Mobile Brain Imaging to Examine Task-Related Cortical Correlates of Reactive Balance: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Review Objectives
2.2. Review Methodology
2.2.1. Search Process and Strategy
2.2.2. Eligibility Criteria
2.2.3. Quality Assessment
2.2.4. Data Extraction
2.2.5. Data Analysis
3. Results
3.1. Spatial-Temporal Characteristics of Cortical Activity: Novel Perturbations (RQ1)
3.1.1. EEG Studies—PEPs
3.1.2. EEG Studies—Changes in Frequency Spectrums
3.1.3. fNIRS Studies—Changes in Hemodynamic Responses
3.2. Spatial-Temporal Characteristics of Cortical Activity: Repeated Perturbations (RQ2)
3.2.1. EEG Studies: PEPs
3.2.2. EEG Studies: Changes in Frequency Spectrums
3.2.3. fNIRS Studies: Changes in Hemodynamic Responses
3.3. Behavioral and Kinematic Correlates of Cortical Activity (RQ3)
3.3.1. EEG Studies: PEPs
3.3.2. EEG Studies: Changes in Frequency Spectrums
3.3.3. EEG Studies: Changes in Hemodynamic Responses
4. Discussion
4.1. Spatial-Temporal Characteristics of Cortical Activity: Novel Perturbations (RQ1)
4.2. Spatial-Temporal Characteristics of Cortical Activity: Repeated Perturbations (RQ2)
4.3. Behavioral and Biomechanical/Kinematic Correlates of Cortical Activity (RQ3)
5. Limitations of the Review
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. 2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Deliagina, T.G.; Orlovsky, G.N.; Zelenin, P.V.; Beloozerova, I.N. Neural bases of postural control. Physiology 2006, 21, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B. Adaptation of automatic postural responses. In The Acquisition of Motor Behavior in Vertebrates; The MIT Press: Cambridge, MA, USA, 1996; pp. 57–85. [Google Scholar]
- Massion, J. Postural control system. Curr. Opin. Neurobiol. 1994, 4, 877–887. [Google Scholar] [CrossRef]
- Sousa, A.S.; Silva, A.; Tavares, J.M. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: A review. Somatosens. Mot. Res. 2012, 29, 131–143. [Google Scholar] [CrossRef]
- Forbes, P.A.; Chen, A.; Blouin, J.-S. Sensorimotor control of standing balance. Handb. Clin. Neurol. 2018, 159, 61–83. [Google Scholar]
- MacKinnon, C.D. Sensorimotor anatomy of gait, balance, and falls. Handb. Clin. Neurol. 2018, 159, 3–26. [Google Scholar]
- Page, P. Sensorimotor training: A “global” approach for balance training. J. Bodyw. Mov. Ther. 2006, 10, 77–84. [Google Scholar] [CrossRef]
- Stelmach, E.G.; Worringham, C.J. Sensorimotor deficits related to postural stability: Implications for falling in the elderly. Clin. Geriatr. Med. 1985, 1, 679–694. [Google Scholar] [CrossRef]
- Li, K.Z.; Bherer, L.; Mirelman, A.; Maidan, I.; Hausdorff, J.M. Cognitive involvement in balance, gait and dual-tasking in aging: A focused review from a neuroscience of aging perspective. Front. Neurol. 2018, 9, 913. [Google Scholar] [CrossRef]
- Maki, B.E.; McIlroy, W.E. Cognitive demands and cortical control of human balance-recovery reactions. J. Neural Transm. 2007, 114, 1279–1296. [Google Scholar] [CrossRef]
- Ng, T.H.; Sowman, P.F.; Brock, J.; Johnson, B.W. Neuromagnetic brain activity associated with anticipatory postural adjustments for bimanual load lifting. Neuroimage 2013, 66, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.; Horak, F.B.; Fujiwara, K.; Tomita, H.; Furune, N.; Kunita, K. Changes in activity at the cerebral cortex associate with the optimization of responses to external postural perturbations when given prior warning. Gait Posture Suppl. 2007. [Google Scholar]
- Takakusaki, K. Functional neuroanatomy for posture and gait control. J. Mov. Disord. 2017, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Van Boxtel, G.; Brunia, C.H. Motor and non-motor aspects of slow brain potentials. Biol. Psychol. 1994, 38, 37–51. [Google Scholar] [CrossRef]
- Saitou, K.; Washimi, Y.; Koike, Y.; Takahashi, A.; Kaneoke, Y. Slow negative cortical potential preceding the onset of postural adjustment. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 449–455. [Google Scholar] [CrossRef]
- Slobounov, S.; Hallett, M.; Stanhope, S.; Shibasaki, H. Role of cerebral cortex in human postural control: An EEG study. Clin. Neurophysiol. 2005, 116, 315–323. [Google Scholar] [CrossRef]
- Bolton, D.A. The role of the cerebral cortex in postural responses to externally induced perturbations. Neurosci. Biobehav. Rev. 2015, 57, 142–155. [Google Scholar] [CrossRef]
- Kahya, M.; Moon, S.; Ranchet, M.; Vukas, R.R.; Lyons, K.E.; Pahwa, R.; Akinwuntan, A.; Devos, H. Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review. Exp. Gerontol. 2019, 128, 110756. [Google Scholar] [CrossRef]
