The Burden of Respiratory Alterations during Sleep on Comorbidities in Obstructive Sleep Apnoea (OSA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sleep Protocol
2.2. Data Analysis
3. Results
4. Discussion
4.1. This Work and Contributions
4.2. Limitations and Strenghts
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tondo, P.; Fanfulla, F.; Sabato, R.; Scioscia, G.; Foschino Barbaro, M.P.; Lacedonia, D. Obstructive Sleep Apnoea-Hypopnoea Syndrome (OSAHS): State of the art. Minerva Med. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [Green Version]
- Labarca, G.; Gower, J.; Lamperti, L.; Dreyse, J.; Jorquera, J. Chronic intermittent hypoxia in obstructive sleep apnea: A narrative review from pathophysiological pathways to a precision clinical approach. Sleep Breath 2020, 24, 751–760. [Google Scholar] [CrossRef]
- Kendzerska, T.; Leung, R.S.; Aaron, S.D.; Ayas, N.; Sandoz, J.S.; Gershon, A.S. Cardiovascular Outcomes and All-Cause Mortality in Patients with Obstructive Sleep Apnea and Chronic Obstructive Pulmonary Disease (Overlap Syndrome). Ann. Am. Thorac. Soc. 2019, 16, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Korkalainen, H.; Töyräs, J.; Nikkonen, S.; Leppänen, T. Mortality-risk-based apnea-hypopnea index thresholds for diagnostics of obstructive sleep apnea. J. Sleep Res. 2019, 28, e12855. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Kushida, C.A.; Littner, M.R.; Morgenthaler, T.; Alessi, C.A.; Bailey, D.; Coleman, J., Jr.; Friedman, L.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; et al. Practice parameters for the indications for polysomnography and related procedures: An update for 2005. Sleep 2005, 28, 499–521. [Google Scholar] [CrossRef] [Green Version]
- Tondo, P.; Drigo, R.; Scioscia, G.; Ballarin, A.; Rossi, E.; Floriani, A.F.; Pauletti, A.; Foschino Barbaro, M.P.; Lacedonia, D. Usefulness of sleep events detection using a wrist worn peripheral arterial tone signal device (WatchPAT™) in a population at low risk of obstructive sleep apnea. J. Sleep Res. 2021, 30, e13352. [Google Scholar] [CrossRef] [PubMed]
- Collop, N.A.; Anderson, W.M.; Boehlecke, B.; Claman, D.; Goldberg, R.; Gottlieb, D.J.; Hudgel, D.; Sateia, M.; Schwab, R. Portable Monitoring Task Force of the American Academy of Sleep Medicine. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. Portable Monitoring Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2007, 3, 737–747. [Google Scholar]
- Moriondo, G.; Scioscia, G.; Soccio, P.; Tondo, P.; De Pace, C.C.; Sabato, R.; Foschino Barbaro, M.P.; Lacedonia, D. Effect of Hypoxia-Induced Micro-RNAs Expression on Oncogenesis. Int. J. Mol. Sci. 2022, 23, 6294. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Mokhlesi, B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest 2017, 152, 1070–1086. [Google Scholar] [CrossRef]
- Gabryelska, A.; Chrzanowski, J.; Sochal, M.; Kaczmarski, P.; Turkiewicz, S.; Ditmer, M.; Karuga, F.F.; Czupryniak, L.; Białasiewicz, P. Nocturnal Oxygen Saturation Parameters as Independent Risk Factors for Type 2 Diabetes Mellitus among Obstructive Sleep Apnea Patients. J. Clin. Med. 2021, 10, 3770. [Google Scholar] [CrossRef]
- Labarca, G.; Campos, J.; Thibaut, K.; Dreyse, J.; Jorquera, J. Do T90 and SaO2 nadir identify a different phenotype in obstructive sleep apnea? Sleep Breath 2019, 23, 1007–1010. [Google Scholar] [CrossRef]
- Mogavero, M.P.; DelRosso, L.M.; Fanfulla, F.; Bruni, O.; Ferri, R. Sleep disorders and cancer: State of the art and future perspectives. Sleep Med. Rev. 2021, 56, 101409. [Google Scholar] [CrossRef]
