Investigating the Neural Bases of Risky Decision Making Using Multi-Voxel Pattern Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Risk Task
2.3. Data Acquisition and Preprocessing
2.4. Behavioral Data Analysis
2.5. Univariate Activation
2.6. Multi-Voxel Pattern Analysis
3. Results
3.1. Neural Pattern Differentiates Decision of Certain and Risky Choices
3.2. Neural Patterns Distinguish Participants with High and Low Risk Preference
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiehler, A.; Peters, J. Reward-based decision making in pathological gambling: The roles of risk and delay. Neurosci. Res. 2015, 90, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Abbey, A.; Saenz, C.; Buck, P.O.; Parkhill, M.R.; Hayman, L.W. The effects of acute alcohol consumption, cognitive reserve, partner risk, and gender on sexual decision making. J. Stud. Alcohol 2006, 67, 113–121. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gilaie-Dotan, S.; Tymula, A.; Cooper, N.; Kable, J.W.; Glimcher, P.W.; Levy, I. Neuroanatomy Predicts Individual Risk Attitudes. J. Neurosci. 2014, 34, 12394. [Google Scholar] [CrossRef] [PubMed]
- Grubb, M.A.; Tymula, A.; Gilaie-Dotan, S.; Glimcher, P.W.; Levy, I. Neuroanatomy accounts for age-related changes in risk preferences. Nat. Commun. 2016, 7, 13822. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.K.; Pestilli, F.; Wu, C.C.; Samanez-Larkin, G.R.; Knutson, B. White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles. Neuron 2016, 89, 63–69. [Google Scholar] [CrossRef]
- Jung, W.H.; Lee, S.; Lerman, C.; Kable, J.W. Amygdala Functional and Structural Connectivity Predicts Individual Risk Tolerance. Neuron 2018, 98, 394–404.e4. [Google Scholar] [CrossRef]
- Hsu, M.; Bhatt, M.; Adolphs, R.; Tranel, D.; Camerer, C.F. Neural systems responding to degrees of uncertainty in human decision-making. Science 2005, 310, 1680–1683. [Google Scholar] [CrossRef]
- Quan, P.; He, L.; Mao, T.; Fang, Z.; Deng, Y.; Pan, Y.; Zhang, X.; Zhao, K.; Lei, H.; Detre, J.A.; et al. Cerebellum anatomy predicts individual risk-taking behavior and risk tolerance. NeuroImage 2022, 254, 119148. [Google Scholar] [CrossRef]
- Christopoulos, G.I.; Tobler, P.N.; Bossaerts, P.; Dolan, R.J.; Schultz, W. Neural correlates of value, risk, and risk aversion contributing to decision making under risk. J. Neurosci. 2009, 29, 12574–12583. [Google Scholar] [CrossRef]
- Poudel, R.; Riedel, M.C.; Salo, T.; Flannery, J.S.; Hill-Bowen, L.D.; Eickhoff, S.B.; Laird, A.R.; Sutherland, M.T. Common and distinct brain activity associated with risky and ambiguous decision-making. Drug Alcohol Depend. 2020, 209, 107884. [Google Scholar] [CrossRef]
- Breiter, H.C.; Aharon, I.; Kahneman, D.; Dale, A.; Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 2001, 30, 619–639. [Google Scholar] [CrossRef]
- Behrens, T.E.; Woolrich, M.W.; Walton, M.E.; Rushworth, M.F. Learning the value of information in an uncertain world. Nat. Neurosci. 2007, 10, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.; Braver, T.S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 2005, 307, 1118–1121. [Google Scholar] [CrossRef]
- Fecteau, S.; Pascual-Leone, A.; Zald, D.H.; Liguori, P.; Théoret, H.; Boggio, P.S.; Fregni, F. Activation of Prefrontal Cortex by Transcranial Direct Current Stimulation Reduces Appetite for Risk during Ambiguous Decision Making. J. Neurosci. 2007, 27, 6212. [Google Scholar] [CrossRef] [PubMed]
- Knoch, D.; Gianotti, L.R.; Pascual-Leone, A.; Treyer, V.; Regard, M.; Hohmann, M.; Brugger, P. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J. Neurosci. 2006, 26, 6469–6472. [Google Scholar] [CrossRef]
- Norman, K.A.; Polyn, S.M.; Detre, G.J.; Haxby, J.V. Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 2006, 10, 424–430. [Google Scholar] [CrossRef]
