Cardiorespiratory Fitness as a Moderator of Sleep-Related Associations with Hippocampal Volume and Cognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Setting
2.2. Participants
2.3. Eligibility Criteria
2.4. Sleep Assessment
2.5. Cognitive Assessment
2.6. Acute Exercise
2.7. Modified Heart Rate Recovery (HRRM)
2.8. MRI Assessment
2.9. MRI Data Processing
2.10. Analytic Strategy
3. Results
3.1. Participant Characteristics
3.2. Cardiorespiratory Fitness Moderated the Negative Association between Longer Wake Bout Length and Hippocampal Volume
3.3. Greater Sleep Consolidation Was Associated with Larger Hippocampal Volume
3.4. Cardiorespiratory Fitness Moderated Relations between Sleep Duration and Global Cognition
3.5. Longer Wake Bout Length Was Associated with Lower Global Cognition
4. Discussion
4.1. Potential Mechanisms
4.2. Future Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowsky, D.J.; Olshansky, S.J.; Bhattacharya, J.; Goldman, D.P. Heterogeneity in healthy aging. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 640–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfini, A.J.; Tzuang, M.; Owusu, J.T.; Spira, A.P. Later-life sleep, cognition, and neuroimaging research: An update for 2020. Curr. Opin. Behav. Sci. 2020, 33, 72–77. [Google Scholar] [CrossRef]
- Siddarth, P.; Thana-Udom, K.; Ojha, R.; Merrill, D.; Dzierzewski, J.M.; Miller, K.; Small, G.W.; Ercoli, L. Sleep quality, neurocognitive performance, and memory self-appraisal in middle-aged and older adults with memory complaints. Int. Psychogeriatr. 2021, 33, 703–713. [Google Scholar] [CrossRef] [PubMed]
- McSorley, V.E.; Bin, Y.S.; Lauderdale, D.S. Associations of sleep characteristics with cognitive function and decline among older adults. Am. J. Epidemiol. 2019, 188, 1066–1075. [Google Scholar] [CrossRef]
- Qian, D.; Wong, J. Sleep disturbances, sleep-disordered breathing, and cognitive impairment in older adults: Perioperative implications. Int. Anesthesiol. Clin. 2022, 60, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.S.P.; Fleischman, D.A.; Dawe, R.J.; Yu, L.; Arfanakis, K.; Buchman, A.S.; Bennett, D.A. Regional neocortical gray matter structure and sleep fragmentation in older adults. Sleep 2016, 39, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spira, A.P.; Gonzalez, C.E.; Venkatraman, V.K.; Wu, M.N.; Pacheco, J.; Simonsick, E.M.; Ferrucci, L.; Resnick, S.M. Sleep duration and subsequent cortical thinning in cognitively normal older adults. Sleep 2016, 39, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, K.; Hagen, E.; Gaitán, J.; Barnet, J.; Driscoll, I.; Lose, S.; Motovylyak, A.; Okonkwo, O.; Peppard, P. 244 Physical fitness attenuates the deleterious association of sleep apnea with gray matter volume in the Wisconsin Sleep Cohort Study. Sleep 2021, 44, A98. [Google Scholar] [CrossRef]
- Bherer, L.; Erickson, K.I.; Liu-Ambrose, T. Physical exercise and brain functions in older adults. J. Aging Res. 2013, 2013, 197326. [Google Scholar] [CrossRef] [Green Version]
- Yogev-Seligmann, G.; Eisenstein, T.; Ash, E.; Giladi, N.; Sharon, H.; Nachman, S.; Bregman, N.; Kodesh, E.; Hendler, T.; Lerner, Y. Neurocognitive plasticity is associated with cardiorespiratory fitness following physical exercise in older adults with amnestic mild cognitive impairment. J. Alzheimers Dis. 2021, 81, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Markovic, S.J.; Fitzgerald, M.; Peiffer, J.J.; Scott, B.R.; Rainey-Smith, S.R.; Sohrabi, H.R.; Brown, B.M. The impact of exercise, sleep, and diet on neurocognitive recovery from mild traumatic brain injury in older adults: A narrative review. Ageing Res. Rev. 2021, 68, 101322. [Google Scholar] [CrossRef]