- Wittenberg, E.; Thompson, J.; Nam, C.S.; Franz, J.R. Neuroimaging of Human Balance Control: A Systematic Review. Front. Hum. Neurosci. 2017, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Nashner, L.M. Central programming of postural movements: Adaptation to altered support-surface configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef]
- Maki, B.E.; Mcilroy, W.E.; Fernie, G.R. Change-in-support reactions for balance recovery. IEEE Eng. Med. Biol. Mag. 2003, 22, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E.; McIlroy, W.E. The role of limb movements in maintaining upright stance: The “change-in-support” strategy. Phys. Ther. 1997, 77, 488–507. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B. Cortical control of postural responses. J. Neural. Transm. 2007, 114, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E.; McIlroy, W.E. Postural control in the older adult. Clin. Geriatr. Med. 2007, 12, 635–658. [Google Scholar] [CrossRef]
- Chan, C.W.; Jones, G.M.; Kearney, R.E.; Watt, D.G.D. The ‘late’ electromyographic response to limb displacement in man. I. Evidence for supraspinal contribution. Electroencephalogr. Clin. Neurophysiol. 1979, 46, 173–181. [Google Scholar] [CrossRef]
- Taube, W.; Schubert, M.; Gruber, M.; Beck, S.; Faist, M.; Gollhofer, A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J. Appl. Physiol. 2006, 101, 420–429. [Google Scholar] [CrossRef]
- Beloozerova, I.N.; Sirota, M.G.; Swadlow, H.A.; Orlovsky, G.N.; Popova, L.B.; Deliagina, T.G. Activity of different classes of neurons of the motor cortex during postural corrections. J. Neurosci. 2003, 23, 7844–7853. [Google Scholar] [CrossRef][Green Version]
- Brauer, S.; Woollacott, M.; Shumway-Cook, A. The influence of a concurrent cognitive task on the compensatory stepping response to a perturbation in balance-impaired and healthy elders. Gait Posture 2002, 15, 83–93. [Google Scholar] [CrossRef]
- Maki, B.E.; Zecevic, A.; Bateni, H.; Kirshenbaum, N.; McIlroy, W.E. Cognitive demands of executing postural reactions: Does aging impede attention switching? Neuroreport 2001, 12, 3583–3587. [Google Scholar] [CrossRef]
- McIlroy, W.E.; Norrie, R.G.; Brooke, J.D.; Bishop, D.C.; Nelson, A.J.; Maki, B.E. Temporal properties of attention sharing consequent to disturbed balance. Neuroreport 1999, 10, 2895–2899. [Google Scholar] [CrossRef]
- Kim, H.; Nnodim, J.O.; Richardson, J.K.; Ashton-Miller, J.A. Effect of age on the ability to recover from a single unexpected underfoot perturbation during gait: Kinematic responses. Gait Posture 2013, 38, 853–857. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pavol, M.J.; Owings, T.M.; Foley, K.T.; Grabiner, M.D. Mechanisms leading to a fall from an induced trip in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M428–M437. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.-F.; Woollacott, M.H.; Chong, R.K. Control of reactive balance adjustments in perturbed human walking: Roles of proximal and distal postural muscle activity. Exp. Brain Res. 1998, 119, 141–152. [Google Scholar] [CrossRef]
- Tseng, S.-C.; Stanhope, S.J.; Morton, S.M. Impaired reactive stepping adjustments in older adults. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2009, 64, 807–815. [Google Scholar] [CrossRef]
- Woollacott, M.H.; Tang, P.-F. Balance control during walking in the older adult: Research and its implications. Phys. Ther. 1997, 77, 646–660. [Google Scholar] [CrossRef]
- Kajrolkar, T.; Bhatt, T. Falls-risk post-stroke: Examining contributions from paretic versus non paretic limbs to unexpected forward gait slips. J. Biomech. 2016, 49, 2702–2708. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.; Wong, J.S.; McIlroy, W.E.; Biasin, L.; Brunton, K.; Bayley, M.; Inness, E.L. Do measures of reactive balance control predict falls in people with stroke returning to the community? Physiotherapy 2015, 101, 373–380. [Google Scholar] [CrossRef]
- Patel, P.J.; Bhatt, T. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations. Neuroscience 2016, 333, 252–263. [Google Scholar] [CrossRef]
- Salot, P.; Patel, P.; Bhatt, T. Reactive Balance in Individuals with Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling. Phys. Ther. 2016, 96, 338–347. [Google Scholar] [CrossRef]
- Adkin, A.L.; Campbell, A.D.; Chua, R.; Carpenter, M.G. The influence of postural threat on the cortical response to unpredictable and predictable postural perturbations. Neurosci. Lett. 2008, 435, 120–125. [Google Scholar] [CrossRef]