- Kragel, P.A.; Kano, M.; Van Oudenhove, L.; Ly, H.G.; Dupont, P.; Rubio, A.; Delon-Martin, C.; Bonaz, B.L.; Manuck, S.B.; Gianaros, P.J.; et al. Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nat. Neurosci. 2018, 21, 283–289. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Goebel, R.; Bandettini, P. Information-based functional brain mapping. Proc. Natl. Acad. Sci. USA 2006, 103, 3863–3868. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Y.; Zhang, S.; Feng, T. Pattern classification differentiates decision of intertemporal choices using multi-voxel pattern analysis. Cortex 2019, 111, 183–195. [Google Scholar] [CrossRef]
- Knorr, F.G.; Neukam, P.T.; Frohner, J.H.; Mohr, H.; Smolka, M.N.; Marxen, M. A comparison of fMRI and behavioral models for predicting inter-temporal choices. Neuroimage 2020, 211, 116634. [Google Scholar] [CrossRef]
- Wang, Y.; Chattaraman, V.; Kim, H.; Deshpande, G. Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning. IEEE Trans. Auton. Ment. Dev. 2015, 7, 248–255. [Google Scholar] [CrossRef]
- Haxby, J.V. Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage 2012, 62, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Haynes, J.-D.; Rees, G. Predicting the Stream of Consciousness from Activity in Human Visual Cortex. Curr. Biol. 2005, 15, 1301–1307. [Google Scholar] [CrossRef]
- Anderson, L.R.; Mellor, J.M. Predicting health behaviors with an experimental measure of risk preference. J. Health Econ. 2008, 27, 1260–1274. [Google Scholar] [CrossRef]
- Krain, A.L.; Gotimer, K.; Hefton, S.; Ernst, M.; Castellanos, F.X.; Pine, D.S.; Milham, M.P. A Functional Magnetic Resonance Imaging Investigation of Uncertainty in Adolescents with Anxiety Disorders. Biol. Psychiatry 2008, 63, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Reyna, V.F.; Farley, F. Risk and Rationality in Adolescent Decision Making: Implications for Theory, Practice, and Public Policy. Psychol. Sci. Public. Interest. 2006, 7, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Knoch, D.; Faber, P.L.; Lehmann, D.; Pascual-Marqui, R.D.; Diezi, C.; Schoch, C.; Fehr, E. Tonic Activity Level in the Right Prefrontal Cortex Predicts Individuals’ Risk Taking. Psychol. Sci. 2009, 20, 33–38. [Google Scholar] [CrossRef]
- Kable, J.W.; Caulfield, M.K.; Falcone, M.; McConnell, M.; Bernardo, L.; Parthasarathi, T.; Cooper, N.; Ashare, R.; Audrain-McGovern, J.; Hornik, R.; et al. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance. J. Neurosci. 2017, 37, 7390–7402. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- He, L.; Zhuang, K.; Chen, Q.; Wei, D.; Chen, X.; Fan, J.; Qiu, J. Unity and diversity of neural representation in executive functions. J. Exp. Psychol. Gen. 2021, 150, 2193–2207. [Google Scholar] [CrossRef]
- Cui, Z.; Li, H.; Xia, C.H.; Larsen, B.; Adebimpe, A.; Baum, G.L.; Cieslak, M.; Gur, R.E.; Gur, R.C.; Moore, T.M.; et al. Individual Variation in Functional Topography of Association Networks in Youth. Neuron 2020, 106, 340–353.e8. [Google Scholar] [CrossRef]
- Haufe, S.; Meinecke, F.; Gc6rgen, K.; Dähne, S.; Haynes, J.-D.; Blankertz, B.; Bießmann, F. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 2014, 87, 96–110. [Google Scholar] [CrossRef]
- Rao, H.; Korczykowski, M.; Pluta, J.; Hoang, A.; Detre, J.A. Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI Study of the Balloon Analog Risk Task (BART). Neuroimage 2008, 42, 902–910. [Google Scholar] [CrossRef]
- Huettel, S.A.; Stowe, C.J.; Gordon, E.M.; Warner, B.T.; Platt, M.L. Neural Signatures of Economic Preferences for Risk and Ambiguity. Neuron 2006, 49, 765–775. [Google Scholar] [CrossRef]
- Studer, B.; Manes, F.; Humphreys, G.; Robbins, T.W.; Clark, L. Risk-Sensitive Decision-Making in Patients with Posterior Parietal and Ventromedial Prefrontal Cortex Injury. Cereb. Cortex 2013, 25, 1–9. [Google Scholar] [CrossRef]