- Lacedonia, D.; Landriscina, M.; Scioscia, G.; Tondo, P.; Caccavo, I.; Bruno, G.; Giordano, G.; Piscazzi, A.; Foschino Barbaro, M.P. Obstructive Sleep Apnea Worsens Progression-Free and Overall Survival in Human Metastatic Colorectal Carcinoma. J. Oncol. 2021, 2021, 5528303. [Google Scholar] [CrossRef]
- Cao, Y.; Ning, P.; Li, Q.; Wu, S. Cancer and obstructive sleep apnea: An updated meta-analysis. Medicine 2022, 101, e28930. [Google Scholar] [CrossRef]
- Sillah, A.; Watson, N.F.; Gozal, D.; Phipps, A.I. Obstructive sleep apnea severity and subsequent risk for cancer incidence. Prev. Med. Rep. 2019, 15, 100886. [Google Scholar] [CrossRef]
- Kang, J.H.; Lin, H.C. Obstructive sleep apnea and the risk of autoimmune diseases: A longitudinal population-based study. Sleep Med. 2012, 13, 583–588. [Google Scholar] [CrossRef]
- Gabryelska, A.; Sochal, M.; Wasik, B.; Białasiewicz, P. Patients with Obstructive Sleep Apnea Are Over Four Times More Likely to Suffer From Psoriasis Than the General Population. J. Clin. Sleep Med. 2018, 14, 153. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.K.; Kunder, S.; Wong, J.; Doufas, A.G.; Chung, F. Obstructive sleep apnea, pain, and opioids: Is the riddle solved? Curr. Opin. Anaesthesiol. 2016, 29, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Charokopos, A.; Card, M.E.; Gunderson, C.; Steffens, C.; Bastian, L.A. The Association of Obstructive Sleep Apnea and Pain Outcomes in Adults: A Systematic Review. Pain Med. 2018, 19 (Suppl. S1), S69–S75. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarski, P.; Karuga, F.F.; Szmyd, B.; Sochal, M.; Białasiewicz, P.; Strzelecki, D.; Gabryelska, A. The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int. J. Mol. Sci. 2022, 23, 9080. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117, Erratum in Am. J. Respir. Crit. Care Med. 2016, 193, 1185. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Corrao, G.; Rea, F.; Di Martino, M.; De Palma, R.; Scondotto, S.; Fusco, D.; Lallo, A.; Belotti, L.M.B.; Ferrante, M.; Pollina Addario, S.; et al. Developing and validating a novel multisource comorbidity score from administrative data: A large population-based cohort study from Italy. BMJ Open 2017, 7, e019503. [Google Scholar] [CrossRef] [Green Version]
- Gami, A.S.; Howard, D.E.; Olson, E.J.; Somers, V.K. Day-night pattern of sudden death in obstructive sleep apnea. N. Engl. J. Med. 2005, 352, 1206–1214. [Google Scholar] [CrossRef]
- Oldenburg, O.; Wellmann, B.; Buchholz, A.; Bitter, T.; Fox, H.; Thiem, U.; Horstkotte, D.; Wegscheider, K. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur. Heart J. 2016, 37, 1695–1703. [Google Scholar] [CrossRef] [Green Version]
- Frangopoulos, F.; Nicolaou, I.; Zannetos, S.; Economou, N.T.; Adamide, T.; Trakada, G. Association between Respiratory Sleep Indices and Cardiovascular Disease in Sleep Apnea-A Community-Based Study in Cyprus. J. Clin. Med. 2020, 9, 2475. [Google Scholar] [CrossRef]