- Rogers, M.A.; King, D.S.; Hagberg, J.M.; Ehsani, A.A.; Holloszy, J.O. Effect of 10 days of physical inactivity on glucose tolerance in master athletes. J. Appl. Physiol. 1990, 68, 1833–1837. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, T.; Tomoto, T.; Repshas, J.; Wang, C.; Hynan, L.S.; Cullum, C.M.; Zhu, D.C.; Zhang, R. Midlife aerobic exercise and brain structural integrity: Associations with age and cardiorespiratory fitness. Neuroimage 2021, 225, 117512. [Google Scholar] [CrossRef] [PubMed]
- Etnier, J.L.; Salazar, W.; Landers, D.M.; Petruzzello, S.J.; Han, M.; Nowell, P. The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. J. Sport Exerc. Psychol. 1997, 19, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Hewston, P.; Kennedy, C.C.; Borhan, S.; Merom, D.; Santaguida, P.; Ioannidis, G.; Marr, S.; Santesso, N.; Thabane, L.; Bray, S. Effects of dance on cognitive function in older adults: A systematic review and meta-analysis. Age Ageing 2021, 50, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Junior, H.; Marzetti, E.; Calvani, R.; Picca, A.; Arai, H.; Uchida, M. Resistance training improves cognitive function in older adults with different cognitive status: A systematic review and Meta-analysis. Aging Ment. Health 2022, 26, 213–224. [Google Scholar] [CrossRef]
- Tseng, B.Y.; Uh, J.; Rossetti, H.C.; Cullum, C.M.; Diaz-Arrastia, R.F.; Levine, B.D.; Lu, H.; Zhang, R. Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. J. Magn. Reson. Imaging 2013, 38, 1169–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saillant, K.; Intzandt, B.; Bérubé, B.; Sanami, S.; Gauthier, C.; Bherer, L. Mastering the relationship between the body and the brain? The case of a female master athlete. Exp. Aging Res. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.P.; Yezhuvath, U.S.; Tseng, B.Y.; Liu, P.; Levine, B.D.; Zhang, R.; Lu, H. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. J. Magn. Reson. Imaging 2013, 38, 1177–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, J.; Alfini, A.J.; Weiss, L.R.; Nyhuis, C.C.; Spira, A.P.; Callow, D.D.; Carson Smith, J. Caudate volume mediates the interaction between total sleep time and executive function after acute exercise in healthy older adults. Brain Plast. 2019, 5, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Law, L.L.; Sprecher, K.E.; Dougherty, R.J.; Edwards, D.F.; Koscik, R.L.; Gallagher, C.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Asthana, S. Cardiorespiratory fitness modifies influence of sleep problems on cerebrospinal fluid biomarkers in an at-risk cohort. J. Alzheimers Dis. 2019, 69, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.Y.; Kim, H.; Suh, S.; Hong, S.B. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: Magnetic resonance imaging morphometry. Sleep 2014, 37, 1189–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Shao, Z.; Lei, W.; Xu, Y.; Liu, S.; Zhang, M.; Wang, S.; Wen, X.; Yu, D.; Yuan, K. Abnormal hippocampal substructure volume in insomnia disorder. Brain Imaging Behav. 2022, 16, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Schuch, F.; Lagopoulos, J.; Rosenbaum, S.; Ward, P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage 2018, 166, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Feter, N.; Penny, J.C.; Freitas, M.P.; Rombaldi, A.J. Effect of physical exercise on hippocampal volume in adults: Systematic review and meta-analysis. Sci. Sports 2018, 33, 327–338. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- d’Arbeloff, T. Cardiovascular fitness and structural brain integrity: An update on current evidence. GeroScience 2020, 42, 1285–1306. [Google Scholar] [CrossRef]
