; Moreno Torres, I.; Juarez y Ruiz de Mier, R.; De-Torres, I.; Ruiz-Cruces, R. Massed sentence repetition training can augment and speed up recovery of speech production deficits in patients with chronic conduction aphasia receiving donepezil treatment. Aphasiology 2014, 28, 188–218. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, J.K.; An, Y.S.; Kim, Y.W. Effect of donepezil on wernicke aphasia after bilateral middle cerebral artery infarction: Subtraction analysis of brain F-18 fluorodeoxyglucose positron emission tomographic images. Clin. Neuropharmacol. 2015, 38, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, Z.V.; Crinion, J.; Teki, S.; Penny, W.; Price, C.J.; Leff, A.P. Auditory training changes temporal lobe connectivity in ‘Wernicke’s aphasia’: A randomised trial. J. Neurol. Neurosurg. Psychiatry 2017, 88, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Berthier, M.L.; De-Torres, I.; Paredes-Pacheco, J.; Roé-Vellvé, N.; Thurnhofer-Hemsi, K.; Torres-Prioris, M.J.; Alfaro, F.; Moreno-Torres, I.; López-Barroso, D.; Dávila, G. Cholinergic potentiation and audiovisual repetition-imitation therapy improve speech production and communication deficits in a person with crossed aphasia by inducing structural plasticity in white matter tracts. Front. Hum. Neurosci. 2017, 11, 304. [Google Scholar] [CrossRef] [PubMed]
- Barfejani, A.H.; Jafarvand, M.; Seyedsaadat, S.M.; Rasekhi, R.T. Donepezil in the treatment of ischemic stroke: Review and future perspective. Life Sci. 2020, 263, 118575. [Google Scholar] [CrossRef]
- Dávila, G.; Moyano, M.P.; Edelkraut, L.; Moreno-Campos, L.; Berthier, M.L.; Torres-Prioris, M.J.; López-Barroso, D. Pharmacotherapy of traumatic childhood aphasia: Beneficial effects of donepezil alone and combined with intensive naming therapy. Front. Pharmacol. 2020, 11, 1144. [Google Scholar] [CrossRef]
Study | Study Design and Sample Size | Phase of Stroke–Mean Duration of Aphasia | Lesion Description | Mean Age of Participants | PharmacotHerapy Duration/Dose | Other Type of Treatment | Language Domains | Outcome |
---|---|---|---|---|---|---|---|---|
Donepezil | ||||||||
Pasheka and Bachman 2003 [113] | case study N = 1 | Chronic phase 18.5 months post-stroke | not reported | 59 years | Donepezil 6 weeks 5 mg | not reported | naming, phrase length, word repetition, Auditory comprehension, attention, motor speech ability | language, cognition and (unexpectedly), motor speech abilities |
Berthier et al., 2003 [114] | open-label pilot study N = 10 | Chronic phase-4.4 (+/−3.5) years | not reported | 56 years | Donepezil 20 weeks 5- and 10- mg | Standard speech and language Therapy two times per week | Phonology discrimination, lexical decision, repetition, short-term memory, naming, lexical knowledge. * defined by WAB and PALPA | Improvement in phonemic discrimination, repetition, naming, lexical knowledge.-There were no differences in performance on AQ-WAB and PALPA between 5-mg and 10-mg daily doses. |
Berthier et al., 2006 [115] | double-blind, randomized, placebocontrolled, parallel-group study N = 13 | chronic aphasia (1 year sinceonset)-33.9 +/− 27.6 months | not reported | 48.0 +/− 10.6 | Donepezil week 16 5- and 10- mg | Standard speech and language Therapy two times per week | phonemic discrimination, lexical decision, repetition, naming, lexical knowledge * defined by WAB, PALPA and CAL (Aphasia Battery (WAB) and Communicative Activity Log (CAL) (a scale that assesses the patient’s communicative behavior in everyday life) | The severity of aphasia (AQ of the WAB) improved more in the donepezil group than in the placebo group at endpoint. The scores in the picture naming subtest of the PALPA improved more with donepezil at endpoint. |
Chen et al., 2010 [116] | a pilot case control study N = 60 | Acute phase | not reported | - | Donepezil 12 weeks 5 mg | - | spontaneous speech, comprehension, repetition, and naming * based on WAB sentence repetition-working memory | significant recovery in spontaneous speech, comprehension, repetition, and naming |
