Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond
Abstract
:1. Introduction
2. GABABRs: Structure and Function
3. Spatial and Temporal Localization of GABABRs
4. Developmental Functions
5. Crosstalk with GABAARs and Early Activity Patterns
6. Circuit Mechanisms
7. No Plan B: Dysfunction of GABABR-Mediated Inhibition in Pathology
7.1. Epilepsy
7.2. Autism Spectrum Disorders
7.3. Alzheimer’s Disease
7.4. Long-Term Effects
7.5. Stress
8. Pharmacological Modulation and Therapeutical Perspectives
8.1. Orthosteric Modulation
8.2. Allosteric Modulation
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | adenylyl cyclase |
AD | Alzheimer’s disease |
APP | β-amyloid precursor protein |
ASD | autism spectrum disorders |
BDNF | brain-derived neurotrophic factor |
FXS | fragile X syndrome |
GABA | gamma aminobutyric acid |
GABABR | GABAB receptor |
GIRK | G protein-coupled inward rectifying K+ channel |
PAM/NAM | positive/negative allosteric modulator |
PV | parvalbumin |
References
- Silbereis, J.C.; Pochareddy, S.; Zhu, Y.; Li, M.; Sestan, N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 2016, 89, 248–268. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Jaenisch, R.; Sur, M. The Role of GABAergic Signalling in Neurodevelopmental Disorders. Nat. Rev. Neurosci. 2021, 22, 290–307. [Google Scholar] [CrossRef]
- Gelman, D.M.; Marín, O. Generation of Interneuron Diversity in the Mouse Cerebral Cortex. Eur. J. Neurosci. 2010, 31, 2136–2141. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Mi, D.; Llorca, A.; Marín, O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018, 100, 294–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luhmann, H.J.; Fukuda, A. Can We Understand Human Brain Development from Experimental Studies in Rodents? Pediatr. Int. 2020, 62, 1139–1144. [Google Scholar] [CrossRef]
- Ben-Ari, Y.; Gaiarsa, J.-L.; Tyzio, R.; Khazipov, R. GABA: A Pioneer Transmitter That Excites Immature Neurons and Generates Primitive Oscillations. Physiol. Rev. 2007, 87, 1215–1284. [Google Scholar] [CrossRef]
- Warm, D.; Schroer, J.; Sinning, A. Gabaergic Interneurons in Early Brain Development: Conducting and Orchestrated by Cortical Network Activity. Front. Mol. Neurosci. 2022, 14, 344. [Google Scholar] [CrossRef]
- Le Magueresse, C.; Monyer, H. GABAergic Interneurons Shape the Functional Maturation of the Cortex. Neuron 2013, 77, 388–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Represa, A.; Ben-Ari, Y. Trophic Actions of GABA on Neuronal Development. Trends Neurosci. 2005, 28, 278–283. [Google Scholar] [CrossRef]
- Deidda, G.; Bozarth, I.F.; Cancedda, L. Modulation of GABAergic Transmission in Development and Neurodevelopmental Disorders: Investigating Physiology and Pathology to Gain Therapeutic Perspectives. Front. Cell. Neurosci. 2014, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, C.F.; Kinney, J.W. Role of GABAB Receptors in Learning and Memory and Neurological Disorders. Neurosci. Biobehav. Rev. 2016, 63, 1–28. [Google Scholar] [CrossRef]
- Gaiarsa, J.-L.; Kuczewski, N.; Porcher, C. Contribution of Metabotropic GABAB Receptors to Neuronal Network Construction. Pharmacol. Ther. 2011, 132, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Gaiarsa, J.-L.; Porcher, C. Emerging Neurotrophic Role of GABAB Receptors in Neuronal Circuit Development. Front. Cell. Neurosci. 2013, 7, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachou, S. GABAB Receptors and cognitive processing in health and disease. In Behavioral Neurobiology of GABAB Receptor Function; Vlachou, S., Wickman, K., Eds.; Current Topics in Behavioral Neurosciences; Springer International Publishing: Cham, Switzerland, 2022; pp. 291–329. ISBN 978-3-030-91335-9. [Google Scholar]
- Evenseth, L.S.M.; Gabrielsen, M.; Sylte, I. The GABAB Receptor—Structure, Ligand Binding and Drug Development. Molecules 2020, 25, 3093. [Google Scholar] [CrossRef]
- Avoli, M.; Krnjević, K. The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter. Can. J. Neurol. Sci. 2016, 43, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Krnjević, K.; Schwartz, S. The Action of γ-Aminobutyric Acid on Cortical Neurones. Exp. Brain Res. 1967, 3, 320–336. [Google Scholar] [CrossRef]
- Hill, D.R.; Bowery, N.G. 3H-Baclofen and 3H-GABA Bind to Bicuculline-Insensitive GABAB Sites in Rat Brain. Nature 1981, 290, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Kaupmann, K.; Malitschek, B.; Schuler, V.; Heid, J.; Froestl, W.; Beck, P.; Mosbacher, J.; Bischoff, S.; Kulik, A.; Shigemoto, R.; et al. GABAB-Receptor Subtypes Assemble into Functional Heteromeric Complexes. Nature 1998, 396, 683–687. [Google Scholar] [CrossRef]
- White, J.H.; Wise, A.; Main, M.J.; Green, A.; Fraser, N.J.; Disney, G.H.; Barnes, A.A.; Emson, P.; Foord, S.M.; Marshall, F.H. Heterodimerization Is Required for the Formation of a Functional GABAB Receptor. Nature 1998, 396, 679–682. [Google Scholar] [CrossRef]
- Margeta-Mitrovic, M.; Jan, Y.N.; Jan, L.Y. A Trafficking Checkpoint Controls GABAB Receptor Heterodimerization. Neuron 2000, 27, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Kaupmann, K.; Huggel, K.; Heid, J.; Flor, P.J.; Bischoff, S.; Mickel, S.J.; McMaster, G.; Angst, C.; Bittiger, H.; Froestl, W.; et al. Expression Cloning of GABAB Receptors Uncovers Similarity to Metabotropic Glutamate Receptors. Nature 1997, 386, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Vigot, R.; Barbieri, S.; Bräuner-Osborne, H.; Turecek, R.; Shigemoto, R.; Zhang, Y.-P.; Luján, R.; Jacobson, L.H.; Biermann, B.; Fritschy, J.-M.; et al. Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants. Neuron 2006, 50, 589–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Jeong, E.; Jeong, J.-H.; Kim, Y.; Cho, Y. Structural Basis for Activation of the Heterodimeric GABAB Receptor. J. Mol. Biol. 2020, 432, 5966–5984. [Google Scholar] [CrossRef]
- Mao, C.; Shen, C.; Li, C.; Shen, D.-D.; Xu, C.; Zhang, S.; Zhou, R.; Shen, Q.; Chen, L.-N.; Jiang, Z.; et al. Cryo-EM Structures of Inactive and Active GABAB Receptor. Cell Res. 2020, 30, 564–573. [Google Scholar] [CrossRef]