- Mochizuki, G.; Sibley, K.M.; Cheung, H.J.; Camilleri, J.M.; McIlroy, W.E. Generalizability of perturbation-evoked cortical potentials: Independence from sensory, motor and overall postural state. Neurosci. Lett. 2009, 451, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.M.; Ting, L.H. Balance perturbation-evoked cortical N1 responses are larger when stepping and not influenced by motor planning. J. Neurophysiol. 2020, 124, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.M.; Ting, L.H. Worse balance is associated with larger perturbation-evoked cortical responses in healthy young adults. Gait Posture 2020, 80, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Quant, S.; Adkin, A.L.; Staines, W.R.; McIlroy, W.E. Cortical activation following a balance disturbance. Exp. Brain Res. 2004, 155, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Marlin, A.; Mochizuki, G.; Staines, W.R.; McIlroy, W.E. Localizing evoked cortical activity associated with balance reactions: Does the anterior cingulate play a role? J. Neurophysiol. 2014, 111, 2634–2643. [Google Scholar] [CrossRef]
- Bolton, D.A.; Williams, L.; Staines, W.R.; McIlroy, W.E. Contribution of primary motor cortex to compensatory balance reactions. BMC Neurosci. 2012, 13, 102. [Google Scholar] [CrossRef]
- Peterson, S.M.; Ferris, D.P. Differentiation in Theta and Beta Electrocortical Activity between Visual and Physical Perturbations to Walking and Standing Balance. eNeuro 2018, 5. [Google Scholar] [CrossRef]
- Solis-Escalante, T.; de Kam, D.; Weerdesteyn, V. Classification of Rhythmic Cortical Activity Elicited by Whole-Body Balance Perturbations Suggests the Cortical Representation of Direction-Specific Changes in Postural Stability. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2566–2574. [Google Scholar] [CrossRef]
- Koren, Y.; Parmet, Y.; Bar-Haim, S. Treading on the unknown increases prefrontal activity: A pilot fNIRS study. Gait Posture 2019, 69, 96–100. [Google Scholar] [CrossRef]
- Lee, B.C.; Choi, J.; Martin, B.J. Roles of the prefrontal cortex in learning to time the onset of pre-existing motor programs. PLoS ONE 2020, 15, e0241562. [Google Scholar] [CrossRef]
- Bultmann, U.; Pierscianek, D.; Gizewski, E.R.; Schoch, B.; Fritsche, N.; Timmann, D.; Maschke, M.; Frings, M. Functional recovery and rehabilitation of postural impairment and gait ataxia in patients with acute cerebellar stroke. Gait Posture 2014, 39, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Petsas, N.; Raz, E.; Sbardella, E.; Tona, F.; Mancinelli, C.R.; Pozzilli, C.; Pantano, P. Balance deficit with opened or closed eyes reveals involvement of different structures of the central nervous system in multiple sclerosis. Mult. Scler. J. 2014, 20, 81–90. [Google Scholar] [CrossRef]
- Prosperini, L.; Sbardella, E.; Raz, E.; Cercignani, M.; Tona, F.; Bozzali, M.; Petsas, N.; Pozzilli, C.; Pantano, P. Multiple sclerosis: White and gray matter damage associated with balance deficit detected at static posturography. Radiology 2013, 268, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, T.; Patel, P.; Dusane, S.; DelDonno, S.R.; Langenecker, S.A. Neural mechanisms involved in mental imagery of slip-perturbation while walking: A preliminary fMRI study. Front. Behav. Neurosci. 2018, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.J.; Bhatt, T.; DelDonno, S.R.; Langenecker, S.A.; Dusane, S. Examining neural plasticity for slip-perturbation training: An fMRI study. Front. Neurol. 2019, 9, 1181. [Google Scholar]
- Ouchi, Y.; Okada, H.; Yoshikawa, E.; Nobezawa, S.; Futatsubashi, M. Brain activation during maintenance of standing postures in humans. Brain 1999, 122, 329–338. [Google Scholar] [CrossRef]
- Ouchi, Y.; Okada, H.; Yoshikawa, E.; Futatsubashi, M.; Nobezawa, S. Absolute changes in regional cerebral blood flow in association with upright posture in humans: An orthostatic PET study. J. Nucl. Med. 2001, 42, 707–712. [Google Scholar]
- Adkin, A.L.; Quant, S.; Maki, B.E.; McIlroy, W.E. Cortical responses associated with predictable and unpredictable compensatory balance reactions. Exp. Brain Res. 2006, 172, 85–93. [Google Scholar] [CrossRef]
- Dietz, V.; Quintern, J.; Berger, W. Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation. Neurosci. Lett. 1984, 50, 181–186. [Google Scholar] [CrossRef]
- Dietz, V.; Quintern, J.; Berger, W. Afferent control of human stance and gait: Evidence for blocking of group I afferents during gait. Exp. Brain Res. 1985, 61, 153–163. [Google Scholar] [CrossRef]
- Dietz, V.; Quintern, J.; Berger, W.; Schenck, E. Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation. Exp. Brain Res. 1985, 57, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Duckrow, R.B.; Abu-Hasaballah, K.; Whipple, R.; Wolfson, L. Stance perturbation-evoked potentials in old people with poor gait and balance. Clin. Neurophysiol. 1999, 110, 2026–2032. [Google Scholar] [CrossRef]