Berthier et al., 2014 [117] | case-series study N = 3 | Chronic phase-(>1 year post-stroke) | large left frontotemporo- parietal infarction | 58 years | Donepezil 20-week open-label pilot trial and 8-week extension phase No dose reported | Distributed and massed aphasia therapies | sentence repetition-working memory | Combination of donepezil with speech and language therapy provided better results in connected speech during picture description and word list repetition than donepezil and less-intensive therapy. |
Yoon, et al., 2015 [118] | Case report N = 1 | Chronic phase-8 years | Left temporoparietal and right temporal area | 53 years | Donepezil 12 weeks 5 mg/d for 6 weeks and 10 mg/d for the following 6 weeks | No | spontaneous speech, comprehension, repetition, and naming * based on Korean WAB | improvement in comprehension during a conversation and a slight increase of spontaneous speech. |
Woodhead et al., 2017 [119] | randomised trial N = 20 | 3.3 (0.6–8.6) years | average lesion volume = 127.3 (24.2–403.6) cm3) | 62.4 (43–90) years | Donepezil 25 weeks 5 mg for the first 5-week block and 10 mg for the second block (if first block was tolerated) | Auditory/phonological training (using Earobics software) | speech comprehension, written comprehension, speech repetition, naming, reading and writing * based on Comprehensive Aphasia Test (CAT) | significant improvement in speech comprehension after phonological training, but worse comprehension on drug than placebo. Both effects were stronger in more severely impaired patients. |
Berthier et al., 2017 [120] | Case report N = 1 | 16 months post-stroke | right striatal-capsular hemorrhage | 46-year-old | Donepezil 5 days/week for 12 weeks (total training: 60 h) 5 and 10 mg | audiovisual repetition-imitation therapy (Look-Listen- Repeat-LLR) | Aphasia Severity, daily communication, connected speech production, words and sentences’ repetition, reading and writing. | Treatment with donepezil alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. Structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions |
Berthier et al., 2021 [36] | Case study N = 1 | 20 months post-stroke | large left fronto-temporo-parietal lesion due to a middle cerebral artery infarction | 34-year-old | Donepezil 16 weeks 5 and 10 mg | conventional speech-language therapy (SLT) | Fluency, Comprehension, repetition, naming, comminicativee activity, spoken word-picture matching, semantic paraphasias * defined by WAB | Significant improvement in Naming, Communicative Activity, spoken word-picture matching, non-words repetition, reduction in semantic paraphasias. |
Hong et al., 2012 [112] | Galantamine N = 45 | Chronic phase-(at least one-year post-onset)/2.2 (1.5 years). | cortical (superficial territory of the middle cerebral artery without involvement of the subcortical grey matter) or subcortical (deep territory of the middle cerebral artery without involvement of the cerebral cortex). | 59.1 (+/− 11.4) | Galantamine 16 weeks 8 mg/day increments over 4 weeks up to 16 mg/day | - | spontaneous speech, comprehension, repetition, naming * defined by WAB | Significant improvement in spontaneous speech, comprehension and naming. Subcortical lesion pattern and baseline cognitive function associated with galantamine responsiveness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsari, M.; Angelopoulou, G.; Laskaris, N.; Potagas, C.; Kasselimis, D. Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review. Brain Sci. 2022, 12, 1273. https://doi.org/10.3390/brainsci12101273
Katsari M, Angelopoulou G, Laskaris N, Potagas C, Kasselimis D. Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review. Brain Sciences. 2022; 12(10):1273. https://doi.org/10.3390/brainsci12101273
Chicago/Turabian StyleKatsari, Marina, Georgia Angelopoulou, Nikolaos Laskaris, Constantin Potagas, and Dimitrios Kasselimis. 2022. "Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review" Brain Sciences 12, no. 10: 1273. https://doi.org/10.3390/brainsci12101273
APA StyleKatsari, M., Angelopoulou, G., Laskaris, N., Potagas, C., & Kasselimis, D. (2022). Common Neuroanatomical Substrate of Cholinergic Pathways and Language-Related Brain Regions as an Explanatory Framework for Evaluating the Efficacy of Cholinergic Pharmacotherapy in Post-Stroke Aphasia: A Review. Brain Sciences, 12(10), 1273. https://doi.org/10.3390/brainsci12101273