- Papasergi-Scott, M.M.; Robertson, M.J.; Seven, A.B.; Panova, O.; Mathiesen, J.M.; Skiniotis, G. Structures of Metabotropic GABAB Receptor. Nature 2020, 584, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Fu, Z.; Frangaj, A.; Liu, J.; Mosyak, L.; Shen, T.; Slavkovich, V.N.; Ray, K.M.; Taura, J.; Cao, B.; et al. Structure of Human GABAB Receptor in an Inactive State. Nature 2020, 584, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Shaye, H.; Ishchenko, A.; Lam, J.H.; Han, G.W.; Xue, L.; Rondard, P.; Pin, J.-P.; Katritch, V.; Gati, C.; Cherezov, V. Structural Basis of the Activation of a Metabotropic GABA Receptor. Nature 2020, 584, 298–303. [Google Scholar] [CrossRef]
- Shen, C.; Mao, C.; Xu, C.; Jin, N.; Zhang, H.; Shen, D.-D.; Shen, Q.; Wang, X.; Hou, T.; Chen, Z.; et al. Structural Basis of GABAB Receptor–Gi Protein Coupling. Nature 2021, 594, 594–598. [Google Scholar] [CrossRef]
- Shaye, H.; Stauch, B.; Gati, C.; Cherezov, V. Molecular Mechanisms of Metabotropic GABAB Receptor Function. Sci. Adv. 2021, 7, eabg3362. [Google Scholar] [CrossRef]
- Pérez-Garci, E.; Gassmann, M.; Bettler, B.; Larkum, M.E. The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons. Neuron 2006, 50, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gai, S.; Zhang, W.; Huang, X.; Ma, S.; Huo, Y.; Wu, Y.; Tu, H.; Pin, J.-P.; Rondard, P.; et al. The GABAB Receptor Mediates Neuroprotection by Coupling to G13. Sci. Signal. 2021, 14, eaaz4112. [Google Scholar] [CrossRef]
- Karls, A.; Mynlieff, M. GABAB Receptors Couple to Gαq to Mediate Increases in Voltage-Dependent Calcium Current during Development. J. Neurochem. 2015, 135, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manz, K.M.; Baxley, A.G.; Zurawski, Z.; Hamm, H.E.; Grueter, B.A. Heterosynaptic GABAB Receptor Function within Feedforward Microcircuits Gates Glutamatergic Transmission in the Nucleus Accumbens Core. J. Neurosci. 2019, 39, 9277–9293. [Google Scholar] [CrossRef] [PubMed]
- Calebiro, D.; Rieken, F.; Wagner, J.; Sungkaworn, T.; Zabel, U.; Borzi, A.; Cocucci, E.; Zürn, A.; Lohse, M.J. Single-Molecule Analysis of Fluorescently Labeled G-Protein–Coupled Receptors Reveals Complexes with Distinct Dynamics and Organization. Proc. Natl. Acad. Sci. USA 2013, 110, 743–748. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.D.; Comps-Agrar, L.; Nørskov-Lauritsen, L.B.; Pin, J.-P.; Kniazeff, J. Allosteric Interactions between GABAB1 Subunits Control Orthosteric Binding Sites Occupancy within GABAB Oligomers. Neuropharmacology 2018, 136, 92–101. [Google Scholar] [CrossRef]
- Schwenk, J.; Metz, M.; Zolles, G.; Turecek, R.; Fritzius, T.; Bildl, W.; Tarusawa, E.; Kulik, A.; Unger, A.; Ivankova, K.; et al. Native GABA B Receptors Are Heteromultimers with a Family of Auxiliary Subunits. Nature 2010, 465, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Rajalu, M.; Fritzius, T.; Adelfinger, L.; Jacquier, V.; Besseyrias, V.; Gassmann, M.; Bettler, B. Pharmacological Characterization of GABAB Receptor Subtypes Assembled with Auxiliary KCTD Subunits. Neuropharmacology 2015, 88, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Turecek, R.; Schwenk, J.; Fritzius, T.; Ivankova, K.; Zolles, G.; Adelfinger, L.; Jacquier, V.; Besseyrias, V.; Gassmann, M.; Schulte, U.; et al. Auxiliary GABAB Receptor Subunits Uncouple G Protein Βγ Subunits from Effector Channels to Induce Desensitization. Neuron 2014, 82, 1032–1044. [Google Scholar] [CrossRef] [Green Version]
- Seddik, R.; Jungblut, S.P.; Silander, O.K.; Rajalu, M.; Fritzius, T.; Besseyrias, V.; Jacquier, V.; Fakler, B.; Gassmann, M.; Bettler, B. Opposite Effects of KCTD Subunit Domains on GABAB Receptor-Mediated Desensitization. J. Biol. Chem. 2012, 287, 39869–39877. [Google Scholar] [CrossRef] [Green Version]
- Fritzius, T.; Turecek, R.; Seddik, R.; Kobayashi, H.; Tiao, J.; Rem, P.D.; Metz, M.; Kralikova, M.; Bouvier, M.; Gassmann, M.; et al. KCTD Hetero-Oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. J. Neurosci. 2017, 37, 1162–1175. [Google Scholar] [CrossRef] [Green Version]
- Metz, M.; Gassmann, M.; Fakler, B.; Schaeren-Wiemers, N.; Bettler, B. Distribution of the Auxiliary GABAB Receptor Subunits KCTD8, 12, 12b, and 16 in the Mouse Brain. J. Comp. Neurol. 2011, 519, 1435–1454. [Google Scholar] [CrossRef] [PubMed]
- Cathomas, F.; Stegen, M.; Sigrist, H.; Schmid, L.; Seifritz, E.; Gassmann, M.; Bettler, B.; Pryce, C.R. Altered Emotionality and Neuronal Excitability in Mice Lacking KCTD12, an Auxiliary Subunit of GABAB Receptors Associated with Mood Disorders. Transl. Psychiatry 2015, 5, e510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cathomas, F.; Sigrist, H.; Schmid, L.; Seifritz, E.; Gassmann, M.; Bettler, B.; Pryce, C.R. Behavioural Endophenotypes in Mice Lacking the Auxiliary GABAB Receptor Subunit KCTD16. Behav. Brain Res. 2017, 317, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Schwenk, J.; Pérez-Garci, E.; Schneider, A.; Kollewe, A.; Gauthier-Kemper, A.; Fritzius, T.; Raveh, A.; Dinamarca, M.C.; Hanuschkin, A.; Bildl, W.; et al. Modular Composition and Dynamics of Native GABAB Receptors Identified by High-Resolution Proteomics. Nat. Neurosci. 2016, 19, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Fritzius, T.; Bettler, B. The Organizing Principle of GABAB Receptor Complexes: Physiological and Pharmacological Implications. Basic Clin. Pharmacol. Toxicol. 2020, 126, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanack, C.; Moroni, M.; Lima, W.C.; Wende, H.; Kirchner, M.; Adelfinger, L.; Schrenk-Siemens, K.; Tappe-Theodor, A.; Wetzel, C.; Kuich, P.H.; et al. GABA Blocks Pathological but Not Acute TRPV1 Pain Signals. Cell 2015, 160, 759–770. [Google Scholar] [CrossRef] [Green Version]
- Terunuma, M.; Vargas, K.J.; Wilkins, M.E.; Ramirez, O.A.; Jaureguiberry-Bravo, M.; Pangalos, M.N.; Smart, T.G.; Moss, S.J.; Couve, A. Prolonged Activation of NMDA Receptors Promotes Dephosphorylation and Alters Postendocytic Sorting of GABAB Receptors. Proc. Natl. Acad. Sci. USA 2010, 107, 13918–13923. [Google Scholar] [CrossRef] [Green Version]
- Terunuma, M. Diversity of Structure and Function of GABAB Receptors: A Complexity of GABAB-Mediated Signaling. Proc. Jpn. Acad. Ser. B 2018, 94, 390–411. [Google Scholar] [CrossRef] [Green Version]
- Behuet, S.; Cremer, J.N.; Cremer, M.; Palomero-Gallagher, N.; Zilles, K.; Amunts, K. Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front. Neuroanat. 2019, 13, 100. [Google Scholar] [CrossRef]