- Mihara, M.; Miyai, I.; Hatakenaka, M.; Kubota, K.; Sakoda, S. Role of the prefrontal cortex in human balance control. Neuroimage 2008, 43, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Miyai, I.; Hattori, N.; Hatakenaka, M.; Yagura, H.; Kawano, T.; Kubota, K. Cortical control of postural balance in patients with hemiplegic stroke. Neuroreport 2012, 23, 314–319. [Google Scholar] [CrossRef]
- Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 2011, 22, 133–139. [Google Scholar] [CrossRef]
- Goense, J.; Bohraus, Y.; Logothetis, N.K. fMRI at high spatial resolution: Implications for BOLD-models. Front. Comput. Neurosci. 2016, 10, 66. [Google Scholar] [CrossRef]
- Dijkstra, B.W.; Bekkers, E.M.; Gilat, M.; de Rond, V.; Hardwick, R.M.; Nieuwboer, A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci. Biobehav. Rev. 2020, 115, 351–362. [Google Scholar] [CrossRef]
- Varghese, J.P.; McIlroy, R.E.; Barnett-Cowan, M. Perturbation-evoked potentials: Significance and application in balance control research. Neurosci. Biobehav. Rev. 2017, 83, 267–280. [Google Scholar] [CrossRef]
- Scarapicchia, V.; Brown, C.; Mayo, C.; Gawryluk, J.R. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies. Front. Hum. Neurosci. 2017, 11, 419. [Google Scholar] [CrossRef]
- Wilcox, T.; Biondi, M. fNIRS in the developmental sciences. Wiley Interdiscip. Rev. Cogn. Sci. 2015, 6, 263–283. [Google Scholar] [CrossRef]
- Payne, A.M.; Ting, L.H.; Hajcak, G. Do sensorimotor perturbations to standing balance elicit an error-related negativity? Psychophysiology 2019, 56, e13359. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Ditz, J.C.; Schwarz, A.; Muller-Putz, G.R. Perturbation-evoked potentials can be classified from single-trial EEG. J. Neural Eng. 2020, 17, 036008. [Google Scholar] [CrossRef]
- Varghese, J.P.; Marlin, A.; Beyer, K.B.; Staines, W.R.; Mochizuki, G.; McIlroy, W.E. Frequency characteristics of cortical activity associated with perturbations to upright stability. Neurosci. Lett. 2014, 578, 33–38. [Google Scholar] [CrossRef]
- Goel, R.; Ozdemir, R.A.; Nakagome, S.; Contreras-Vidal, J.L.; Paloski, W.H.; Parikh, P.J. Effects of speed and direction of perturbation on electroencephalographic and balance responses. Exp. Brain Res. 2018, 236, 2073–2083. [Google Scholar] [CrossRef]
- Varghese, J.P.; Staines, W.R.; McIlroy, W.E. Activity in Functional Cortical Networks Temporally Associated with Postural Instability. Neuroscience 2019, 401, 43–58. [Google Scholar] [CrossRef]
- Quant, S.; Maki, B.E.; McIlroy, W.E. The association between later cortical potentials and later phases of postural reactions evoked by perturbations to upright stance. Neurosci. Lett. 2005, 381, 269–274. [Google Scholar] [CrossRef]
- Solis-Escalante, T.; Van Der Cruijsen, J.; De Kam, D.; Van Kordelaar, J.; Weerdesteyn, V.; Schouten, A.C. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands. Neuroimage 2019, 188, 557–571. [Google Scholar] [CrossRef]
- Ghosn, N.J.; Palmer, J.A.; Borich, M.R.; Ting, L.H.; Payne, A.M. Cortical Beta Oscillatory Activity Evoked during Reactive Balance Recovery Scales with Perturbation Difficulty and Individual Balance Ability. Brain Sci. 2020, 10, 860. [Google Scholar] [CrossRef] [PubMed]
- Shenoy Handiru, V.; Alivar, A.; Hoxha, A.; Saleh, S.; Suviseshamuthu, E.S.; Yue, G.H.; Allexandre, D. Graph-theoretical analysis of EEG functional connectivity during balance perturbation in traumatic brain injury: A pilot study. Hum. Brain Mapp. 2021, 42, 4427–4447. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, G.; Sibley, K.M.; Esposito, J.G.; Camilleri, J.M.; McIlroy, W.E. Cortical responses associated with the preparation and reaction to full-body perturbations to upright stability. Clin. Neurophysiol. 2008, 119, 1626–1637. [Google Scholar] [CrossRef]
- Palmer, J.A.; Payne, A.M.; Ting, L.H.; Borich, M.R. Cortical Engagement Metrics during Reactive Balance Are Associated with Distinct Aspects of Balance Behavior in Older Adults. Front. Aging Neurosci. 2021, 13, 684743. [Google Scholar] [CrossRef]
- An, J.; Yoo, D.; Lee, B.C. Electrocortical activity changes in response to unpredictable trip perturbations induced by a split-belt treadmill. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 110–113. [Google Scholar] [PubMed]