- Tkacova, R.; McNicholas, W.T.; Javorsky, M.; Fietze, I.; Sliwinski, P.; Parati, G.; Grote, L.; Hedner, J.; European Sleep Apnoea Database Study Collaborators. Nocturnal intermittent hypoxia predicts prevalent hypertension in the European Sleep Apnoea Database cohort study. Eur. Respir. J. 2014, 44, 931–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muraki, I.; Tanigawa, T.; Yamagishi, K.; Sakurai, S.; Ohira, T.; Imano, H.; Kitamura, A.; Kiyama, M.; Sato, S.; Shimamoto, T.; et al. Nocturnal intermittent hypoxia and the development of type 2 diabetes: The Circulatory Risk in Communities Study (CIRCS). Diabetologia 2010, 53, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, R.J., Jr.; Ferraro, K.F. Aging, Obesity, and Mortality: Misplaced Concern About Obese Older People? Res. Aging 2004, 26, 108–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jousilahti, P.; Vartiainen, E.; Tuomilehto, J.; Puska, P. Sex, age, cardiovascular risk factors, and coronary heart disease: A prospective follow-up study of 14 786 middle-aged men and women in Finland. Circulation 1999, 99, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Lacedonia, D.; Carpagnano, G.E.; Patricelli, G.; Carone, M.; Gallo, C.; Caccavo, I.; Sabato, R.; Depalo, A.; Aliani, M.; Capozzolo, A.; et al. Prevalence of comorbidities in patients with obstructive sleep apnea syndrome, overlap syndrome and obesity hypoventilation syndrome. Clin. Respir. J. 2018, 12, 1905–1911. [Google Scholar] [CrossRef]
- García-Río, F.; Racionero, M.A.; Pino, J.M.; Martínez, I.; Ortuño, F.; Villasante, C.; Villamor, J. Sleep apnea and hypertension. Chest 2000, 117, 1417–1425. [Google Scholar] [CrossRef]
- Dopp, J.M.; Reichmuth, K.J.; Morgan, B.J. Obstructive sleep apnea and hypertension: Mechanisms, evaluation, and management. Curr. Hypertens. Rep. 2007, 9, 529–534. [Google Scholar] [CrossRef]
- Azarbarzin, A.; Sands, S.A.; Stone, K.L.; Taranto-Montemurro, L.; Messineo, L.; Terrill, P.I.; Ancoli-Israel, S.; Ensrud, K.; Purcell, S.; White, D.P.; et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: The Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur. Heart J. 2019, 40, 1149–1157. [Google Scholar] [CrossRef]
Total (N = 617) | |||
---|---|---|---|
Continuous Var | Discrete Var | ||
Demographics | |||
Sex, male% | 72% | ||
Age, years | 59.3 ± 13.6 | ≥65 years% | 39% |
BMI, kg·m−2 | 34.3 ± 7.5 | Obesity% | 70% |
Neck, cm | 44.8 ± 4.3 | ||
Smoking habit | 29% | ||
Comorbidities | |||
CV, % | 29% | ||
Hypertension, % | 64% | ||
Cerebrovascular, % | 11% | ||
Endocrinological disorder, % | 13% | ||
Diabetes, % | 23% | ||
Asthma, % | 8% | ||
Co ≥ 3 | 19% | ||
MCS ‡, points | 3.4 ± 2.7 | ||
MCS classes | 1.2 ± 0.7 | MCS > Class 0 | 34% |
Sleep data | |||
AHI, events·h−1 | 44.0 ± 24.8 | Severe OSA | 66% |
ODI, events·h−1 | 41.5 ± 26.2 | ||
mean SaO2 | 78.7 ± 13.1 | ||
T90 | 26.4 ± 29.0 | NH | 76% |
ESS score, points | 12.9 ± 6.1 | ||
Laboratory tests | |||
CRP, mg/dL | 4.9 ± 3.6 | ||
Fibrinogen, mg/dL | 296.7 ± 40.0 | ||
Homocisteine, mcmol/L | 41.0 ± 33.5 | ||
Respiratory status | |||
FVC% | 93.9 ± 19.2 | ||
FEV1% | 92.4 ± 19.9 | ||
FEV1/VC | 80.7 ± 6.1 | ||
pH | 7.4 ± 0.0 | ||
PaO2, mmHg | 78.1 ± 11.8 | ||
PaCO2, mmHg | 39.5 ± 4.4 | ||
SaO2% | 95.4 ± 2.2 | ||
HCO3−, mmol/L | 24.4 ± 2.7 | ||
6MWT, mt | 304.4 ± 79.8 |
Univariate | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | CV | Hypertension | Cerebrovascular | Endocrinological | Diabetes | Asthma | ||||||
OR (95% CI) | p | OR (95% CI) | P | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Sex | — | NS | — | NS | — | NS | 0.3 (0.2–0.4) | <0.001 | — | NS | 0.2 (0.1–0.4) | <0.001 |
Old age | 4.0 (2.7–5.8) | <0.001 | 4.2 (2.8–6.2) | <0.001 | 3.4 (2.0–5.8) | <0.001 | — | NS | 1.8 (1.2–2.7) | 0.002 | — | NS |
Obesity | 2.1 (1.3–3.1) | 0.001 | 2.5 (1.7–3.5) | 0.001 | — | NS | — | NS | 2.4 (1.4–3.9) | <0.001 | — | NS |
Severe OSA | 1.7 (1.2–2.5) | 0.005 | 1.8 (1.3–2.5) | 0.001 | — | NS | — | NS | — | NS | — | NS |
NH | 2.0 (1.2–3.1) | 0.003 | 2.5 (1.7–3.6) | <0.001 | — | NS | — | NS | 1.8 (1.1–3.0) | 0.014 | — | NS |