- Young, A.B.; Chu, D. Distribution of GABAA and GABAB Receptors in Mammalian Brain: Potential Targets for Drug Development. Drug Dev. Res. 1990, 21, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Gonchar, Y.; Pang, L.; Malitschek, B.; Bettler, B.; Burkhalter, A. Subcellular Localization of GABAB Receptor Subunits in Rat Visual Cortex. J. Comp. Neurol. 2001, 431, 182–197. [Google Scholar] [CrossRef]
- López-Bendito, G.; Shigemoto, R.; Kulik, A.; Paulsen, O.; Fairén, A.; Luján, R. Expression and Distribution of Metabotropic GABA Receptor Subtypes GABABR1 and GABABR2 during Rat Neocortical Development. Eur. J. Neurosci. 2002, 15, 1766–1778. [Google Scholar] [CrossRef] [Green Version]
- López-Bendito, G.; Shigemoto, R.; Kulik, A.; Vida, I.; Fairén, A.; Luján, R. Distribution of Metabotropic GABA Receptor Subunits GABAB1a/b and GABAB2 in the Rat Hippocampus during Prenatal and Postnatal Development. Hippocampus 2004, 14, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Fritschy, J.-M.; Sidler, C.; Parpan, F.; Gassmann, M.; Kaupmann, K.; Bettler, B.; Benke, D. Independent Maturation of the GABAB Receptor Subunits GABAB1 and GABAB2 during Postnatal Development in Rodent Brain. J. Comp. Neurol. 2004, 477, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Fritschy, J.-M.; Meskenaite, V.; Weinmann, O.; Honer, M.; Benke, D.; Mohler, H. GABAB-Receptor Splice Variants GB1a and GB1b in Rat Brain: Developmental Regulation, Cellular Distribution and Extrasynaptic Localization. Eur. J. Neurosci. 1999, 11, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, Á.; Vida, I.; Luján, R.; Haas, C.A.; López-Bendito, G.; Shigemoto, R.; Frotscher, M. Subcellular Localization of Metabotropic GABAB Receptor Subunits GABAB1a/b and GABAB2 in the Rat Hippocampus. J. Neurosci. 2003, 23, 11026–11035. [Google Scholar] [CrossRef] [Green Version]
- Khoshdel-Sarkarizi, H.; Hami, J.; Mohammadipour, A.; Sadr-Nabavi, A.; Mahmoudi, M.; Kheradmand, H.; Peyvandi, M.; Nourmohammadi, E.; Haghir, H. Developmental Regulation and Lateralization of GABA Receptors in the Rat Hippocampus. Int. J. Dev. Neurosci. 2019, 76, 86–94. [Google Scholar] [CrossRef]
- Degro, C.E.; Kulik, A.; Booker, S.A.; Vida, I. Compartmental Distribution of GABAB Receptor-Mediated Currents along the Somatodendritic Axis of Hippocampal Principal Cells. Front. Synaptic Neurosci. 2015, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.C.; Epps, S.A.; Markwardt, S.J.; Wadiche, J.I.; Overstreet-Wadiche, L. Constitutive and Synaptic Activation of GIRK Channels Differentiates Mature and Newborn Dentate Granule Cells. J. Neurosci. 2018, 38, 6513–6526. [Google Scholar] [CrossRef]
- Behar, T.N.; Smith, S.V.; Kennedy, R.T.; Mckenzie, J.M.; Maric, I.; Barker, J.L. GABAB Receptors Mediate Motility Signals for Migrating Embryonic Cortical Cells. Cereb. Cortex 2001, 11, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Luhmann, H.J.; Fukuda, A.; Kilb, W. Control of Cortical Neuronal Migration by Glutamate and GABA. Front. Cell. Neurosci. 2015, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bony, G.; Szczurkowska, J.; Tamagno, I.; Shelly, M.; Contestabile, A.; Cancedda, L. Non-Hyperpolarizing GABAB Receptor Activation Regulates Neuronal Migration and Neurite Growth and Specification by CAMP/LKB1. Nat. Commun. 2013, 4, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catavero, C.; Bao, H.; Song, J. Neural Mechanisms Underlying GABAergic Regulation of Adult Hippocampal Neurogenesis. Cell Tissue Res. 2018, 371, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Giachino, C.; Barz, M.; Tchorz, J.S.; Tome, M.; Gassmann, M.; Bischofberger, J.; Bettler, B.; Taylor, V. GABA Suppresses Neurogenesis in the Adult Hippocampus through GABAB Receptors. Development 2014, 141, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Gustorff, C.; Scheuer, T.; Schmitz, T.; Bührer, C.; Endesfelder, S. GABAB Receptor-Mediated Impairment of Intermediate Progenitor Maturation During Postnatal Hippocampal Neurogenesis of Newborn Rats. Front. Cell. Neurosci. 2021, 15, 295. [Google Scholar] [CrossRef]
- Fiorentino, H.; Kuczewski, N.; Diabira, D.; Ferrand, N.; Pangalos, M.N.; Porcher, C.; Gaiarsa, J.-L. GABAB Receptor Activation Triggers BDNF Release and Promotes the Maturation of GABAergic Synapses. J. Neurosci. 2009, 29, 11650–11661. [Google Scholar] [CrossRef]
- Porcher, C.; Medina, I.; Gaiarsa, J.-L. Mechanism of BDNF Modulation in GABAergic Synaptic Transmission in Healthy and Disease Brains. Front. Cell. Neurosci. 2018, 12, 273. [Google Scholar] [CrossRef] [Green Version]
- White, J.H.; McIllhinney, R.A.J.; Wise, A.; Ciruela, F.; Chan, W.-Y.; Emson, P.C.; Billinton, A.; Marshall, F.H. The GABAB Receptor Interacts Directly with the Related Transcription Factors CREB2 and ATFx. Proc. Natl. Acad. Sci. USA 2000, 97, 13967–13972. [Google Scholar] [CrossRef] [Green Version]
- Ritter, B.; Zschüntsch, J.; Kvachnina, E.; Zhang, W.; Ponimaskin, E.G. The GABAB Receptor Subunits R1 and R2 Interact Differentially with the Activation Transcription Factor ATF4 in Mouse Brain during the Postnatal Development. Dev. Brain Res. 2004, 149, 73–77. [Google Scholar] [CrossRef]
- Corona, C.; Pasini, S.; Liu, J.; Amar, F.; Greene, L.A.; Shelanski, M.L. Activating Transcription Factor 4 (ATF4) Regulates Neuronal Activity by Controlling GABABR Trafficking. J. Neurosci. 2018, 38, 6102–6113. [Google Scholar] [CrossRef] [Green Version]
- Causeret, F.; Moreau, M.X.; Pierani, A.; Blanquie, O. The Multiple Facets of Cajal-Retzius Neurons. Development 2021, 148, dev199409. [Google Scholar] [CrossRef]
- Kirischuk, S.; Luhmann, H.J.; Kilb, W. Cajal–Retzius Cells: Update on Structural and Functional Properties of These Mystic Neurons That Bridged the 20th Century. Neuroscience 2014, 275, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Soriano, E.; del Río, J.A. The Cells of Cajal-Retzius: Still a Mystery One Century After. Neuron 2005, 46, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirmse, K.; Kirischuk, S. Ambient GABA Constrains the Strength of GABAergic Synapses at Cajal-Retzius Cells in the Developing Visual Cortex. J. Neurosci. 2006, 26, 4216–4227. [Google Scholar] [CrossRef] [PubMed]
- Hamad, M.I.K.; Jbara, A.; Rabaya, O.; Petrova, P.; Daoud, S.; Melliti, N.; Meseke, M.; Lutz, D.; Petrasch-Parwez, E.; Schwitalla, J.C.; et al. Reelin Signaling Modulates GABAB Receptor Function in the Neocortex. J. Neurochem. 2021, 156, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Faini, G.; Del Bene, F.; Albadri, S. Reelin Functions beyond Neuronal Migration: From Synaptogenesis to Network Activity Modulation. Curr. Opin. Neurobiol. 2021, 66, 135–143. [Google Scholar] [CrossRef]