- Sibley, K.M.; Mochizuki, G.; Frank, J.S.; McIlroy, W.E. The relationship between physiological arousal and cortical and autonomic responses to postural instability. Exp. Brain Res. 2010, 203, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Mezzina, G.; Aprigliano, F.; Micera, S.; Monaco, V.; De Venuto, D. Cortical reactive balance responses to unexpected slippages while walking: A pilot study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 6868–6871. [Google Scholar]
- Bogost, M.D.; Burgos, P.I.; Little, C.E.; Woollacott, M.H.; Dalton, B.H. Electrocortical Sources Related to Whole-Body Surface Translations during a Single- and Dual-Task Paradigm. Front. Hum. Neurosci. 2016, 10, 524. [Google Scholar] [CrossRef]
- Little, C.E.; Woollacott, M. EEG measures reveal dual-task interference in postural performance in young adults. Exp. Brain Res. 2015, 233, 27–37. [Google Scholar] [CrossRef]
- Mochizuki, G.; Boe, S.G.; Marlin, A.; McIlroy, W.E. Performance of a concurrent cognitive task modifies pre- and post-perturbation-evoked cortical activity. Neuroscience 2017, 348, 143–152. [Google Scholar] [CrossRef]
- Quant, S.; Adkin, A.L.; Staines, W.R.; Maki, B.E.; McIlroy, W.E. The effect of a concurrent cognitive task on cortical potentials evoked by unpredictable balance perturbations. BMC Neurosci. 2004, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.V.; Roy, C.L.; Hitt, J.R.; Popov, R.E.; Henry, S.M. Neural mechanisms and functional correlates of altered postural responses to perturbed standing balance with chronic low back pain. Neuroscience 2016, 339, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Mierau, A.; Hulsdunker, T.; Struder, H.K. Changes in cortical activity associated with adaptive behavior during repeated balance perturbation of unpredictable timing. Front. Behav. Neurosci. 2015, 9, 272. [Google Scholar] [CrossRef] [PubMed]
- Allexandre, D.; Hoxha, A.; Handiru, V.S.; Saleh, S.; Selvan, S.E.; Yue, G.H. Altered Cortical and Postural Response to Balance Perturbation in Traumatic Brain Injury—An EEG Pilot Study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2019, 2019, 1543–1546. [Google Scholar]
- Payne, A.M.; Hajcak, G.; Ting, L.H. Dissociation of muscle and cortical response scaling to balance perturbation acceleration. J. Neurophysiol. 2019, 121, 867–880. [Google Scholar] [CrossRef]
- Shirazi, S.Y.; Huang, H.J. Differential Theta-Band Signatures of the Anterior Cingulate and Motor Cortices during Seated Locomotor Perturbations. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 468–477. [Google Scholar] [CrossRef]
- Fujimoto, H.; Mihara, M.; Hattori, N.; Hatakenaka, M.; Kawano, T.; Yagura, H.; Miyai, I.; Mochizuki, H. Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage 2014, 85, 547–554. [Google Scholar] [CrossRef]
- Palve, S.S.; Palve, S.B. Impact of Aging on Nerve Conduction Velocities and Late Responses in Healthy Individuals. J. Neurosci. Rural Pract. 2018, 9, 112–116. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, Y.; Xi, J.H.; Chen, Z.Q. Structural and functional connectivity in traumatic brain injury. Neural Regen. Res. 2015, 10, 2062–2071. [Google Scholar]
- Pai, Y.C.; Bhatt, T.S. Repeated-slip training: An emerging paradigm for prevention of slip-related falls among older adults. Phys. Ther. 2007, 87, 1478–1491. [Google Scholar] [CrossRef]
- Wang, S.; Varas-Diaz, G.; Bhatt, T. Muscle synergy differences between voluntary and reactive backward stepping. Sci. Rep. 2021, 11, 15462. [Google Scholar] [CrossRef]
- Gangwani, R.; Dusane, S.; Wang, S.; Kannan, L.; Wang, E.; Fung, J.; Bhatt, T. Slip-Fall Predictors in Community-Dwelling, Ambulatory Stroke Survivors: A Cross-sectional Study. J. Neurol. Phys. Ther. 2020, 44, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bhatt, T.; Wang, S.; Yang, F.; Pai, Y.C.C. Retention of the “first-trial effect” in gait-slip among community-living older adults. Geroscience 2017, 39, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Reschechtko, S.; Wang, S.; Pai, Y.C.C. The recovery response to a novel unannounced laboratory-induced slip: The “first trial effect” in older adults. Clin. Biomech. 2017, 48, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Pavol, M.J.; Runtz, E.F.; Edwards, B.J.; Pai, Y.C. Age influences the outcome of a slipping perturbation during initial but not repeated exposures. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, M496–M503. [Google Scholar] [CrossRef]
Study | Quality Assessment | Study | Quality Assessment | ||
---|---|---|---|---|---|
Author 1 | Author 2 | Author 1 | Author 2 | ||
Ditz et al. [76] | M | M | Varghese et al. [77] | L | M |
Goel et al. [78] | M | M | Varghese et al. [79] | L | M |
Quant et al. [80] | M | M | Solis-Escalante et al. [81] | M | M |
