Intensive Neurorehabilitation and Gait Improvement in Progressive Multiple Sclerosis: Clinical, Kinematic and Electromyographic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. Patient-Centered Intensive Multidisciplinary Rehabilitation Program
2.4. Gait Analysis
2.5. Statistics
3. Results
3.1. Subjects
3.2. Pre- and Post-Treatment Comparisons of Gait Parameters
3.3. Improved Gait Parameters Also Found in Patients with Stable Post-Training EDSS
3.4. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kingwell, E.; Marriott, J.J.; Jetté, N.; Pringsheim, T.; Makhani, N.; Morrow, S.A.; Fisk, J.D.; Evans, C.; Béland, S.G.; Kulaga, S.; et al. Incidence and prevalence of multiple sclerosis in Europe: A systematic review. BMC Neurol. 2013, 13, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heesen, C.; Böhm, J.; Reich, C.; Kasper, J.; Goebel, M.; Gold, S. Patient perception of bodily functions in multiple sclerosis: Gait and visual function are the most valuable. Mult. Scler. J. 2008, 14, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Feys, P.; Bibby, B.M.; Baert, I.; Dalgas, U. Walking capacity and ability are more impaired in progressive compared to re-lapsing type of multiple sclerosis. Eur. J. Phys. Rehabil. Med. 2015, 51, 207–210. [Google Scholar] [PubMed]
- Hobart, J.C.; Riazi, A.; Lamping, D.L.; Fitzpatrick, R.; Thompson, A. Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale (MSWS-12). Neurology 2003, 60, 31–36. [Google Scholar] [CrossRef]
- Kieseier, B.C.; Pozzilli, C. Assessing walking disability in multiple sclerosis. Mult. Scler. J. 2012, 18, 914–924. [Google Scholar] [CrossRef]
- Cohen, J.A.; Reingold, S.C.; Polman, C.H.; Wolinsky, J.S.; International Advisory Committee on Clinical Trials in Multiple Sclerosis. Disability outcome measures in multiple sclerosis clinical trials: Current status and future prospects. Lancet Neurol. 2012, 11, 467–476. [Google Scholar] [CrossRef]
- Van Munster, C.E.P.; Uitdehaag, B.M.J. Outcome Measures in Clinical Trials for Multiple Sclerosis. CNS Drugs 2017, 31, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.D.; Brown, T.R.; Krupp, L.; Schapiro, R.T.; Schwid, S.R.; Cohen, R.; Marinucci, L.N.; Blight, A.R.; Fampridine MS-F203 Investigators. Sustained-release oral fampridine in multiple sclerosis: A randomised, double-blind, controlled trial. Lancet 2009, 373, 732–738. [Google Scholar] [CrossRef]
- Motl, R.W.; Sandroff, B.; Suh, Y.; Sosnoff, J. Energy Cost of Walking and Its Association With Gait Parameters, Daily Activity, and Fatigue in Persons With Mild Multiple Sclerosis. Neurorehabilit. Neural Repair 2012, 26, 1015–1021. [Google Scholar] [CrossRef]
- Kikkert, L.H.J.; De Groot, M.H.; Van Campen, J.P.; Beijnen, J.H.; Hortobágyi, T.; Vuillerme, N.; Lamoth, C. Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic. PLoS ONE 2017, 12, e0178615. [Google Scholar] [CrossRef] [Green Version]
- Angelini, L.; Hodgkinson, W.; Smith, C.; Dodd, J.M.; Sharrack, B.; Mazzà, C.; Paling, D. Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting. J. Neurol. 2020, 267, 2897–2909. [Google Scholar] [CrossRef] [PubMed]