- Poskanzer, K.E.; Yuste, R. Astrocytes Regulate Cortical State Switching in Vivo. Proc. Natl. Acad. Sci. USA 2016, 113, E2675–E2684. [Google Scholar] [CrossRef] [Green Version]
- Lia, A.; Zonta, M.; Requie, L.M.; Carmignoto, G. Dynamic Interactions between GABAergic and Astrocytic Networks. Neurosci. Lett. 2019, 689, 14–20. [Google Scholar] [CrossRef]
- Meier, S.D.; Kafitz, K.W.; Rose, C.R. Developmental Profile and Mechanisms of GABA-Induced Calcium Signaling in Hippocampal Astrocytes. Glia 2008, 56, 1127–1137. [Google Scholar] [CrossRef]
- Mariotti, L.; Losi, G.; Sessolo, M.; Marcon, I.; Carmignoto, G. The Inhibitory Neurotransmitter GABA Evokes Long-Lasting Ca2+ Oscillations in Cortical Astrocytes. Glia 2016, 64, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Durkee, C.A.; Covelo, A.; Lines, J.; Kofuji, P.; Aguilar, J.; Araque, A. Gi/o Protein-Coupled Receptors Inhibit Neurons but Activate Astrocytes and Stimulate Gliotransmission. Glia 2019, 67, 1076–1093. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-H.; Li, Z.-L.; Liu, Y.-S.; Chu, H.-D.; Hu, N.-Y.; Wu, D.-Y.; Huang, L.; Li, S.-J.; Li, X.-W.; Yang, J.-M.; et al. Astrocytic GABAB Receptors in Mouse Hippocampus Control Responses to Behavioral Challenges through Astrocytic BDNF. Neurosci. Bull. 2020, 36, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Faroni, A.; Melfi, S.; Castelnovo, L.F.; Bonalume, V.; Colleoni, D.; Magni, P.; Araúzo-Bravo, M.J.; Reinbold, R.; Magnaghi, V. GABA-B1 Receptor-Null Schwann Cells Exhibit Compromised In Vitro Myelination. Mol. Neurobiol. 2019, 56, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Regal, M.P.; Luengas-Escuza, I.; Bayón-Cordero, L.; Ibarra-Aizpurua, N.; Alberdi, E.; Pérez-Samartín, A.; Matute, C.; Sánchez-Gómez, M.V. Oligodendrocyte Differentiation and Myelination Is Potentiated via GABAB Receptor Activation. Neuroscience 2020, 439, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Pudasaini, S.; Friedrich, V.; Bührer, C.; Endesfelder, S.; Scheuer, T.; Schmitz, T. Postnatal Myelination of the Immature Rat Cingulum Is Regulated by GABAB Receptor Activity. Dev. Neurobiol. 2022, 82, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Favuzzi, E.; Huang, S.; Saldi, G.A.; Binan, L.; Ibrahim, L.A.; Fernández-Otero, M.; Cao, Y.; Zeine, A.; Sefah, A.; Zheng, K.; et al. GABA-Receptive Microglia Selectively Sculpt Developing Inhibitory Circuits. Cell 2021, 184, 4048–4063.e32. [Google Scholar] [CrossRef]
- Luhmann, H.J.; Prince, D.A. Postnatal Maturation of the GABAergic System in Rat Neocortex. J. Neurophysiol. 1991, 65, 247–263. [Google Scholar] [CrossRef]
- Nurse, S.; Lacaille, J.-C. Late Maturation of GABAB Synaptic Transmission in Area CA1 of the Rat Hippocampus. Neuropharmacology 1999, 38, 1733–1742. [Google Scholar] [CrossRef]
- Discenna, P.G.; Nowicky, A.V.; Teyler, T.J. The Development of GABAB-Mediated Activity in the Rat Dentate Gyrus. Dev. Brain Res. 1994, 77, 295–298. [Google Scholar] [CrossRef]
- Fukuda, A.; Mody, I.; Prince, D.A. Differential Ontogenesis of Presynaptic and Postsynaptic GABAB Inhibition in Rat Somatosensory Cortex. J. Neurophysiol. 1993, 70, 448–452. [Google Scholar] [CrossRef]
- Gaiarsa, J.L.; Tseeb, V.; Ben-Ari, Y. Postnatal Development of Pre- and Postsynaptic GABAB-Mediated Inhibitions in the CA3 Hippocampal Region of the Rat. J. Neurophysiol. 1995, 73, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Kantamneni, S. Cross-Talk and Regulation between Glutamate and GABAB Receptors. Front. Cell. Neurosci. 2015, 9, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinello, K.; Sciaccaluga, M.; Morace, R.; Mascia, A.; Arcella, A.; Esposito, V.; Fucile, S. Loss of Constitutive Functional γ-Aminobutyric Acid Type A-B Receptor Crosstalk in Layer 5 Pyramidal Neurons of Human Epileptic Temporal Cortex. Epilepsia 2018, 59, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilb, W. Development of the GABAergic System from Birth to Adolescence. Neuroscientist 2012, 18, 613–630. [Google Scholar] [CrossRef]
- Wright, R.; Newey, S.E.; Ilie, A.; Wefelmeyer, W.; Raimondo, J.V.; Ginham, R.; Mcllhinney, R.A.J.; Akerman, C.J. Neuronal Chloride Regulation via KCC2 Is Modulated through a GABAB Receptor Protein Complex. J. Neurosci. 2017, 37, 5447–5462. [Google Scholar] [CrossRef] [Green Version]
- Lopantsev, V.; Schwartzkroin, P.A. GABAA-Dependent Chloride Influx Modulates Reversal Potential of GABAB-Mediated IPSPs in Hippocampal Pyramidal Cells. J. Neurophysiol. 2001, 85, 2381–2387. [Google Scholar] [CrossRef] [Green Version]
- Connelly, W.M.; Fyson, S.J.; Errington, A.C.; McCafferty, C.P.; Cope, D.W.; Giovanni, G.D.; Crunelli, V. GABAB Receptors Regulate Extrasynaptic GABAA Receptors. J. Neurosci. 2013, 33, 3780–3785. [Google Scholar] [CrossRef] [Green Version]
- Gerrow, K.; Triller, A. GABAA Receptor Subunit Composition and Competition at Synapses Are Tuned by GABAB Receptor Activity. Mol. Cell. Neurosci. 2014, 60, 97–107. [Google Scholar] [CrossRef]
- Laviv, T.; Riven, I.; Dolev, I.; Vertkin, I.; Balana, B.; Slesinger, P.A.; Slutsky, I. Basal GABA Regulates GABABR Conformation and Release Probability at Single Hippocampal Synapses. Neuron 2010, 67, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, X.J.; Xia, H.; Tang, C.-M.; Yang, K. GABA Releases from Parvalbumin-Expressing and Unspecific GABAergic Neurons onto CA1 Pyramidal Cells Are Differentially Modulated by Presynaptic GABAB Receptors in Mouse Hippocampus. Biochem. Biophys. Res. Commun. 2019, 520, 449–452. [Google Scholar] [CrossRef]
