Effects of Sport-Based Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis Protocol
Abstract
:1. Background
2. Materials and Analysis
2.1. Review Question
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Data Management
2.5. Data Extraction
2.6. Risk of Bias (Quality) Assessment
2.7. Strategy for Data Synthesis
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Database | Specificities of the Database | Search Strategy |
---|---|---|
EBSCO | EBSCO does not allow combinations of title and abstract. To avoid multiple internal combinations, we decided to use a more open search strategy in this database, with all code lines being open to “All text”. | TX (“executive functions” OR “cognitive functions” OR cognition OR “inhibitory control” OR inhibition OR “working memory” OR shifting OR “cognitive flexibility”) AND TX (sports OR “modified sport” OR exercise OR “physical activity” OR athletics OR “sport practice”) AND TX (“older adults” OR aging OR elderly OR aged OR “older people”) |
PubMed | Nothing to report. | ((“executive functions” [Title/Abstract] OR “cognitive functions” [Title/Abstract] OR cognition [Title/Abstract] OR “inhibitory control” [Title/Abstract] OR inhibition [Title/Abstract] OR “working memory” [Title/Abstract] OR shifting [Title/Abstract] OR “cognitive flexibility” [Title/Abstract]) AND (sports [Title/Abstract] OR “modified sport” [Title/Abstract] OR exercise [Title/Abstract] OR “physical activity” [Title/Abstract] OR athletics [Title/Abstract] OR “sport practice” [Title/Abstract])) AND (“older adults” [Title/Abstract] OR aging [Title/Abstract] OR elderly [Title/Abstract] OR aged [Title/Abstract] OR “older people” [Title/Abstract]) |
Scopus | In Scopus, the search for title or abstract also includes keywords. | TITLE-ABS-KEY (“executive functions” OR “cognitive functions” OR cognition OR “inhibitory control” OR inhibition OR “working memory” OR shifting OR “cognitive flexibility”) AND TITLE-ABS-KEY (sports OR “modified sport” OR exercise OR “physical activity” OR athletics OR “sport practice”) AND TITLE-ABS-KEY (“older adults” OR aging OR elderly OR aged OR “older people”) |
Web of Science | In Web of Science, the search for title or abstract also includes keywords, and is termed “topic”. | ((TS = (“executive functions” OR “cognitive functions” OR cognition OR “inhibitory control” OR inhibition OR “working memory” OR shifting OR “cognitive flexibility”)) AND TS = (sports OR “modified sport” OR exercise OR “physical activity” OR athletics OR “sport practice”)) AND TS = (“older adults” OR aging OR elderly OR aged OR “older people”) https://www.webofscience.com/wos/woscc/summary/1e82b09c-85e7-4c70-92d9-60af5b107fd0-48df71c9/relevance/1 (accessed on 1 July 2022) |
References
- Friedman, N.; Miyake, A. Unity and Diversity of Executive Functions: Individual Differences as a Window on Cognitive Structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef] [PubMed]
- Lehto, J.; Juujärvi, P.; Kooistra, L.; Pulkkinen, L. Dimensions of Executive Functioning: Evidence from Children. Br. J. Dev. Psychol. 2003, 21, 59–80. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Koechlin, E. Reasoning, Learning, and Creativity: Frontal Lobe Function and Human Decision-Making. PLoS Biol. 2012, 10, e1001293. [Google Scholar] [CrossRef] [PubMed]
- Munakata, Y.; Herd, S.A.; Chatham, C.H.; Depue, B.E.; Banich, M.T.; O’Reilly, R.C. A Unified Framework for Inhibitory Control. Trends Cogn. Sci. 2011, 15, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working Memory: Theories, Models, and Controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Dajani, D.R.; Uddin, L.Q. Demystifying Cognitive Flexibility: Implications for Clinical and Developmental Neuroscience. Trends Neurosci. 2015, 38, 571–578. [Google Scholar] [CrossRef]