- Lizama, L.E.C.; Khan, F.; Lee, P.V.S.; Galea, M.P. The use of laboratory gait analysis for understanding gait deterioration in people with multiple sclerosis. Mult. Scler. J. 2016, 22, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-C.; Costa, G.D.; Pisa, M.; Gregoris, L.; Leccabue, G.; Congiu, M.; Comi, G.; Leocani, L. The Danger of Walking with Socks: Evidence from Kinematic Analysis in People with Progressive Multiple Sclerosis. Sensors 2020, 20, 6160. [Google Scholar] [CrossRef] [PubMed]
- Comber, L.; Galvin, R.; Coote, S. Gait deficits in people with multiple sclerosis: A systematic review and meta-analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef]
- Papagiannis, G.I.; Triantafyllou, A.I.; Roumpelakis, I.M.; Zampeli, F.; Eleni, P.G.; Koulouvaris, P.; Papadopoulos, E.C.; Papagelopoulos, P.J.; Babis, G.C. Methodology of surface electromyography in gait analysis: Review of the literature. J. Med. Eng. Technol. 2019, 43, 59–65. [Google Scholar] [CrossRef]
- Fernández, Ó.; Costa-Frossard, L.; Martínez-Ginés, M.; Montero, P.; Prieto, J.M.; Ramió, L. The Broad Concept of “Spasticity-Plus Syndrome” in Multiple Sclerosis: A Possible New Concept in the Management of Multiple Sclerosis Symptoms. Front. Neurol. 2020, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Biering-Sørensen, F.; Nielsen, J.B.; Klinge, K. Spasticity-assessment: A review. Spinal Cord 2006, 44, 708–722. [Google Scholar] [CrossRef]
- Bhuiyan, P.S.; Rege, N.N. ICH Harmonised Tripartite Guideline: Guideline for Good Clinical Practice. J. Postgrad. Med. 2001, 47, 199–203. [Google Scholar]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Hermans, G.; Clerckx, B.; Vanhullebusch, T.; Segers, J.; Vanpee, G.; Robbeets, C.; Casaer, M.P.; Wouters, P.; Gosselink, R.; Van den Berghe, G. Interobserver agreement of medical research council sum-score and handgrip strength in the intensive care unit. Muscle Nerve 2012, 45, 18–25. [Google Scholar] [CrossRef]
- Toomey, E.; Coote, S. Between-Rater Reliability of the 6-Minute Walk Test, Berg Balance Scale, and Handheld Dynamometry in People with Multiple Sclerosis. Int. J. MS Care 2013, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quanti-tative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Conley, D.; Schultz, A.A.; Selvin, R. The challenge of predicting patients at risk for falling: Development of the Conley Scale. Medsurg Nurs. 1999, 8, 348–354. [Google Scholar]
- Sebastião, E.; Sandroff, B.; Learmonth, Y.; Motl, R.W. Validity of the Timed Up and Go Test as a Measure of Functional Mobility in Persons With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D.; Marrie, R.A.; Cohen, J.A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. J. 2008, 14, 383–390. [Google Scholar] [CrossRef]
- Solaro, C.; Trabucco, E.; Signori, A.; Cella, M.; Uccelli, M.M.; Brichetto, G.; Cavalla, P.; Gironi, M.; Patti, F.; Prosperini, L. Italian Validation of the 12-Item Multiple Sclerosis Walking Scale. Mult. Scler. Int. 2015, 2015, 540828. [Google Scholar] [CrossRef] [Green Version]
- Pellicciari, L.; Ottonello, M.; Giordano, A.; Albensi, C.; Franchignoni, F. The 88-item Multiple Sclerosis Spasticity Scale: A Rasch validation of the Italian version and suggestions for refinement of the original scale. Qual. Life Res. 2018, 28, 221–231. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The Fatigue Severity Scale: Application to Patients With Multiple Sclerosis and Systemic Lupus Erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef]
