Facilitation of Hand Proprioceptive Processing in Paraplegic Individuals with Long-Term Wheelchair Sports Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. General Procedure
2.3. MRI Data Acquisition
2.4. Passive Task
2.5. Active Task
2.6. fMRI Data Preprocessing and Single-Subject Analysis
2.7. Brain Regions Active during Each Task in the Control Group
2.8. Nonparametric Test to Evaluate Group Differences
2.9. Evaluation of Group Differences in the Whole Brain
2.10. Group Difference in the Foot Section of the M1
2.11. Group Difference in the Higher-Order Proprioceptive Network
2.12. Nonparametric Test to Explore Paraplegic Group-Specific Difference between Passive and Active Tasks
3. Results
3.1. Brain Regions Active during Passive and Active Tasks in the Control Group
3.2. Group Difference in the Whole Brain
3.3. Group Difference in the Foot Section of the Left M1
3.4. Group Difference in the Higher-Order Proprioceptive Network
3.5. Paraplegic Group-Specific Difference between Passive and Active Tasks
4. Discussion
4.1. Limitation in the Present Study
4.2. Proprioceptive Processing in the Foot Section of the Left M1 in the Paraplegic Group
4.3. Facilitation of Activity in the Higher-Order Proprioceptive Network in the Paraplegic Group
4.4. Role of the IPS Region in the Paraplegic Group
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruehlmeier, M.; Dietz, V.; Leenders, K.L.; Roelcke, U.; Missimer, J.; Curt, A. How does the human brain deal with a spinal cord injury? Eur. J. Neurosci. 1998, 10, 3918–3922. [Google Scholar] [CrossRef] [PubMed]
- Lotze, M.; Flor, H.; Grodd, W.; Larbig, W.; Birbaumer, N. Phantom movements and pain. An fMRI study in upper limb amputees. Brain 2001, 124, 2268–2277. [Google Scholar] [CrossRef] [PubMed]
- Lotze, M.; Laubis-Herrmann, U.; Topka, H.; Erb, M.; Grodd, W. Reorganization in the primary motor cortex after spinal cord injury—A functional Magnetic Resonance (fMRI) study. Restor. Neurol. Neurosci. 1999, 14, 183–187. [Google Scholar] [PubMed]
- Mikulis, D.; Jurkiewicz, M.; McIlroy, W.; Staines, W.; Rickards, L.; Kalsi-Ryan, S.; Crawley, A.P.; Fehlings, M.; Verrier, M. Adaptation in the motor cortex following cervical spinal cord injury. Neurology 2002, 58, 794–801. [Google Scholar] [CrossRef]
- Stoeckel, M.C.; Seitz, R.J.; Buetefisch, C.M. Congenitally altered motor experience alters somatotopic organization of human primary motor cortex. Proc. Natl. Acad. Sci. USA 2009, 106, 2395–2400. [Google Scholar] [CrossRef]
- Hahamy, A.; Macdonald, S.N.; van den Heiligenberg, F.; Kieliba, P.; Emir, U.; Malach, R.; Johansen-Berg, H.; Brugger, P.; Culham, J.C.; Makin, T.R. Representation of Multiple Body Parts in the Missing-Hand Territory of Congenital One-Handers. Curr. Biol. 2017, 27, 1350–1355. [Google Scholar] [CrossRef]
- Hahamy, A.; Makin, T.R. Remapping in Cerebral and Cerebellar Cortices Is Not Restricted by Somatotopy. J. Neurosci. 2019, 39, 9328–9342. [Google Scholar] [CrossRef]
- Nakagawa, K.; Takemi, M.; Nakanishi, T.; Sasaki, A.; Nakazawa, K. Cortical reorganization of lower-limb motor representations in an elite archery athlete with congenital amputation of both arms. NeuroImage Clin. 2020, 25, 102144. [Google Scholar] [CrossRef]
- Morita, T.; Hirose, S.; Kimura, N.; Takemura, H.; Asada, M.; Naito, E. Hyper-Adaptation in the Human Brain: Functional and Structural Changes in the Foot Section of the Primary Motor Cortex in a Top Wheelchair Racing Paralympian. Front. Syst. Neurosci. 2022, 16, 780652. [Google Scholar] [CrossRef]
- Naito, E.; Nakashima, T.; Kito, T.; Aramaki, Y.; Okada, T.; Sadato, N. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur. J. Neurosci. 2007, 25, 3476–3487. [Google Scholar] [CrossRef]
- Mayhew, S.D.; Coleman, S.C.; Mullinger, K.J.; Can, C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. NeuroImage 2022, 253, 119081. [Google Scholar] [CrossRef]