Payne and Ting [43] | M | H | Ghosn et al. [82] | L | M |
Payne and Ting [44] | H | H | Solis-Escalante et al. [49] | M | M |
Adkin et al. [59] | M | M | Shenoy et al. [83] | L | M |
Mochizuki et al. [84] | L | L | Palmer et al. [85] | M | M |
Adkin et al. [41] | M | M | An et al. [86] | M | M |
Sibley et al. [87] | M | M | Mezzina et al. [88] | M | M |
Bogost et al. [89] | M | M | Peterson and Ferris [48] | H | H |
Little and Woollcott [90] | M | M | Mihara et al. [64] | L | L |
Mochizuki et al. [91] | L | M | Mihara et al. [65] | L | L |
Quant et al. [92] | M | M | Koren et al. [50] | M | M |
Duckrow et al. [63] | M | M | Lee et al. [51] | M | M |
Jacobs et al. [93] | M | M | Mierau et al. [94] | M | M |
Alexandre et al. [95] | L | L | Payne et al. [96] | H | H |
Dietz et al. [60] | L | L | Shirazi and Huang [97] | M | M |
Mochizuki et al. [42] | L | L |
Study | Sample | Type of Perturbations | Behavioral, Kinematic Outcomes | PEP | Electrode Sites | Key Findings |
---|---|---|---|---|---|---|
Task position: Sitting | ||||||
Ditz et al. [76] | 15 young | UNPRED medial/lateral perturbations via mechanical chair | - | P1, N1, P2 | Central, Parietal | N1 and P2 amplitude: UNPRED > rest No differences in P1 |
Task position: Standing | ||||||
Goel et al. [78] | 10 young | UNPRED forward/backward, low/high perturbations via movable platform | - | N1 | Frontal, Central | N1 amplitude: high > low for both N1 latency: high < low for both |
Quant et al. [80] | 7 young | UNPRED backward perturbations via movable platform (TASK 1: immediate deceleration TASK 2: delayed deceleration) | - | P1, N1, P2, N2 | Central | All PEPs: TASK 1 ≈ TASK 2 |
Payne and Ting [43] | 16 young | UNPRED backward perturbations (variable magnitude) via movable platform (planned/unplanned stepping, stepping/ non-stepping) | - | N1 | Central | ↑ N1 amplitude with ↑ perturbation magnitude, stepping > no-stepping, planned ≈ unplanned stepping |
Payne and Ting [44] | 20 young | UNPRED backward perturbations (3 levels: easy, moderate, difficult) via movable platform | Beam walking (balance) | N1 | Central | ↑ N1 amplitude with ↑ perturbation intensity ↓ N1 latency with ↑ perturbation magnitude N1 amplitude −ve correlation with Beam Walking task performance |
Adkin et al. [59] | 8 young | PRED and UNPRED perturbations forward perturbations via padded device | - | N1 | Central | N1 latency: PRED ≈ UNPRED N1 amplitude: PRED < UNPRED |
Mochizuki et al. [84] | 15 young | PRED and UNPRED backward perturbations via load release | - | N1 | Frontal, Central | Pre-perturbation activity: PRED > UNPRED N1 characteristics: UNPRED > PRED |
Adkin et al. [41] | 10 young | PRED and UNPRED forward perturbations at LOW (ground) and HIGH (3.2 m above ground) via hand-held bar | Balance confidence Fear of falling Perceived stability | N1 | Central | N1 amplitude: HIGH > LOW for UNPRED, HIGH ≈ LOW for PRED N1 latency: same for all conditions Changes in N1 +ve correlation with changes in all behavioral outcomes |
Sibley et al. [87] | 10 young | UNPRED forward perturbations at LOW (ground) and HIGH (1.60 m above ground) via load release | Electrodermal responses | N1, P2 | Central | N1 amplitude: HIGH > LOW, N1 latency, P2 amplitude: HIGH ≈ LOW No correlation between N1 and electrodermal responses |
Bogost et al. [89] | 15 young | UNPRED backward perturbations via movable platform with (DT) and without cognitive task (ST) | - | N1 | Prefrontal, Premotor, Central, Centro- parietal | Regions of interest: ST: prefrontal, premotor, primary motor and supplementary motor area. DT: all areas for ST+ frontal, temporal and occipital area. N1 amplitude: ST > DT |
Little and Woollcott [90] | 14 young | UNPRED backward perturbations with cognitive task (DT) and cognitive task only (ST) | - | P1, N1 P2 | Prefrontal, Premotor, Central, Centro- parietal | Regions of interest: ST: prefrontal, premotor, primary motor and supplementary motor area DT: all areas from ST+ temporal and occipital area. N1 amplitude: ST > DT |
Mochizuki et al. [91] | 26 young | PRED and UNPRED forward perturbations via lean release with (DT) and without cognitive task (ST) | - | N1 | Central | Pre-perturbation activity: PRED: DT < ST N1 amplitude: PRED: ST < DT, UNPRED: ST ≈ DT |
Quant et al. [92] | 7 young | UNPRED forward/backward perturbations via moveable platform with (DT) and without (ST) cognitive task | - | N1 | Central | N1 amplitude: DT < ST N1 latency: ST ≈ DT |