- Griguoli, M.; Cherubini, E. Early Correlated Network Activity in the Hippocampus: Its Putative Role in Shaping Neuronal Circuits. Front. Cell. Neurosci. 2017, 11, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, H.A.; Caillard, O.; Khazipov, R.; Ben-Ari, Y.; Gaiarsa, J.L. Spontaneous Release of GABA Activates GABAB Receptors and Controls Network Activity in the Neonatal Rat Hippocampus. J. Neurophysiol. 1996, 76, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Khalilov, I.; Minlebaev, M.; Mukhtarov, M.; Juzekaeva, E.; Khazipov, R. Postsynaptic GABA(B) Receptors Contribute to the Termination of Giant Depolarizing Potentials in CA3 Neonatal Rat Hippocampus. Front. Cell. Neurosci. 2017, 11, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanganu-Opatz, I.L.; Butt, S.J.B.; Hippenmeyer, S.; De Marco García, N.V.; Cardin, J.A.; Voytek, B.; Muotri, A.R. The Logic of Developing Neocortical Circuits in Health and Disease. J. Neurosci. 2021, 41, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Scanziani, M. GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity. Neuron 2000, 25, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.T.; Davies, C.H.; Randall, A.D. Synaptic Activation of GABAB Receptors Regulates Neuronal Network Activity and Entrainment. Eur. J. Neurosci. 2007, 25, 2982–2990. [Google Scholar] [CrossRef]
- Ulrich, D.; Lalanne, T.; Gassmann, M.; Bettler, B. GABAB Receptor Subtypes Differentially Regulate Thalamic Spindle Oscillations. Neuropharmacology 2018, 136, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Haider, B. Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition. J. Neurosci. 2006, 26, 4535–4545. [Google Scholar] [CrossRef] [Green Version]
- Mann, E.O.; Kohl, M.M.; Paulsen, O. Distinct Roles of GABAA and GABAB Receptors in Balancing and Terminating Persistent Cortical Activity. J. Neurosci. 2009, 29, 7513–7518. [Google Scholar] [CrossRef]
- Craig, M.T.; Mayne, E.W.; Bettler, B.; Paulsen, O.; McBain, C.J. Distinct Roles of GABAB1a- and GABAB1b-Containing GABAB Receptors in Spontaneous and Evoked Termination of Persistent Cortical Activity. J. Physiol. 2013, 591, 835–843. [Google Scholar] [CrossRef] [Green Version]
- Perez-Zabalza, M.; Reig, R.; Manrique, J.; Jercog, D.; Winograd, M.; Parga, N.; Sanchez-Vives, M.V. Modulation of Cortical Slow Oscillatory Rhythm by GABAB Receptors: An in Vitro Experimental and Computational Study. J. Physiol. 2020, 598, 3439–3457. [Google Scholar] [CrossRef] [PubMed]
- Barbero-Castillo, A.; Mateos-Aparicio, P.; Porta, L.D.; Camassa, A.; Perez-Mendez, L.; Sanchez-Vives, M.V. Impact of GABAA and GABAB Inhibition on Cortical Dynamics and Perturbational Complexity during Synchronous and Desynchronized States. J. Neurosci. 2021, 41, 5029–5044. [Google Scholar] [CrossRef] [PubMed]
- Oláh, S.; Füle, M.; Komlósi, G.; Varga, C.; Báldi, R.; Barzó, P.; Tamás, G. Regulation of Cortical Microcircuits by Unitary GABA-Mediated Volume Transmission. Nature 2009, 461, 1278–1281. [Google Scholar] [CrossRef]
- Hay, Y.A.; Deperrois, N.; Fuchsberger, T.; Quarrell, T.M.; Koerling, A.-L.; Paulsen, O. Thalamus Mediates Neocortical Down State Transition via GABAB-Receptor-Targeting Interneurons. Neuron 2021, 109, 2682–2690.e5. [Google Scholar] [CrossRef]
- Chittajallu, R.; Pelkey, K.A.; McBain, C.J. Neurogliaform Cells Dynamically Regulate Somatosensory Integration via Synapse-Specific Modulation. Nat. Neurosci. 2013, 16, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, L.B.; Tantirigama, M.L.S.; Bekkers, J.M. Pre- and Postsynaptic Activation of GABAB Receptors Modulates Principal Cell Excitation in the Piriform Cortex. Front. Cell. Neurosci. 2018, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazo, C.; Lepousez, G.; Nissant, A.; Valley, M.T.; Lledo, P.-M. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb. J. Neurosci. 2016, 36, 8289–8304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orts-Del’Immagine, A.; Pugh, J.R. Activity-Dependent Plasticity of Presynaptic GABAB Receptors at Parallel Fiber Synapses. Synapse 2018, 72, e22027. [Google Scholar] [CrossRef]
- Hassfurth, B.; Grothe, B.; Koch, U. The Mammalian Interaural Time Difference Detection Circuit Is Differentially Controlled by GABAB Receptors during Development. J. Neurosci. 2010, 30, 9715–9727. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, M.; Lee, S.; Kaiser, M.; Simonotto, J.; Kopell, N.J.; Whittington, M.A. GABAB Receptor-Mediated, Layer-Specific Synaptic Plasticity Reorganizes Gamma-Frequency Neocortical Response to Stimulation. Proc. Natl. Acad. Sci. USA 2016, 113, E2721–E2729. [Google Scholar] [CrossRef] [Green Version]
- Takesian, A.E.; Kotak, V.C.; Sanes, D.H. Presynaptic GABAB Receptors Regulate Experience-Dependent Development of Inhibitory Short-Term Plasticity. J. Neurosci. 2010, 30, 2716–2727. [Google Scholar] [CrossRef]
- Vickers, E.D.; Clark, C.; Fratzl, A.; Bettler, B.; Schneggenburger, R. Spike-Timing Dependent Plasticity of Inhibition Gates Critical Period Remodeling in Auditory Cortex; Social Science Research Network: Rochester, NY, USA, 2018. [Google Scholar]
- Cai, S.; Fischer, Q.S.; He, Y.; Zhang, L.; Liu, H.; Daw, N.W.; Yang, Y. GABAB Receptor-Dependent Bidirectional Regulation of Critical Period Ocular Dominance Plasticity in Cats. PLoS ONE 2017, 12, e0180162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassmann, M. Redistribution of GABAB(1) Protein and Atypical GABAB Responses in GABAB(2)-Deficient Mice. J. Neurosci. 2004, 24, 6086–6097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosser, H.M.; Gill, C.H.; Hirst, W.D.; Grau, E.; Robbins, M.; Calver, A.; Soffin, E.M.; Farmer, C.E.; Lanneau, C.; Gray, J.; et al. Epileptogenesis and Enhanced Prepulse Inhibition in GABAB1-Deficient Mice. Mol. Cell. Neurosci. 2001, 17, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Schuler, V.; Lüscher, C.; Blanchet, C.; Klix, N.; Sansig, G.; Klebs, K.; Schmutz, M.; Heid, J.; Gentry, C.; Urban, L.; et al. Epilepsy, Hyperalgesia, Impaired Memory, and Loss of Pre- and Postsynaptic GABAB Responses in Mice Lacking GABAB(1). Neuron 2001, 31, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Vertkin, I.; Styr, B.; Slomowitz, E.; Ofir, N.; Shapira, I.; Berner, D.; Fedorova, T.; Laviv, T.; Barak-Broner, N.; Greitzer-Antes, D.; et al. GABAB Receptor Deficiency Causes Failure of Neuronal Homeostasis in Hippocampal Networks. Proc. Natl. Acad. Sci. USA 2015, 112, E3291–E3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritschy, J.-M. Epilepsy, E/I Balance and GABAA Receptor Plasticity. Front. Mol. Neurosci. 2008, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Sheilabi, M.A.; Battacharyya, D.; Caetano, L.; Thom, M.; Reuber, M.; Duncan, J.S.; Princivalle, A.P. Quantitative Expression and Localization of GABAB Receptor Protein Subunits in Hippocampi from Patients with Refractory Temporal Lobe Epilepsy. Neuropharmacology 2018, 136, 117–128. [Google Scholar] [CrossRef]