- d’Arbeloff, T.; Cooke, M.; Knodt, A.R.; Sison, M.; Melzer, T.R.; Ireland, D.; Poulton, R.; Ramrakha, S.; Moffitt, T.E.; Caspi, A. Is cardiovascular fitness associated with structural brain integrity in midlife? Evidence from a population-representative birth cohort study. Aging 2020, 12, 20888. [Google Scholar] [CrossRef]
- Fraser, M.A.; Walsh, E.I.; Shaw, M.E.; Anstey, K.J.; Cherbuin, N. Longitudinal effects of physical activity change on hippocampal volumes over up to 12 years in middle and older age community-dwelling individuals. Cerebral Cortex 2022, 32, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- Alfini, A.J.; Weiss, L.R.; Leitner, B.P.; Smith, T.J.; Hagberg, J.M.; Smith, J.C. Hippocampal and cerebral blood flow after exercise cessation in master athletes. Front. Aging Neurosci. 2016, 8, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Alfini, A.J.; Won, J.; Weiss, L.R.; Nyhuis, C.C.; Shackman, A.J.; Spira, A.P.; Smith, J.C. Impact of exercise on older adults’ mood is moderated by sleep and mediated by altered brain connectivity. Soc. Cogn. Affect. Neurosci. 2020, 15, 1238–1251. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Martin, J.L.; Blackwell, T.; Buenaver, L.; Liu, L.; Meltzer, L.J.; Sadeh, A.; Spira, A.P.; Taylor, D.J. The SBSM guide to actigraphy monitoring: Clinical and research applications. Behav. Sleep Med. 2015, 13 (Suppl. S1), S4–S38. [Google Scholar] [CrossRef] [PubMed]
- Schrack, J.A.; Kuo, P.-L.; Wanigatunga, A.A.; Di, J.; Simonsick, E.M.; Spira, A.P.; Ferrucci, L.; Zipunnikov, V. Active-to-sedentary behavior transitions, fatigability, and physical functioning in older adults. J. Gerontol. Ser. A 2018, 74, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health 1990, 16 (Suppl. S1), 55–58. [Google Scholar] [CrossRef]
- Sage, M.; Middleton, L.E.; Tang, A.; Sibley, K.M.; Brooks, D.; McIlroy, W. Validity of rating of perceived exertion ranges in individuals in the subacute stage of stroke recovery. Top. Stroke Rehabil. 2013, 20, 519–527. [Google Scholar] [CrossRef]
- Dishman, R.K. Prescribing exercise intensity for healthy adults using perceived exertion. Med. Sci. Sports Exerc. 1994, 26, 1087–1094. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Nanas, S.; Anastasiou-Nana, M.; Dimopoulos, S.; Sakellariou, D.; Alexopoulos, G.; Kapsimalakou, S.; Papazoglou, P.; Tsolakis, E.; Papazachou, O.; Roussos, C.; et al. Early heart rate recovery after exercise predicts mortality in patients with chronic heart failure. Cardiovasc. Dis. 2006, 110, 393–400. [Google Scholar] [CrossRef]
- Vivekananthan, D.P.; Blackstone, E.H.; Pothier, C.E.; Lauer, M.S. Heart rate recovery after exercise is apredictor of mortality, independent of the angiographic severity of coronary disease. J. Am. Coll. Cardiol. 2003, 42, 831–838. [Google Scholar] [CrossRef]
- Hagberg, J.M.; Hickson, R.C.; McLane, J.A.; Ehsani, A.A.; Winder, W.W. Disappearance of norepinephrine from the circulation following strenuous exercise. J. Appl. Physiol. 1979, 47, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, J.M.; Hickson, R.C.; Ehsani, A.A.; Holloszy, J.O. Faster adjustment to and recovery from submaximal exercise in the trained state. J. Appl. Physiol. 1980, 48, 218–224. [Google Scholar] [CrossRef]