- Levy, I.; Snell, J.; Nelson, A.J.; Rustichini, A.; Glimcher, P.W. Neural Representation of Subjective Value Under Risk and Ambiguity. J. Neurophysiol. 2009, 103, 1036–1047. [Google Scholar] [CrossRef]
- Kuhnen, C.M.; Knutson, B. The Neural Basis of Financial Risk Taking. Neuron 2005, 47, 763–770. [Google Scholar] [CrossRef]
- Lv, C.; Wang, Q.; Chen, C.; Xue, G.; He, Q. Activation patterns of the dorsal medial prefrontal cortex and frontal pole predict individual differences in decision impulsivity. Brain Imaging Behav. 2021, 15, 421–429. [Google Scholar] [CrossRef]
- Knutson, B.; Adams, C.M.; Fong, G.W.; Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 2001, 21, RC159. [Google Scholar] [CrossRef]
- Abler, B.; Walter, H.; Erk, S.; Kammerer, H.; Spitzer, M. Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 2006, 31, 790–795. [Google Scholar] [CrossRef]
- Rolls, E.T.; McCabe, C.; Redoute, J. Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cereb. Cortex 2008, 18, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Mathias, C.J.; Dolan, R.J. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 2001, 29, 537–545. [Google Scholar] [CrossRef]
- Holroyd, C.B.; Ribas-Fernandes, J.J.F.; Shahnazian, D.; Silvetti, M.; Verguts, T. Human midcingulate cortex encodes distributed representations of task progress. Proc. Natl. Acad. Sci. USA 2018, 115, 6398–6403. [Google Scholar] [CrossRef]
- Shenhav, A.; Botvinick, M.M.; Cohen, J.D. The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron 2013, 79, 217–240. [Google Scholar] [CrossRef]
- Zilverstand, A.; Huang, A.S.; Alia-Klein, N.; Goldstein, R.Z. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review. Neuron 2018, 98, 886–903. [Google Scholar] [CrossRef]
- Dekkers, T.J.; de Water, E.; Scheres, A. Impulsive and risky decision-making in adolescents with attention-deficit/hyperactivity disorder (ADHD): The need for a developmental perspective. Curr. Opin. Psychol. 2022, 44, 330–336. [Google Scholar] [CrossRef]
- Hare, T.A.; Camerer, C.F.; Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 2009, 324, 646–648. [Google Scholar] [CrossRef]
- Figner, B.; Knoch, D.; Johnson, E.J.; Krosch, A.R.; Lisanby, S.H.; Fehr, E.; Weber, E.U. Lateral prefrontal cortex and self-control in intertemporal choice. Nat. Neurosci. 2010, 13, 538–539. [Google Scholar] [CrossRef]
- Albert, S.M.; Duffy, J. Differences in Risk Aversion between Young and Older Adults. Neurosci. Neuroecon. 2012, 2012, 3–9. [Google Scholar] [CrossRef]
- Purcell, J.R.; Herms, E.N.; Morales, J.; Hetrick, W.P.; Wisner, K.M.; Brown, J.W. A review of risky decision-making in psychosis-spectrum disorders. Clin. Psychol. Rev. 2022, 91, 102112. [Google Scholar] [CrossRef]
Region | Cluster Size | Accuracy | p |
---|---|---|---|
ACC | 525 | 76.39 | <0.001 |
Left DLPFC | 35 | 73.61 | <0.001 |
Left insula | 172 | 79.17 | <0.001 |
Left SPL | 272 | 68.06 | =0.008 |
Right DLPFC | 83 | 68.06 | =0.015 |
Right insula | 209 | 75.00 | <0.001 |
Right SPL | 175 | 55.56 | =0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Peng, X.; Hu, X. Investigating the Neural Bases of Risky Decision Making Using Multi-Voxel Pattern Analysis. Brain Sci. 2022, 12, 1488. https://doi.org/10.3390/brainsci12111488
Wang Y, Peng X, Hu X. Investigating the Neural Bases of Risky Decision Making Using Multi-Voxel Pattern Analysis. Brain Sciences. 2022; 12(11):1488. https://doi.org/10.3390/brainsci12111488
Chicago/Turabian StyleWang, Yanqing, Xuerui Peng, and Xueping Hu. 2022. "Investigating the Neural Bases of Risky Decision Making Using Multi-Voxel Pattern Analysis" Brain Sciences 12, no. 11: 1488. https://doi.org/10.3390/brainsci12111488
APA StyleWang, Y., Peng, X., & Hu, X. (2022). Investigating the Neural Bases of Risky Decision Making Using Multi-Voxel Pattern Analysis. Brain Sciences, 12(11), 1488. https://doi.org/10.3390/brainsci12111488