- Inaba, Y.; D’Antuono, M.; Bertazzoni, G.; Biagini, G.; Avoli, M. Diminished Presynaptic GABAB Receptor Function in the Neocortex of a Genetic Model of Absence Epilepsy. Neurosignals 2009, 17, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Teichgräber, L.A.; Lehmann, T.-N.; Meencke, H.-J.; Weiss, T.; Nitsch, R.; Deisz, R.A. Impaired Function of GABAB Receptors in Tissues from Pharmacoresistant Epilepsy Patients. Epilepsia 2009, 50, 1697–1716. [Google Scholar] [CrossRef]
- Valente, P.; Farisello, P.; Valtorta, F.; Baldelli, P.; Benfenati, F. Impaired GABAB-Mediated Presynaptic Inhibition Increases Excitatory Strength and Alters Short-Term Plasticity in Synapsin Knockout Mice. Oncotarget 2017, 8, 90061–90076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levinson, S.; Tran, C.H.; Barry, J.; Viker, B.; Levine, M.S.; Vinters, H.V.; Mathern, G.W.; Cepeda, C. Paroxysmal Discharges in Tissue Slices From Pediatric Epilepsy Surgery Patients: Critical Role of GABAB Receptors in the Generation of Ictal Activity. Front. Cell. Neurosci. 2020, 14, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennaccaro, L.; Fuchs, C.; Loi, M.; Roncacè, V.; Trazzi, S.; Ait-Bali, Y.; Galvani, G.; Berardi, A.C.; Medici, G.; Tassinari, M.; et al. A GABAB Receptor Antagonist Rescues Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder. Neurobiol. Dis. 2021, 153, 105304. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Thuras, P.D. Expression of GABAB Receptors Is Altered in Brains of Subjects with Autism. Cerebellum 2009, 8, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-Y.; Chadchankar, J.; Vien, T.N.; Mighdoll, M.I.; Hyde, T.M.; Mather, R.J.; Deeb, T.Z.; Pangalos, M.N.; Brandon, N.J.; Dunlop, J.; et al. Deficits in the Activity of Presynaptic γ-Aminobutyric Acid Type B Receptors Contribute to Altered Neuronal Excitability in Fragile X Syndrome. J. Biol. Chem. 2017, 292, 6621–6632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlstrom-Helgren, S.; Klyachko, V.A. GABAB Receptor-Mediated Feed-Forward Circuit Dysfunction in the Mouse Model of Fragile X Syndrome. J. Physiol. 2015, 593, 5009–5024. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, D.; Featherstone, R.; Naschek, M.; Nam, J.; Du, A.; Wright, S.; Pance, K.; Melnychenko, O.; Weger, R.; Akuzawa, S.; et al. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome. eNeuro 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Gandal, M.J.; Sisti, J.; Klook, K.; Ortinski, P.I.; Leitman, V.; Liang, Y.; Thieu, T.; Anderson, R.; Pierce, R.C.; Jonak, G.; et al. GABAB-Mediated Rescue of Altered Excitatory–Inhibitory Balance, Gamma Synchrony and Behavioral Deficits Following Constitutive NMDAR-Hypofunction. Transl. Psychiatry 2012, 2, e142. [Google Scholar] [CrossRef]
- Henderson, C.; Wijetunge, L.; Kinoshita, M.N.; Shumway, M.; Hammond, R.S.; Postma, F.R.; Brynczka, C.; Rush, R.; Thomas, A.; Paylor, R.; et al. Reversal of Disease-Related Pathologies in the Fragile X Mouse Model by Selective Activation of GABAB Receptors with Arbaclofen. Sci. Transl. Med. 2012, 4, 152ra128. [Google Scholar] [CrossRef]
- Qin, M.; Huang, T.; Kader, M.; Krych, L.; Xia, Z.; Burlin, T.; Zeidler, Z.; Zhao, T.; Smith, C.B. R-Baclofen Reverses a Social Behavior Deficit and Elevated Protein Synthesis in a Mouse Model of Fragile X Syndrome. Int. J. Neuropsychopharmacol. 2015, 18, pyv034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramvis, I.; van Westen, R.; Lammertse, H.C.A.; Riga, D.; Heistek, T.S.; Loebel, A.; Spijker, S.; Mansvelder, H.D.; Meredith, R.M. Dysregulated Prefrontal Cortex Inhibition in Prepubescent and Adolescent Fragile X Mouse Model. Front. Mol. Neurosci. 2020, 13, 88. [Google Scholar] [CrossRef]
- Bassetti, D.; Luhmann, H.J.; Kirischuk, S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int. J. Mol. Sci. 2021, 22, 7273. [Google Scholar] [CrossRef]
- Bassetti, D.; Lombardi, A.; Kirischuk, S.; Luhmann, H.J. Haploinsufficiency of Tsc2 Leads to Hyperexcitability of Medial Prefrontal Cortex via Weakening of Tonic GABAB Receptor-Mediated Inhibition. Cereb. Cortex 2020, 30, 6313–6324. [Google Scholar] [CrossRef]
- Bassetti, D.; Luhmann, H.J.; Kirischuk, S. Presynaptic GABAB Receptor–Mediated Network Excitation in the Medial Prefrontal Cortex of Tsc2+/- Mice. Pflüg. Arch.-Eur.J. Physiol. 2021, 473, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.; Biswas, S.; Berger, S.M.; Küchler, M.; Preisendörfer, L.; Choo, M.; Früh, S.; Rem, P.D.; Enkel, T.; Arnold, B.; et al. Pianp Deficiency Links GABAB Receptor Signaling and Hippocampal and Cerebellar Neuronal Cell Composition to Autism-like Behavior. Mol. Psychiatry 2020, 25, 2979–2993. [Google Scholar] [CrossRef]
- Iwakiri, M.; Mizukami, K.; Ikonomovic, M.D.; Ishikawa, M.; Hidaka, S.; Abrahamson, E.E.; DeKosky, S.T.; Asada, T. Changes in Hippocampal GABABR1 Subunit Expression in Alzheimer’s Patients: Association with Braak Staging. Acta Neuropathol. 2005, 109, 467–474. [Google Scholar] [CrossRef]
- Martín-Belmonte, A.; Aguado, C.; Alfaro-Ruíz, R.; Moreno-Martínez, A.E.; de la Ossa, L.; Martínez-Hernández, J.; Buisson, A.; Shigemoto, R.; Fukazawa, Y.; Luján, R. Density of GABAB Receptors Is Reduced in Granule Cells of the Hippocampus in a Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 2459. [Google Scholar] [CrossRef] [Green Version]
- Dinamarca, M.C.; Raveh, A.; Schneider, A.; Fritzius, T.; Früh, S.; Rem, P.D.; Stawarski, M.; Lalanne, T.; Turecek, R.; Choo, M.; et al. Complex Formation of APP with GABAB Receptors Links Axonal Trafficking to Amyloidogenic Processing. Nat. Commun. 2019, 10, 1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Sun, L.; Tu, L. GABA B Receptor-Mediated PI3K/Akt Signaling Pathway Alleviates Oxidative Stress and Neuronal Cell Injury in a Rat Model of Alzheimer’s Disease. J. Alzheimers Dis. 2020, 76, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kaur, H.; Deshmukh, R. Neuroprotective Role of GABAB Receptor Modulation against Streptozotocin-Induced Behavioral and Biochemical Abnormalities in Rats. Neuroscience 2017, 357, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Pilipenko, V.; Narbute, K.; Beitnere, U.; Rumaks, J.; Pupure, J.; Jansone, B.; Klusa, V. Very Low Doses of Muscimol and Baclofen Ameliorate Cognitive Deficits and Regulate Protein Expression in the Brain of a Rat Model of Streptozocin-Induced Alzheimer’s Disease. Eur. J. Pharmacol. 2018, 818, 381–399. [Google Scholar] [CrossRef] [Green Version]