- Amemiya, K.; Naito, E. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement. Cortex 2016, 78, 15–30. [Google Scholar] [CrossRef]
- Morita, T.; Saito, D.N.; Ban, M.; Shimada, K.; Okamoto, Y.; Kosaka, H.; Okazawa, H.; Asada, M.; Naito, E. Self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus iii network. Neuroscience 2017, 348, 288–301. [Google Scholar] [CrossRef]
- Naito, E.; Roland, P.E.; Grefkes, C.; Choi, H.J.; Eickhoff, S.; Geyer, S.; Zilles, K.; Ehrsson, H.H. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J. Neurophysiol. 2005, 93, 1020–1034. [Google Scholar] [CrossRef]
- Naito, E.; Morita, T.; Amemiya, K. Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness. Neurosci. Res. 2016, 104, 16–30. [Google Scholar] [CrossRef]
- Naito, E.; Morita, T.; Saito, D.N.; Ban, M.; Shimada, K.; Okamoto, Y.; Kosaka, H.; Okazawa, H.; Asada, M. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task. Cereb. Cortex 2017, 27, 5385. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Crawford, J.R.; Howell, D.C. Comparing an Individual’s Test Score against Norms Derived from Small Samples. Clin. Neuropsychol. 1998, 12, 482–486. [Google Scholar] [CrossRef]
- Moeller, S.; Yacoub, E.; Olman, C.A.; Auerbach, E.; Strupp, J.; Harel, N.; Uğurbil, K. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 2010, 63, 1144–1153. [Google Scholar] [CrossRef]
- Morita, T.; Asada, M.; Naito, E. Examination of the development and aging of brain deactivation using a unimanual motor task. Adv. Robot. 2021, 35, 842–857. [Google Scholar] [CrossRef]
- Evans, A.C.; Kamber, M.; Collins, D.L.; MacDonald, D. An MRI-based probabilistic atlas of neuroanatomy. In Magnetic Resonance Scanning and Epilepsy; Shorvon, S.D., Fish, D.R., Andermann, F., Bydder, G.M., Stefan, H., Eds.; NATO ASI Series; Springer: Boston, MA, USA, 1994; pp. 263–274. ISBN 978-1-4615-2546-2. [Google Scholar]
- Friston, K.J.; Holmes, A.P.; Poline, J.B.; Grasby, P.J.; Williams, S.C.; Frackowiak, R.S.; Turner, R. Analysis of fMRI time-series revisited. Neuroimage 1995, 2, 45–53. [Google Scholar] [CrossRef]
- Worsley, K.J.; Friston, K.J. Analysis of fMRI time-series revisited—Again. NeuroImage 1995, 2, 173–181. [Google Scholar] [CrossRef]
- Aguirre, G.K.; Zarahn, E.; D’Esposito, M. The inferential impact of global signal covariates in functional neuroimaging analyses. NeuroImage 1998, 8, 302–306. [Google Scholar] [CrossRef]
- Holmes, A.P.; Friston, K.J. Generalisability, Random Effects & Population Inference. NeuroImage 1998, 7, S754. [Google Scholar] [CrossRef]
- Nichols, T.E.; Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum. Brain Mapp. 2002, 15, 1–25. [Google Scholar] [CrossRef]
- Eickhoff, S.B.; Stephan, K.E.; Mohlberg, H.; Grefkes, C.; Fink, G.R.; Amunts, K.; Zilles, K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 2005, 25, 1325–1335. [Google Scholar] [CrossRef]
- Worsley, K.J.; Marrett, S.; Neelin, P.; Vandal, A.C.; Friston, K.J.; Evans, A.C. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 1996, 4, 58–73. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Zeharia, N.; Hertz, U.; Flash, T.; Amedi, A. Negative blood oxygenation level dependent homunculus and somatotopic information in primary motor cortex and supplementary motor area. Proc. Natl. Acad. Sci. USA 2012, 109, 18565–18570. [Google Scholar] [CrossRef]
- Naito, E.; Morita, T.; Hirose, S.; Kimura, N.; Okamoto, H.; Kamimukai, C.; Asada, M. Bimanual digit training improves right-hand dexterity in older adults by reactivating declined ipsilateral motor-cortical inhibition. Sci. Rep. 2021, 11, 22696. [Google Scholar] [CrossRef]