- Imai, K.; Sato, H.; Hori, M.; Kusuoka, H.; Ozaki, H.; Yokoyama, H.; Takeda, H.; Inoue, M.; Kamada, T. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J. Am. Coll. Cardiol. 1994, 24, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Rosenwinkel, E.T.; Bloomfield, D.M.; Arwady, M.A.; Goldsmith, R.L. Exercise and autonomic function in health and cardiovascular disease. Cardiol. Clin. 2001, 19, 369–387. [Google Scholar] [CrossRef]
- Fu, Q.; Levine, B.D. Exercise and the autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 147–160. [Google Scholar]
- Brown, S.P.; Li, H.; Chitwood, L.F.; Anderson, E.R.; Boatwright, D. Blood pressure, hemodynamic, and thermal responses after cycling exercise. J. Appl. Physiol. 1993, 75, 240–245. [Google Scholar] [CrossRef]
- Berryman, N.; Bherer, L.; Nadeau, S.; Lauzière, S.; Lehr, L.; Bobeuf, F.; Kergoat, M.J.; Vu, T.T.M.; Bosquet, L. Executive functions, physical fitness and mobility in well-functioning older adults. Exp. Gerontol. 2013, 48, 1402–1409. [Google Scholar] [CrossRef]
- Mekari, S.; Dupuy, O.; Martins, R.; Evans, K.; Kimmerly, D.S.; Fraser, S.; Neyedli, H.F. The effects of cardiorespiratory fitness on executive function and prefrontal oxygenation in older adults. GeroScience 2019, 41, 681–690. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rorden, C.; Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. 2000, 12, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1997. [Google Scholar]
- Benjamini, Y.; Krieger, A.M.; Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006, 93, 491–507. [Google Scholar] [CrossRef]
- Landry, G.J.; Liu-Ambrose, T. Buying time: A rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to Alzheimer’s disease. Front. Aging Neurosci. 2014, 6, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, K.; Nielson, K.A.; Smith, T.J.; Weiss, L.R.; Alfini, A.J.; Smith, J.C. Improved cardiorespiratory fitness is associated with increased cortical thickness in mild cognitive impairment. J. Int. Neuropsychol. Soc. 2015, 21, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzierzewski, J.M.; Buman, M.P.; Giacobbi, P.R., Jr.; Roberts, B.L.; Aiken-Morgan, A.T.; Marsiske, M.; McCrae, C.S. Exercise and sleep in community-dwelling older adults: Evidence for a reciprocal relationship. J. Sleep Res. 2014, 23, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furihata, R.; Saitoh, K.; Otsuki, R.; Murata, S.; Suzuki, M.; Jike, M.; Kaneita, Y.; Ohida, T.; Uchiyama, M. Association between reduced serum BDNF levels and insomnia with short sleep duration among female hospital nurses. Sleep Med. 2020, 68, 167–172. [Google Scholar] [CrossRef]
- Erickson, K.I.; Miller, D.L.; Roecklein, K.A. The aging hippocampus: Interactions between exercise, depression, and BDNF. Neurosci. 2012, 18, 82–97. [Google Scholar] [CrossRef]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Liu, C.S.; Sherman, C.; Chan, S.; Lanctôt, K.L. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLoS ONE 2016, 11, e0163037. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.F.; Freeman, K.B.; Windham, B.G.; Griswold, M.E.; Kullo, I.J.; Turner, S.T.; Mosley, T.H., Jr. Associations between serum inflammatory markers and hippocampal volume in a community sample. J. Am. Geriatr. Soc. 2016, 64, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Kohut, M.L.; McCann, D.A.; Russell, D.W.; Konopka, D.N.; Cunnick, J.E.; Franke, W.D.; Castillo, M.C.; Reighard, A.E.; Vanderah, E. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of β-blockers, BMI, and psychosocial factors in older adults. Brain Behav. Immun. 2006, 20, 201–209. [Google Scholar] [CrossRef]