- Tosetti, P.; Ferrand, N.; Brun, I.C.-L.; Gaïarsa, J.L. Epileptiform Activity Triggers Long-Term Plasticity of GABAB Receptor Signalling in the Developing Rat Hippocampus. J. Physiol. 2005, 568, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.S. Long-Lasting Changes in Hippocampal GABAB-Receptor Mediated Inhibition Following Early-Life Seizures in Kindling-Prone but Not Kindling-Resistant Rats. Brain Res. Bull. 2019, 150, 231–239. [Google Scholar] [CrossRef]
- Tsai, M.-L.; Shen, B.; Leung, L.S. Seizures Induced by GABAB-Receptor Blockade in Early-Life Induced Long-Term GABAB Receptor Hypofunction and Kindling Facilitation. Epilepsy Res. 2008, 79, 187–200. [Google Scholar] [CrossRef]
- Gomez, C.D.; Acharjee, S.; Lewis, M.L.; Read, J.; Pittman, Q.J. Increased Excitatory Synaptic Transmission Associated with Adult Seizure Vulnerability Induced by Early-Life Inflammation in Mice. J. Neurosci. 2021, 41, 4367–4377. [Google Scholar] [CrossRef]
- Sweeney, F.F.; O’Leary, O.F.; Cryan, J.F. Activation but Not Blockade of GABAB Receptors during Early-Life Alters Anxiety in Adulthood in BALB/c Mice. Neuropharmacology 2014, 81, 303–310. [Google Scholar] [CrossRef]
- Bolton, M.M.; Heaney, C.F.; Murtishaw, A.S.; Sabbagh, J.J.; Magcalas, C.M.; Kinney, J.W. Postnatal Alterations in GABAB Receptor Tone Produce Sensorimotor Gating Deficits and Protein Level Differences in Adulthood. Int. J. Dev. Neurosci. 2015, 41, 17–27. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, J.-J.; Zhu, Y.; Wang, L.; Kosten, T.A.; Zhang, X.; Li, D.-P. Neuroadaptations of Presynaptic and Postsynaptic GABAB Receptor Function in the Paraventricular Nucleus in Response to Chronic Unpredictable Stress. Br. J. Pharmacol. 2017, 174, 2929–2940. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ito, W.; Morozov, A. GABAb Receptor Mediates Opposing Adaptations of GABA Release From Two Types of Prefrontal Interneurons After Observational Fear. Neuropsychopharmacology 2017, 42, 1272–1283. [Google Scholar] [CrossRef]
- O’Leary, O.F.; Felice, D.; Galimberti, S.; Savignac, H.M.; Bravo, J.A.; Crowley, T.; Yacoubi, M.E.; Vaugeois, J.-M.; Gassmann, M.; Bettler, B.; et al. GABAB(1) Receptor Subunit Isoforms Differentially Regulate Stress Resilience. Proc. Natl. Acad. Sci. USA 2014, 111, 15232–15237. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, O.F.; Cryan, J.F. Chapter 5—GABAB receptors, depression, and stress resilience: A tale of two isoforms. In Stress Resilience; Chen, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 63–79. ISBN 978-0-12-813983-7. [Google Scholar]
- Deng, S.-L.; Hu, Z.-L.; Mao, L.; Gao, B.; Yang, Q.; Wang, F.; Chen, J.-G. The Effects of Kctd12, an Auxiliary Subunit of GABAB Receptor in Dentate Gyrus on Behavioral Response to Chronic Social Defeat Stress in Mice. Pharmacol. Res. 2021, 163, 105355. [Google Scholar] [CrossRef] [PubMed]
- Sahraei, H.; Askaripour, M.; Esmaeilpour, K.; Shahsavari, F.; Rajabi, S.; Moradi-Kor, N. GABAB Receptor Activation Ameliorates Spatial Memory Impairments in Stress-Exposed Rats. Neuropsychiatr. Dis. Treat. 2019, 15, 1497–1506. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.C. The Potential Efficacy of GABAB Antagonists in Depression. Curr. Opin. Pharmacol. 2017, 35, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Felice, D.; O’Leary, O.F.; Cryan, J.F. Targeting the GABAB receptor for the treatment of depression and anxiety disorders. In GABAB Receptor; Colombo, G., Ed.; The Receptors; Springer International Publishing: Cham, Switzerland, 2016; pp. 219–250. ISBN 978-3-319-46044-4. [Google Scholar]
- Filip, M.; Frankowska, M.; Sadakierska-Chudy, A.; Suder, A.; Szumiec, Ł.; Mierzejewski, P.; Bienkowski, P.; Przegaliński, E.; Cryan, J.F. GABAB Receptors as a Therapeutic Strategy in Substance Use Disorders: Focus on Positive Allosteric Modulators. Neuropharmacology 2015, 88, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Malcangio, M. GABAB Receptors and Pain. Neuropharmacology 2018, 136, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wong, A.H.C. GABAergic Inhibitory Neurons as Therapeutic Targets for Cognitive Impairment in Schizophrenia. Acta Pharmacol. Sin. 2018, 39, 733–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrats, J.; Cunningham, M.O.; Davies, C.H. GABAB Receptor Modulation—to B or Not to Be B a pro-Cognitive Medicine? Curr. Opin. Pharmacol. 2017, 35, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Curtis, D.R.; Lodge, D.; Bornstein, J.C.; Peet, M.J. Selective Effects of (−)-Baclofen on Spinal Synaptic Transmission in the Cat. Exp. Brain Res. 1981, 42, 158–170. [Google Scholar] [CrossRef]
- Froestl, W.; Gallagher, M.; Jenkins, H.; Madrid, A.; Melcher, T.; Teichman, S.; Mondadori, C.G.; Pearlman, R. SGS742: The First GABAB Receptor Antagonist in Clinical Trials. Biochem. Pharmacol. 2004, 68, 1479–1487. [Google Scholar] [CrossRef]
- Silverman, J.L.; Pride, M.C.; Hayes, J.E.; Puhger, K.R.; Butler-Struben, H.M.; Baker, S.; Crawley, J.N. GABA B Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism. Neuropsychopharmacology 2015, 40, 2228–2239. [Google Scholar] [CrossRef] [Green Version]
- Stoppel, L.J.; Kazdoba, T.M.; Schaffler, M.D.; Preza, A.R.; Heynen, A.; Crawley, J.N.; Bear, M.F. R -Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice. Neuropsychopharmacology 2018, 43, 513–524. [Google Scholar] [CrossRef]
- Möhrle, D.; Wang, W.; Whitehead, S.N.; Schmid, S. GABAB Receptor Agonist R-Baclofen Reverses Altered Auditory Reactivity and Filtering in the Cntnap2 Knock-Out Rat. Front. Integr. Neurosci. 2021, 15, 710593. [Google Scholar] [CrossRef] [PubMed]
- Erickson, C.A.; Veenstra-Vanderweele, J.M.; Melmed, R.D.; McCracken, J.T.; Ginsberg, L.D.; Sikich, L.; Scahill, L.; Cherubini, M.; Zarevics, P.; Walton-Bowen, K.; et al. STX209 (Arbaclofen) for Autism Spectrum Disorders: An 8-Week Open-Label Study. J. Autism Dev. Disord. 2014, 44, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Veenstra-VanderWeele, J.; Cook, E.H.; King, B.H.; Zarevics, P.; Cherubini, M.; Walton-Bowen, K.; Bear, M.F.; Wang, P.P.; Carpenter, R.L. Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2017, 42, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Mahdavinasab, S.-M.; Saghazadeh, A.; Motamed-Gorji, N.; Vaseghi, S.; Mohammadi, M.-R.; Alichani, R.; Akhondzadeh, S. Baclofen as an Adjuvant Therapy for Autism: A Randomized, Double-Blind, Placebo-Controlled Trial. Eur. Child Adolesc. Psychiatry 2019, 28, 1619–1628. [Google Scholar] [CrossRef]