Duckrow et al. [63] | 8 young 32 old | UNPRED forward perturbations via movable platform | Subject height Physical performance battery | P1, N1, N2 | Central | P1 latency: Old > Young N1 amplitude: Old < Young N2 latency: ↑ in Old with ↓ SPPB P1 latency +ve correlation with height N1-N2 interval −ve correlation with with physical performance |
Jacobs et al. [93] | 13 LBP 13 Healthy | UNPRED forward/backward perturbations via movable platform | Center of Mass displacement, Brief pain inventory, Fear avoidance Coping strategies | N1, P2 | Frontal, Central, Centro- parietal | P2 amplitude: LBP > Healthy No group differences in N1 amplitude P2 amplitude −ve correlation with all behavioral outcomes |
Alexandre et al. [95] | 12 TBI 6 Healthy | UNPRED forward/backward perturbations via movable platform | Center of pressure displacement, Berg Balance scale | P1, N1, N2 | Central | N1 amplitude: TBI < Healthy N1 amplitude +ve correlation with Berg Balance Scale |
Multiple task positions | ||||||
Dietz et al. [60] | 10 young | UNPRED forward perturbations in stance and gait via treadmill | - | P1, N1 | Central | P1 latency: stance < gait N1 latency: stance < gait |
Mochizuki et al. [42] | 8 young | UNPRED backward perturbations in stance via load release and in sitting via chair tilting | - | N1, P2 | Frontal, Central Centro- parietal | N1 characteristics at central (standing ≈ sitting) P2 amplitude: standing > sitting |
Study | Sample | Type of Perturbations | Behavioral, Kinematic Outcomes | Frequency Band | Cortical Sites | Key Findings |
---|---|---|---|---|---|---|
Task position: Standing | ||||||
Varghese et al. [77] | 14 Young | UNPRED forward perturbations via lean release | - | N1 | Fronto- central | Simultaneous ↑ in power (theta, delta, alpha and beta) during N1 |
Varghese et al. [79] | 14 Young | UNPRED forward perturbations via lean release | - | N1 | N/A | Functional connectivity strength ↑ delta, theta, alpha and beta during N1 |
Solis-Escalante et al. [81] | 10 Young | UNPRED backward perturbations via movable platform Phases: cue observation, response preparation, response execution (RE) | - | alpha, beta, theta | Supplementary motor, Sensorimotor, Prefrontal, Posterior parietal, Anterior cingulate cortex | ERSPs Cue observation: ↓ alpha + ↓ beta Response preparation: ↓ beta, ↓ theta, ↓ alpha and gamma Response execution: ↑ theta, alpha, beta. Stepping: ↓ beta in M1/S1 contralateral to support leg |
Ghosn et al. [82] | 19 Young | UNPRED backward perturbations (easy-difficult) via movable platform | Beam walking task (balance) | beta | Central | ↑ beta power with ↑ perturbation magnitude Late phase beta power (150–250 ms post-perturbation) −ve correlation with balance performance |
Solis-Escalante et al. [49] | 3 Stroke 6 Young | UNPRED forward/backward, medial/lateral perturbations via movable platform | - | theta | Central | ≈ pattern of changes in theta frequencies in both groups (i.e., ↑ theta after perturbation onset) |
Shenoy et al. [83] | 18 TBI 18 Healthy | UNPRED anterior/posterior perturbations with low/high amplitude via movable platform | Center of pressure displacement, Berg Balance Scale | alpha beta theta | Frontal, Parietal, Temporal, Occipital | Regions-of-interest alpha connectivity: TBI < Healthy, beta connectivity: TBI ≈ Healthy in ROIs Theta band modularity −ve correlation with Berg Balance Scale, no correlation with center of pressure displacement |
Palmer et al. [85] | 16 Old | UNPRED forward/backward, medial/lateral perturbations via movable platform | Mini Balance evaluation test (balance), Cognitive motor interference, Stepping threshold | beta | Primary motor, Sensory, Prefrontal | ↑ prefrontal, primary motor beta connectivity post-perturbation correlated with ↓ stepping threshold Beta power during late phase (150–250 ms) −ve correlation with MiniBEST. |
Task position: Walking | ||||||
An et al. [86] | 5 Young | UNPRED backward perturbations via split-belt treadmill Phases: Quiet standing, walking, recovery response. | - | alpha beta theta delta gamma | Sensorimotor, Posterior parietal | In sensorimotor cortex, ↑ theta power: walking > standing, ↑ alpha power: recovery < standing/walking In posterior-parietal cortex, ↑ theta power: walking > standing, ↑ alpha power: recovery > standing/ walking, ↑ beta power: recovery/walking < standing |
Mezzina et al. [88] | 4 Young | UNPRED forward perturbations via split-belt treadmill | - | alpha beta theta | Frontal, Parietal | Cortical responsiveness (slope m) ↑ in m of all bands post perturbation. ↓ in m during recovery > walking and early balance loss phase |
Multiple task positions | ||||||