- Farrar, J.T.; Troxel, A.; Stott, C.; Duncombe, P.; Jensen, M.P. Validity, reliability, and clinical importance of change in a 0—10 numeric rating scale measure of spasticity: A post hoc analysis of a randomized, double-blind, placebo-controlled trial. Clin. Ther. 2008, 30, 974–985. [Google Scholar] [CrossRef]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef]
- Unnithan, V.B.; Dowling, J.J.; Frost, G.; Ayub, B.V.; Bar-Or, O. Cocontraction and phasic activity during GAIT in children with cerebral palsy. Electromyogr. Clin. Neurophysiol. 1996, 36, 487–494. [Google Scholar] [PubMed]
- Gutierrez, G.; Chow, J.W.; Tillman, M.D.; McCoy, S.C.; Castellano, V.; White, L.J. Resistance Training Improves Gait Kinematics in Persons With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2005, 86, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: Reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 1993, 30, 210–223. [Google Scholar]
- Patti, F.; Ciancio, M.R.; Cacopardo, M.; Reggio, E.; Fiorilla, T.; Palermo, F.; Reggio, A.; Thompson, A.J. Effects of a short outpatient rehabilitation treatment on disability of multiple sclerosis patients—A randomised controlled trial. J. Neurol. 2003, 250, 861–866. [Google Scholar] [CrossRef]
- Freeman, J.A.; Langdon, D.W.; Hobart, J.C.; Thompson, A.J. Inpatient rehabilitation in multiple sclerosis: Do the benefits carry over into the community? Neurology 1999, 52, 50–56. [Google Scholar] [CrossRef]
- Sacco, R.; Bussman, R.; Oesch, P.; Kesselring, J.; Beer, S. Assessment of gait parameters and fatigue in MS patients during inpatient rehabilitation: A pilot trial. J. Neurol. 2010, 258, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.G.; Finlayson, M.L.; Matuska, K.M.; Chen, H.Y.; Luo, P. Randomized controlled trial of an energy conservation course for persons with multiple sclerosis. Mult. Scler. J. 2005, 11, 592–601. [Google Scholar] [CrossRef]
- Brichetto, G.; Zaratin, P. Measuring outcomes that matter most to people with multiple sclerosis: The role of patient-reported outcomes. Curr. Opin. Neurol. 2020, 33, 295–299. [Google Scholar] [CrossRef]
- Yazici, G.; Volkan Yazici, M.; Çobanoğlu, G.; Küpeli, B.; Özkul, Ç.; Oskay, D.; Güzel, N.A. The reliabil-ity of a wearable movement analysis system (G-walk) on gait and jump assessment inhealthy adults. J. Exerc. Ther. Rehabil. 2020, 7, 159–167. [Google Scholar]
- Hobart, J.; Blight, A.R.; Goodman, A.; Lynn, F.; Putzki, N. Timed 25-Foot Walk: Direct evidence that improving 20% or greater is clinically meaningful in MS. Neurology 2013, 80, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Decavel, P.; Moulin, T.; Sagawa, Y. Gait tests in multiple sclerosis: Reliability and cut-off values. Gait Posture 2018, 67, 37–42. [Google Scholar] [CrossRef] [PubMed]
Demographics | PMS Patients (n = 40) | ||
---|---|---|---|
Gender (M/F) | 20/20 | ||
Age (y) | 50.9 ± 9.8 (33–74) | ||
BMI | 24.0 ± 4.6 (18.4–42.4) | ||
Disease Course | 17% PP, 83% SP | ||
Disease Duration (y) | 18.6 ± 10.1 (3.2–37.74) | ||
Clinical Assessments | Baseline | Post-intervention | p-value |
EDSS | 6.0 (3.5–6.5) | 6.0 (3.5–6.5) | 0.0235 * |