- Huang, Q.; Pereira, A.C.; Velthuis, H.; Wong, N.M.L.; Ellis, C.L.; Ponteduro, F.M.; Dimitrov, M.; Kowalewski, L.; Lythgoe, D.J.; Rotaru, D.; et al. GABAB Receptor Modulation of Visual Sensory Processing in Adults with and without Autism Spectrum Disorder. Sci. Transl. Med. 2022, 14, eabg7859. [Google Scholar] [CrossRef]
- Berry-Kravis, E.; Hagerman, R.; Visootsak, J.; Budimirovic, D.; Kaufmann, W.E.; Cherubini, M.; Zarevics, P.; Walton-Bowen, K.; Wang, P.; Bear, M.F.; et al. Arbaclofen in Fragile X Syndrome: Results of Phase 3 Trials. J. Neurodev. Disord. 2017, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Ertzgaard, P.; Campo, C.; Calabrese, A. Efficacy and Safety of Oral Baclofen in the Management of Spasticity: A Rationale for Intrathecal Baclofen. J. Rehabil. Med. 2017, 49, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Sandyk, R.; Gillman, M.A. Baclofen-Induced Memory Impairment. Clin. Neuropharmacol. 1985, 8, 294–295. [Google Scholar] [CrossRef]
- Zeman, A.; Hoefeijzers, S.; Milton, F.; Dewar, M.; Carr, M.; Streatfield, C. The GABAB Receptor Agonist, Baclofen, Contributes to Three Distinct Varieties of Amnesia in the Human Brain—A Detailed Case Report. Cortex 2016, 74, 9–19. [Google Scholar] [CrossRef]
- Urwyler, S.; Mosbacher, J.; Lingenhoehl, K.; Heid, J.; Hofstetter, K.; Froestl, W.; Bettler, B.; Kaupmann, K. Positive Allosteric Modulation of Native and Recombinant γ-Aminobutyric AcidB Receptors by 2,6-Di-Tert-Butyl-4-(3-Hydroxy-2,2-Dimethyl-Propyl)-Phenol (CGP7930) and Its Aldehyde Analog CGP13501. Mol. Pharmacol. 2001, 60, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Urwyler, S.; Pozza, M.F.; Lingenhoehl, K.; Mosbacher, J.; Lampert, C.; Froestl, W.; Koller, M.; Kaupmann, K. N,N′-Dicyclopentyl-2-Methylsulfanyl-5-Nitro-Pyrimidine-4,6-Diamine (GS39783) and Structurally Related Compounds: Novel Allosteric Enhancers of γ-Aminobutyric AcidB Receptor Function. J. Pharmacol. Exp. Ther. 2003, 307, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malherbe, P.; Masciadri, R.; Norcross, R.D.; Knoflach, F.; Kratzeisen, C.; Zenner, M.-T.; Kolb, Y.; Marcuz, A.; Huwyler, J.; Nakagawa, T.; et al. Characterization of (R,S)-5,7-Di-Tert-Butyl-3-Hydroxy-3-Trifluoromethyl-3H-Benzofuran-2-One as a Positive Allosteric Modulator of GABAB Receptors. Br. J. Pharmacol. 2008, 154, 797–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Fan, Z.; Rovira, X.; Xue, L.; Roux, S.; Brabet, I.; Xin, M.; Pin, J.-P.; Rondard, P.; Liu, J. Allosteric Ligands Control the Activation of a Class C GPCR Heterodimer by Acting at the Transmembrane Interface. eLife 2021, 10, e70188. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Kelly, P.H.; Chaperon, F.; Gentsch, C.; Mombereau, C.; Lingenhoehl, K.; Froestl, W.; Bettler, B.; Kaupmann, K.; Spooren, W.P.J.M. Behavioral Characterization of the Novel GABAB Receptor-Positive Modulator GS39783 (N,N′-Dicyclopentyl-2-Methylsulfanyl-5-Nitro-Pyrimidine-4,6-Diamine): Anxiolytic-Like Activity without Side Effects Associated with Baclofen or Benzodiazepines. J. Pharmacol. Exp. Ther. 2004, 310, 952–963. [Google Scholar] [CrossRef] [Green Version]
- Hensler, J.G.; Advani, T.; Burke, T.F.; Cheng, K.; Rice, K.C.; Koek, W. GABAB Receptor-Positive Modulators: Brain Region-Dependent Effects. J. Pharmacol. Exp. Ther. 2012, 340, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Sturchler, E.; Li, X.; de Lourdes Ladino, M.; Kaczanowska, K.; Cameron, M.; Griffin, P.R.; Finn, M.G.; Markou, A.; McDonald, P. GABAB Receptor Allosteric Modulators Exhibit Pathway-Dependent and Species-Selective Activity. Pharmacol. Res. Perspect. 2017, 5, e00288. [Google Scholar] [CrossRef]
- Maccioni, P.; Fara, F.; Lorrai, I.; Acciaro, C.; Mugnaini, C.; Corelli, F.; Colombo, G. Suppressing Effect of CMPPE, a New Positive Allosteric Modulator of the GABAB Receptor, on Alcohol Self-Administration and Reinstatement of Alcohol Seeking in Rats. Alcohol 2019, 75, 79–87. [Google Scholar] [CrossRef]
- Augier, E. Recent Advances in the Potential of Positive Allosteric Modulators of the GABAB Receptor to Treat Alcohol Use Disorder. Alcohol Alcohol. 2021, 56, 139–148. [Google Scholar] [CrossRef]
- Chen, L.-H.; Sun, B.; Zhang, Y.; Xu, T.-J.; Xia, Z.-X.; Liu, J.-F.; Nan, F.-J. Discovery of a Negative Allosteric Modulator of GABAB Receptors. ACS Med. Chem. Lett. 2014, 5, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Chen, L.; Liu, L.; Xia, Z.; Pin, J.-P.; Nan, F.; Liu, J. A Negative Allosteric Modulator Modulates GABAB-Receptor Signalling through GB2 Subunits. Biochem. J. 2016, 473, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Porcu, A.; Mostallino, R.; Serra, V.; Melis, M.; Sogos, V.; Beggiato, S.; Ferraro, L.; Manetti, F.; Gianibbi, B.; Bettler, B.; et al. COR758, a Negative Allosteric Modulator of GABAB Receptors. Neuropharmacology 2021, 189, 108537. [Google Scholar] [CrossRef] [PubMed]
- Sereikaite, V.; Fritzius, T.; Kasaragod, V.B.; Bader, N.; Maric, H.M.; Schindelin, H.; Bettler, B.; Strømgaard, K. Targeting the γ-Aminobutyric Acid Type B (GABAB) Receptor Complex: Development of Inhibitors Targeting the K+ Channel Tetramerization Domain (KCTD) Containing Proteins/GABAB Receptor Protein–Protein Interaction. J. Med. Chem. 2019, 62, 8819–8830. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent Advances in the Development of Protein–Protein Interactions Modulators: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2020, 5, 213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassetti, D. Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci. 2022, 12, 419. https://doi.org/10.3390/brainsci12040419
Bassetti D. Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sciences. 2022; 12(4):419. https://doi.org/10.3390/brainsci12040419
Chicago/Turabian StyleBassetti, Davide. 2022. "Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond" Brain Sciences 12, no. 4: 419. https://doi.org/10.3390/brainsci12040419
APA StyleBassetti, D. (2022). Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sciences, 12(4), 419. https://doi.org/10.3390/brainsci12040419