- Jessen, N.A.; Munk, A.S.F.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 2014, 34, 16180–16193. [Google Scholar] [CrossRef] [Green Version]
- King, A.C.; Oman, R.F.; Brassington, G.S.; Bliwise, D.L.; Haskell, W.L. Moderate-intensity exercise and self-rated quality of sleep in older adults. A randomized controlled trial. JAMA 1997, 277, 32–37. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, D.; Zhang, Q.; Liang, F.; Dai, G.; Zeng, J.; Pei, Z.; Xu, G.; Lan, Y. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front. Mol. Neurosci. 2017, 10, 144. [Google Scholar] [CrossRef]
Characteristic | Mean ± SD |
---|---|
Age, years | 65.8 ± 7.3 |
Female | 22 (73.3) |
Education > 12 years | 28 (93.3) |
White | 23 (76.7) |
Body Mass Index, kg/m2 | 25.2 ± 4.0 |
7-Day PA, kcal/kg/day | 223.3 ± 28.1 |
Actigraphy, days | 7.9 ± 3.4 |
Total Sleep Time, min | 403.6 ± 71.9 |
Wake Bout Length, min | 5.7 ± 2.8 |
Wake-to-Sleep Transition Probability | 0.2 ± 0.1 |
Borg’s Rating of Perceived Exertion | 14.6 ± 1.2 |
Baseline Heart Rate, bpm | 76.9 ± 10.1 |
Post-Exercise Heart Rate, bpm | 92.8 ± 13.5 |
Exercise Intensity as a Percentage of HRReserve, % | 73.7 ± 20.7 |
Hippocampal Volume, mm3/ICV | 0.0052 ± 0.0006 |
Amygdala Volume, mm3/ICV | 0.0020 ± 0.0002 |
Mini-Mental State Exam | 29.1 ± 1.2 |
Neurocognitive Outcomes | |||
---|---|---|---|
Parameter | Hippocampal Volume | Amygdala Volume | Global Cognition (MMSE) |
β (95% CI) | β (95% CI) | β (95% CI) | |
WBL | --- | −0.09 (−0.50, 0.32) | −0.40 (−0.73, −0.07) * |
WBL × Fitness | −1.36 (−2.45, −0.28) * | −0.74 (−1.98, 0.49) | 0.51 (−0.46, 1.48) |
WSTP | 0.52 (0.16, 0.89) * | 0.31 (−0.10, 0.72) | 0.33 (−0.06, 0.73) |
WSTP × Fitness | 0.60 (−0.12, 1.33) | 0.23 (−0.61, 1.08) | −0.44 (−1.17, 0.29) |
TST | 0.11 (−0.33, 0.55) | 0.40 (−0.03, 0.82) | --- |
TST × Fitness | −0.15 (−1.07, 0.77) | −0.31 (−1.19, 0.56) | −1.07 (−1.70, −0.43) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfini, A.J.; Won, J.; Weiss, L.R.; Nyhuis, C.C.; Zipunnikov, V.; Spira, A.P.; Liu-Ambrose, T.; Shackman, A.J.; Smith, J.C. Cardiorespiratory Fitness as a Moderator of Sleep-Related Associations with Hippocampal Volume and Cognition. Brain Sci. 2022, 12, 1360. https://doi.org/10.3390/brainsci12101360
Alfini AJ, Won J, Weiss LR, Nyhuis CC, Zipunnikov V, Spira AP, Liu-Ambrose T, Shackman AJ, Smith JC. Cardiorespiratory Fitness as a Moderator of Sleep-Related Associations with Hippocampal Volume and Cognition. Brain Sciences. 2022; 12(10):1360. https://doi.org/10.3390/brainsci12101360
Chicago/Turabian StyleAlfini, Alfonso J., Junyeon Won, Lauren R. Weiss, Casandra C. Nyhuis, Vadim Zipunnikov, Adam P. Spira, Teresa Liu-Ambrose, Alexander J. Shackman, and J. Carson Smith. 2022. "Cardiorespiratory Fitness as a Moderator of Sleep-Related Associations with Hippocampal Volume and Cognition" Brain Sciences 12, no. 10: 1360. https://doi.org/10.3390/brainsci12101360
APA StyleAlfini, A. J., Won, J., Weiss, L. R., Nyhuis, C. C., Zipunnikov, V., Spira, A. P., Liu-Ambrose, T., Shackman, A. J., & Smith, J. C. (2022). Cardiorespiratory Fitness as a Moderator of Sleep-Related Associations with Hippocampal Volume and Cognition. Brain Sciences, 12(10), 1360. https://doi.org/10.3390/brainsci12101360