- Buccino, G.; Binkofski, F.; Fink, G.R.; Fadiga, L.; Fogassi, L.; Gallese, V.; Seitz, R.J.; Zilles, K.; Rizzolatti, G.; Freund, H.-J. Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. Eur. J. Neurosci. 2001, 13, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.C.W.; Zambreanu, L.; Godinez, A.; Craig, A.D.B.; Tracey, I. Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage 2005, 27, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.A.; Gandevia, S.C.; Macefield, V.G. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: A single-trial fMRI study. Pain 2007, 128, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007, 27, 2349–2356. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef]
- Simmonds, D.J.; Pekar, J.J.; Mostofsky, S.H. Meta-analysis of Go/No-Go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 2008, 46, 224–232. [Google Scholar] [CrossRef]
- Swick, D.; Ashley, V.; Turken, A.U. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008, 9, 102. [Google Scholar] [CrossRef]
- Hung, Y.; Gaillard, S.L.; Yarmak, P.; Arsalidou, M. Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Hum. Brain Mapp. 2018, 39, 4065–4082. [Google Scholar] [CrossRef]
- Osada, T.; Ohta, S.; Ogawa, A.; Tanaka, M.; Suda, A.; Kamagata, K.; Hori, M.; Aoki, S.; Shimo, Y.; Hattori, N.; et al. An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network. J. Neurosci. 2019, 39, 2509. [Google Scholar] [CrossRef] [Green Version]
Participant | P1 | P2 | P3 | P4 |
Age (in years) | 30 | 61 | 54 | 52 |
Sex | F | M | M | M |
Leg non-use period | 30 years | 60 years | 37 years | 31 years |
Neurological level | T12 | Cannot be specified | T3 | T8 |
Cause | * Spina bifida | Poliomyelitis | Spinal cord injury | Spinal cord injury |
ASIA impairment scale | A | undefined | A | A |
SCI | Complete | undefined | Complete | Complete |
FIM | 101/126 | 108/126 | 101/126 | 101/126 |
Somatic sensations (light touch and pin prick) from lower limbs | No | Yes | No | No |
Wheelchair sports (years played) Training period (age), training days/week, training hours/day | Track racing and marathon (23) 8–14 yo, 2/w, 8 h 15–17 yo, 7/w, 1–8 h 18–30 yo, 6/w, 2 h | Basketball (42) 17–22 yo, 4–5/w, 3 h 23–58 yo, 1–2/w, 3 h Table tennis (4) 15–18 yo, 1/w, 2 h | Table tennis (27) 28–54 yo, 2–4 w, 2.5–8 h | Basketball (31) 22–35 yo, 5/w, 3 h 36–52 yo, 1/w, 3 h Marathon (9) 27–35 yo, 2/w, 3 h Fencing (9) 27–35 yo, 2/w, 3 h |
Handedness score | 60 | 7 | 100 | 90 |
Cluster | Size (voxels) | x | y | z | t-Value | Anatomical Identification |
---|---|---|---|---|---|---|
Passive (paraplegic − control) | ||||||
R IPL | 492 * | 62 | −34 | 34 | 7.16 | Area PF |
62 | −32 | 20 | 5.26 | IPL | ||
54 | −30 | 46 | 5.00 | Area PFt | ||
L IFG/insula | 456 * | −36 | 12 | 14 | 7.02 | Area OP8 |
−54 | 12 | 2 | 4.41 | Area 44 | ||
R IFG/insula | 448 * | 54 | 6 | 8 | 7.00 | Area 44 |
52 | 4 | −6 | 6.65 | Insula | ||
L medial-wall motor | 382 * | −6 | −14 | 66 | 6.67 | Area 6mc (SMA) |
−4 | −22 | 56 | 5.02 | Area 4a | ||
R middle IFG/insula | 398 * | 48 | 22 | −6 | 6.37 | IFG |
38 | 20 | 2 | 5.34 | Frontal operculum cortex | ||
Active (paraplegic − control) | ||||||
No significant cluster |
Cluster | Size (voxels) | x | y | z | t-Value | Anatomical Identification |
---|---|---|---|---|---|---|
Paraplegic (passive–active)–control (passive–active) | ||||||
L IPS | 643 * | −38 | −34 | 38 | 5.04 | Supramarginal gyrus |
−50 | −36 | 42 | 4.98 | Area hIP2/PFt | ||
−36 | −44 | 36 | 4.94 | Area hIP1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morita, T.; Naito, E. Facilitation of Hand Proprioceptive Processing in Paraplegic Individuals with Long-Term Wheelchair Sports Training. Brain Sci. 2022, 12, 1295. https://doi.org/10.3390/brainsci12101295
Morita T, Naito E. Facilitation of Hand Proprioceptive Processing in Paraplegic Individuals with Long-Term Wheelchair Sports Training. Brain Sciences. 2022; 12(10):1295. https://doi.org/10.3390/brainsci12101295
Chicago/Turabian StyleMorita, Tomoyo, and Eiichi Naito. 2022. "Facilitation of Hand Proprioceptive Processing in Paraplegic Individuals with Long-Term Wheelchair Sports Training" Brain Sciences 12, no. 10: 1295. https://doi.org/10.3390/brainsci12101295