Multivariate | ||||||||||||
CV | Hypertension | Cerebro | Endocrino | Diabetes | Asthma | |||||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | P | OR (95% CI) | p | OR (95% CI) | p | |
Sex | — | — | — | — | — | — | — | — | — | — | — | — |
Old age | 4.0 (2.7–5.8) | <0.001 | 4.0 (2.6–6.1) | <0.001 | — | — | — | — | 1.8 (1.2–2.7) | 0.003 | — | — |
Obesity | 1.8 (1.1–2.9) | 0.01 | 2.2 (1.4–3.2) | <0.001 | — | — | — | — | 2.2 (1.3–3.6) | 0.003 | — | — |
Severe OSA | — | NS | — | NS | — | — | — | — | — | — | — | — |
NH | — | NS | — | NS | — | — | — | — | — | NS | — | — |
Variables | Group A (N = 49) | Group B (N = 109) | p |
---|---|---|---|
Sex, male% | 88% | 63% | 0.002 |
Age, years | 58.8 ± 13.1 | 62.4 ± 11.3 | 0.089 |
≥65 years% | 28% | 41% | 0.139 |
BMI, kg·m−2 | 31.1 ± 5.5 | 34.5 ± 8.0 | 0.008 |
Obesity% | 45% | 72% | 0.001 |
Neck, cm | 43.3 ± 3.0 | 45.2 ± 4.4 | 0.118 |
Smoking habit, % | 35% | 19% | 0.05 |
Comorbidities | |||
CV, % | 24% | 27% | 0.781 |
Hypertension, % | 57% | 66% | 0.285 |
Cerebrovascular, % | 8% | 10% | 0.704 |
Endocrinological disorder, % | 12% | 14% | 0.797 |
Diabetes, % | 20% | 24% | 0.636 |
Asthma, % | 10% | 12% | 0.754 |
Co ≥ 3 | 16% | 19% | 0.661 |
MCS | 2.8 ± 2.6 | 3.3 ± 2.8 | 0.234 |
MCS classes | 1.1 ± 0.7 | 1.3 ± 0.7 | 0.10 |
>Class 0 | 24% | 31% | 0.394 |
Sleep data | |||
AHI, events·h−1 | 45.9 ± 15.3 | 19.1 ± 6.4 | - |
ODI, events·h−1 | 32.8 ± 20.7 | 18.8 ± 7.6 | <0.001 |
mean SaO2% | 88.1 ± 5.6 | 82.1 ± 7.3 | 0.005 |
T90 | 0.4 ± 0.5 | 25.8 ± 30.7 | - |
ESS score, points | 10.1 ± 5.2 | 11.3 ± 6.6 | 0.462 |
Laboratory tests | |||
CRP, mg/dL | 4.8 ± 3.2 | 5.7 ± 7.0 | 0.39 |
Fibrinogen, mg/dL | 297.2 ± 39.9 | 301.6 ± 54.5 | 0.617 |
Homocisteine, mcmol/L | 55.9 ± 59.3 | 38.5 ± 8.2 | 00.003 |
Respiratory status | |||
FVC% | 103.2 ± 11.2 | 91.1 ± 20.8 | 0.037 |
FEV1% | 104.1 ± 13.5 | 84.1 ± 21.6 | 0.001 |
FEV1/VC | 82.5 ± 5.7 | 80.2 ± 7.6 | 0.214 |
pH | 7.4 ± 0.0 | 7.4 ± 0.0 | 0.631 |
PaO2, mmHg | 81.6 ± 11.7 | 76.4 ± 11.0 | 0.01 |
PaCO2, mmHg | 38.4 ± 4.4 | 39.4 ± 4.3 | 0.203 |
SaO2% | 95.8 ± 2.2 | 95.2 ± 2.3 | 0.13 |
HCO3−, mmol/L | 23.8 ± 2.5 | 24.6 ± 2.5 | 0.102 |
6MWT, mt | 302.0 ± 69.8 | 303.6 ± 77.8 | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tondo, P.; Fanfulla, F.; Scioscia, G.; Sabato, R.; Salvemini, M.; De Pace, C.C.; Foschino Barbaro, M.P.; Lacedonia, D. The Burden of Respiratory Alterations during Sleep on Comorbidities in Obstructive Sleep Apnoea (OSA). Brain Sci. 2022, 12, 1359. https://doi.org/10.3390/brainsci12101359
Tondo P, Fanfulla F, Scioscia G, Sabato R, Salvemini M, De Pace CC, Foschino Barbaro MP, Lacedonia D. The Burden of Respiratory Alterations during Sleep on Comorbidities in Obstructive Sleep Apnoea (OSA). Brain Sciences. 2022; 12(10):1359. https://doi.org/10.3390/brainsci12101359
Chicago/Turabian StyleTondo, Pasquale, Francesco Fanfulla, Giulia Scioscia, Roberto Sabato, Michela Salvemini, Cosimo C. De Pace, Maria Pia Foschino Barbaro, and Donato Lacedonia. 2022. "The Burden of Respiratory Alterations during Sleep on Comorbidities in Obstructive Sleep Apnoea (OSA)" Brain Sciences 12, no. 10: 1359. https://doi.org/10.3390/brainsci12101359
APA StyleTondo, P., Fanfulla, F., Scioscia, G., Sabato, R., Salvemini, M., De Pace, C. C., Foschino Barbaro, M. P., & Lacedonia, D. (2022). The Burden of Respiratory Alterations during Sleep on Comorbidities in Obstructive Sleep Apnoea (OSA). Brain Sciences, 12(10), 1359. https://doi.org/10.3390/brainsci12101359