Peterson and Ferris [48] | 30 Young | UNPRED perturbations in standing or walking on a balance beam via waist pull Conditions: stand pull, walk pull | - | alpha beta theta and gamma | Occipital, Posterior parietal, Sensorimotor, Supplementary motor area | ↑ alpha, ↑ beta power: stand pull > walk pull in sensorimotor, posterior parietal and supplementary motor area ↓ gamma power: stand pull < walk pull in occipital and posterior parietal area |
Study | Sample | Type of Perturbations | Behavioral, Kinematic Outcomes | Cortical Responses | Cortical Area | Key Findings |
---|---|---|---|---|---|---|
Task position: Standing | ||||||
Mihara et al. [64] | 15 Young | UNPRED and PRED forward/backward, medial/lateral perturbations via movable platform | - | OxyHb, Deoxy Hb | Frontal, Parietal, Primary motor | ↑ OxyHb: PRED, UNPRED > pre-perturbation in frontal and parietal ↑ OxyHb: PRED > UNPRED in superior parietal & supplementary motor area |
Mihara et al. [65] | 20 Stroke | UNPRED forward/backward perturbations via movable platform | Berg Balance Scale (balance) | OxyHb, Deoxy Hb | Prefrontal Premotor Parietal | ↑ OxyHb: post > pre-perturbation in prefrontal, and parietal of unaffected hemisphere ↑ OxyHb in supplementary motor area and prefrontal cortex +ve correlation with Berg Balance scale |
Task position: Walking | ||||||
Koren et al. [50] | 20 Young | UNPRED over ground walk perturbations via mechatronic system. 3 conditions: Unperturbed walk, perturbed walk and own shoes | - | OxyHb, Deoxy Hb | Prefrontal cortex | ↑ OxyHb: perturbed walk > unperturbed/shoe in prefrontal cortex |
Lee et al. [51] | 10 Young | UNPRED repeated slips via split-belt treadmill | - | OxyHb, Deoxy Hb | Prefrontal cortex and sub regions | ↑ OxyHb: walking, recovery period > pre-perturbation in prefrontal cortex |
Study | Sample | Type of Perturbations | Behavioral, Kinematic Outcomes | PEP | Electrode Sites | Key Findings |
---|---|---|---|---|---|---|
Task position: Standing | ||||||
Mierau et al. [94] | 37 Young | Repeated UNPRED forward/backward, medial/lateral perturbations via movable platform (10 trials: T1-T10) | Postural sway Electromyographic responses | P1, N1 | Fronto-central Centro-parietal | N1 amplitude: T1 > T2 > T10 N1 latency: T1 ≈ T2 ≈ T10 P1 characteristics: T1 ≈ T2 ≈ T10 N1 amplitude +ve correlation with postural sway and electromyographic responses |
Payne et al. [96] | 16 Young | Repeated UNPRED forward/backward perturbations via movable platform | Electromyographic responses, (early and late) | N1 | Central | ↓ N1 amplitude with ↑ number of trials N1 amplitudes +ve correlation with early but no correlation with late electromyographic responses |
Study | Sample | Type of Perturbations | Behavioral Kinematic Outcomes | Frequency Band | Cortical Sites | Key Findings |
---|---|---|---|---|---|---|
Task position: Sitting | ||||||
Shirazi and Huang [97] | 17 young | Repeated UNPRED perturbations in sitting during mid-leg or full-leg extension onset via servo meter | - | theta | Supplementary motor area, Anterior cingulate cortex | ↑ theta power: pre-> post-perturbation in Right supplementary motor area ↑ theta power: post > pre-perturbation in anterior cingulate and Left supplementary motor area ↓ theta power with repeated perturbations |
Study | Sample | Type of Perturbations | Behavioral Kinematic Outcomes | Frequency Band | Cortical Sites | Key Findings |
---|---|---|---|---|---|---|
Task position: Walking | ||||||
Lee et al. [51] | 10 young | Repeated UNPRED backward perturbations during walking via split-belt treadmill | - | OxyHb and Deoxy Hb | Prefrontal cortex and subregions | Trial 1–3: ≈ OxyHb in prefrontal sub-regions Trial 3–6: ↓ OxyHb in ventrolateral and frontopolar prefrontal cortex, ↑ OxyHb in orbitofrontal cortex. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purohit, R.; Bhatt, T. Mobile Brain Imaging to Examine Task-Related Cortical Correlates of Reactive Balance: A Systematic Review. Brain Sci. 2022, 12, 1487. https://doi.org/10.3390/brainsci12111487
Purohit R, Bhatt T. Mobile Brain Imaging to Examine Task-Related Cortical Correlates of Reactive Balance: A Systematic Review. Brain Sciences. 2022; 12(11):1487. https://doi.org/10.3390/brainsci12111487
Chicago/Turabian StylePurohit, Rudri, and Tanvi Bhatt. 2022. "Mobile Brain Imaging to Examine Task-Related Cortical Correlates of Reactive Balance: A Systematic Review" Brain Sciences 12, no. 11: 1487. https://doi.org/10.3390/brainsci12111487
APA StylePurohit, R., & Bhatt, T. (2022). Mobile Brain Imaging to Examine Task-Related Cortical Correlates of Reactive Balance: A Systematic Review. Brain Sciences, 12(11), 1487. https://doi.org/10.3390/brainsci12111487