- Cahn-Weiner, D.; Tomaszewski, S.; Julian, L.; Harvey, D.; Kramer, J.; Reed, B.; Mungas, D.; Wetzel, M.; Chui, H. Cognitive and Neuroimaging Predictors of Instrumental Activities of Daily Living. J. Int. Neuropsychol. Soc. 2007, 13, 747–757. [Google Scholar] [CrossRef]
- Vazzana, R.; Bandinelli, S.; Lauretani, F.; Volpato, S.; Lauretani, F.; Di Iorio, A.; Abate, G.; Corsi, A.; Milaneschi, Y.; Guralnik, J.; et al. Trail Making Test Predicts Physical Impairment and Mortality in Older Persons. J. Am. Geriatr Soc. 2010, 58, 719–723. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Craik, F.I.M.; Booth, L. Executive Function across the Life Span. Acta Psychol. 2004, 115, 167–183. [Google Scholar] [CrossRef]
- de Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of Physical Activity on Executive Functions, Attention and Academic Performance in Preadolescent Children: A Meta-Analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, Q.; Li, Z.; Cunha, P.M.; Zhang, Y.; Kong, Z.; Lin, W.; Chen, S.; Cai, Y. Effects of Acute and Chronic Exercises on Executive Function in Children and Adolescents: A Systemic Review and Meta-Analysis. Front. Psychol. 2020, 11, 3482. [Google Scholar] [CrossRef] [PubMed]
- Verburgh, L.; Königs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical Exercise and Executive Functions in Preadolescent Children, Adolescents and Young Adults: A Meta-Analysis. Br. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yang, Y.; Huang, T. Effects of Chronic Exercise Interventions on Executive Function among Children and Adolescents: A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Martínez-Hortelano, J.A.; Martínez-Vizcaíno, V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I.; Lipowska, M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 800. [Google Scholar] [CrossRef]
- Diamond, A.; Lee, K. Interventions Shown to Aid Executive Function Development in Children 4–12 Years Old. Science 2011, 333, 959–964. [Google Scholar] [CrossRef]
- Belling, P.K.; Ward, P. Time to Start Training: A Review of Cognitive Research in Sport and Bridging the Gap from Academia to the Field. Procedia Manuf. 2015, 3, 1219–1224. [Google Scholar] [CrossRef]
- Contreras-Osorio, F.; Campos-Jara, C.; Martínez-Salazar, C.; Chirosa-Ríos, L.; Martínez-García, D. Effects of Sport-Based Interventions on Children’s Executive Function: A Systematic Review and Meta-Analysis. Brain Sci. 2021, 11, 755. [Google Scholar] [CrossRef]
- Contreras-Osorio, F.; Guzmán-Guzmán, I.P.; Cerda-Vega, E.; Chirosa-Ríos, L.; Ramírez-Campillo, R.; Campos-Jara, C. Effects of the Type of Sports Practice on the Executive Functions of Schoolchildren. Int. J. Environ. Res. Public Health 2022, 19, 3886. [Google Scholar] [CrossRef]
- Seer, C.; Sidlauskaite, J.; Lange, F.; Rodríguez-Nieto, G.; Swinnen, S.P. Cognition and Action: A Latent Variable Approach to Study Contributions of Executive Functions to Motor Control in Older Adults. Aging 2021, 13, 15942–15963. [Google Scholar] [CrossRef] [PubMed]
- Van Impe, A.; Bruijn, S.M.; Coxon, J.P.; Wenderoth, N.; Sunaert, S.; Duysens, J.; Swinnen, S.P. Age-Related Neural Correlates of Cognitive Task Performanceunder Increased Postural Load. Age 2013, 35, 2111–2124. [Google Scholar] [CrossRef] [PubMed]
- Heuninckx, S.; Wenderoth, N.; Debaere, F.; Peeters, R.; Swinnen, S.P. Neural Basis of Aging: The Penetration of Cognition into Action Control. J. Neurosci. 2005, 25, 6787–6796. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Reuter-Lorenz, P. The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor Control and Aging: Links to Age-Related Brain Structural, Functional, and Biochemical Effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef]
- Michely, J.; Volz, L.J.; Hoffstaedter, F.; Tittgemeyer, M.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Network Connectivity of Motor Control in the Ageing Brain. NeuroImage Clin. 2018, 18, 443–455. [Google Scholar] [CrossRef]