FIM | 112.5 ± 9.00 (92–124) | 114.6 ± 8.77 (92–126) | 0.0006 * |
BIM | 88.4 ± 10.34 (65–100) | 89.3 ± 9.37 (65–100) | 0.1556 |
CS | 2.9 ± 1.75 (0–8) | 3.0 ± 1.58 (0–6) | 0.3442 |
BBS | 40.5 ± 7.68 (25–53) | 45.6 ± 7.98 (23–56) | <0.0001 * |
MRC (MA) | 13.1 ± 3.25 (6–20) | 14.2 ± 3.22 (8–20) | <0.0001 * |
MAS (MA) | 1.7 ± 1.38 (0–4) | 1.5 ± 1.25 (0–4) | 0.0086 * |
TUG | 16.6 ± 8.1 (7.4–35.5) | 14.9 ± 7.0 (6.6–33.1) | 0.001 * |
6MWT | 228.7 ± 95.6 (66–416) | 262.8 ± 109.0 (77–504) | 0.0001 * |
T10MW | 14.6 ± 7.35 (6.4–33.5) | 12.7 ± 5.47 (5.7–26.6) | 0.0003 * |
PROMs | Baseline | Post-intervention | p-value |
NRS | 3.9 ± 2.60 (0–8) | 3.1 ± 2.54 (0–9) | 0.0686 |
MSSS-88 | 188.6 ± 52.67 (104–278) | 166.6 ± 58.2 (93–322) | 0.0001 * |
FSS | 39.5 ± 15.00 (13.0–63.0) | 34.8 ± 14.41 (12.0–65.0) | 0.0079 * |
MSWS-12 | 38.6 ± 9.73 (20.0–59.0) | 35.0 ± 10.03 (19.0–58.0) | 0.0106 * |
Kinematic Measures | Baseline | Post-Intervention | p-Value |
---|---|---|---|
Cadence (p/min) | 98.9 ± 25.78 (41.8–158.3) | 107.6 ± 21.00 (70.0–148.3) | 0.0085 * |
Velocity (m/s) | 0.8 ± 0.33 (0.3–1.6) | 0.9 ± 0.35 (0.4–1.8) | 0.0004 * |
% Time in swing phase (MA) | 41.1 ± 5.00 (32.9–50.7) | 40.7 ± 5.82 (25.9–51.3) | 0.7605 |
% Time in stance phase (MA) | 59.0 ± 5.00 (49.3–67.1) | 59.3 ± 5.82 (48.7–74.1) | 0.7586 |
% Time in swing phase (LA) | 39.8 ± 5.58 (26.7–54.7) | 38.8 ± 4.74 (29.2–47.8) | 0.3069 |
% Time in stance phase (LA) | 60.2 ± 5.55 (45.3–73.3) | 61.2 ± 4.74 (52.2–70.8) | 0.3188 |
Step length (m) | 0.5 ± 0.11 (0.2–0.8) | 0.5 ± 0.15 (0.2–0.8) | 0.2995 |
CoI | Baseline | Post-Intervention | p-Value |
---|---|---|---|
GM–TA pair (MA) | 17.0 ± 6.87 (9.0–48.3) | 15.8 ± 5.45 (7.2–30.1) | 0.1956 |
GM–TA pair (LA) | 19.3 ± 8.03 (7.4–47.3) | 19.3 ± 8.13 (8.0–47.25) | 0.4874 |
RF–BF pair (MA) | 22.7 ± 11.56 (11.0–47.5) | 19.4 ± 7.16 (8.3–35.1) | 0.1020 |
RF–BF pair (LA) | 20.9 ± 5.05 (15.2–31.6) | 18.1 ± 4.07 (11.9–24.3) | 0.0382 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-C.; Guerrieri, S.; Dalla Costa, G.; Pisa, M.; Leccabue, G.; Gregoris, L.; Comi, G.; Leocani, L. Intensive Neurorehabilitation and Gait Improvement in Progressive Multiple Sclerosis: Clinical, Kinematic and Electromyographic Analysis. Brain Sci. 2022, 12, 258. https://doi.org/10.3390/brainsci12020258
Huang S-C, Guerrieri S, Dalla Costa G, Pisa M, Leccabue G, Gregoris L, Comi G, Leocani L. Intensive Neurorehabilitation and Gait Improvement in Progressive Multiple Sclerosis: Clinical, Kinematic and Electromyographic Analysis. Brain Sciences. 2022; 12(2):258. https://doi.org/10.3390/brainsci12020258
Chicago/Turabian StyleHuang, Su-Chun, Simone Guerrieri, Gloria Dalla Costa, Marco Pisa, Giulia Leccabue, Lorenzo Gregoris, Giancarlo Comi, and Letizia Leocani. 2022. "Intensive Neurorehabilitation and Gait Improvement in Progressive Multiple Sclerosis: Clinical, Kinematic and Electromyographic Analysis" Brain Sciences 12, no. 2: 258. https://doi.org/10.3390/brainsci12020258
APA StyleHuang, S. -C., Guerrieri, S., Dalla Costa, G., Pisa, M., Leccabue, G., Gregoris, L., Comi, G., & Leocani, L. (2022). Intensive Neurorehabilitation and Gait Improvement in Progressive Multiple Sclerosis: Clinical, Kinematic and Electromyographic Analysis. Brain Sciences, 12(2), 258. https://doi.org/10.3390/brainsci12020258