- Di, X.; Rypma, B.; Biswal, B. Correspondence of Executive Function Related Functional and Anatomical Alterations in Aging Brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 41–50. [Google Scholar] [CrossRef]
- Turner, G.R.; Spreng, R.N. Executive Functions and Neurocognitive Aging: Dissociable Patterns of Brain Activity. Neurobiol. Aging 2012, 33, 826.e1–826.e13. [Google Scholar] [CrossRef]
- Carvalho, A.; Rea, I.M.; Parimon, T.; Cusack, B.J. Physical Activity and Cognitive Function in Individuals over 60 Years of Age: A Systematic Review. Clin. Interv. Aging 2014, 9, 661–682. [Google Scholar] [CrossRef]
- Etnier, J.L.; Drollette, E.S.; Slutsky, A.B. Physical Activity and Cognition: A Narrative Review of the Evidence for Older Adults. Psychol. Sport Exerc. 2019, 42, 156–166. [Google Scholar] [CrossRef]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise Interventions for Cognitive Function in Adults Older than 50: A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Barha, C.K.; Dao, E.; Marcotte, L.; Hsiung, G.-Y.R.; Tam, R.; Liu-Ambrose, T. Cardiovascular Risk Moderates the Effect of Aerobic Exercise on Executive Functions in Older Adults with Subcortical Ischemic Vascular Cognitive Impairment. Sci. Rep. 2021, 11, 19974. [Google Scholar] [CrossRef] [PubMed]
- Liu-Ambrose, T.; Barha, C.K.; Best, J.R. Physical Activity for Brain Health in Older Adults1. Appl. Physiol. Nutr. Metab. 2018, 43, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-L.; Chang, Y.-C.; Pan, C.-Y.; Wang, T.-C.; Ukropec, J.; Ukropcová, B. Acute Effects of Different Exercise Intensities on Executive Function and Oculomotor Performance in Middle-Aged and Older Adults: Moderate-Intensity Continuous Exercise vs. High-Intensity Interval Exercise. Front. Aging Neurosci. 2021, 13, 743479. [Google Scholar] [CrossRef]
- Erickson, K.; Hillman, C.; Stillman, C.; Ballard, R.; Bloodgood, B.; Conroy, D.; Macko, R.; Marquez, D.; Petruzzello, S.; Powell, K. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sport. Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Colcombe, S.; Kramer, A.F. Fitness Effects on the Cognitive Function of Older Adults: A Meta–Analytic Study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Barha, C.K.; Davis, J.C.; Falck, R.S.; Nagamatsu, L.S.; Liu-Ambrose, T. Sex Differences in Exercise Efficacy to Improve Cognition: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Older Humans. Front. Neuroendocrinol. 2017, 46, 71–85. [Google Scholar] [CrossRef]
- Barha, C.K.; Hsu, C.L.; ten Brinke, L.; Liu-Ambrose, T. Biological Sex: A Potential Moderator of Physical Activity Efficacy on Brain Health. Front. Aging Neurosci. 2019, 11, 329. [Google Scholar] [CrossRef]
- Chen, F.T.; Etnier, J.L.; Chan, K.H.; Chiu, P.K.; Hung, T.M.; Chang, Y.K. Effects of Exercise Training Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1451–1467. [Google Scholar] [CrossRef]
- Ren, F.F.; Chen, F.T.; Zhou, W.S.; Cho, Y.M.; Ho, T.J.; Hung, T.M.; Chang, Y.K. Effects of Chinese Mind-Body Exercises on Executive Function in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 1831. [Google Scholar] [CrossRef]
- Voss, M.W.; Erickson, K.I.; Prakash, R.S.; Chaddock, L.; Kim, J.S.; Alves, H.; Szabo, A.; Phillips, S.M.; Wójcicki, T.R.; Mailey, E.L.; et al. Neurobiological Markers of Exercise-Related Brain Plasticity in Older Adults. Brain Behav. Immun. 2013, 28, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Canton-Martínez, E.; Rentería, I.; García-Suárez, P.C.; Moncada-Jiménez, J.; Machado-Parra, J.P.; Lira, F.S.; Johnson, D.K.; Jiménez-Maldonado, A. Concurrent Training Increases Serum Brain-Derived Neurotrophic Factor in Older Adults Regardless of the Exercise Frequency. Front. Aging Neurosci. 2022, 14, 791698. [Google Scholar] [CrossRef] [PubMed]
- Zhidong, C.; Wang, X.; Yin, J.; Song, D.; Chen, Z. Effects of Physical Exercise on Working Memory in Older Adults: A Systematic and Meta-Analytic Review. Eur. Rev. Aging Phys. Act. 2021, 18, 18. [Google Scholar] [CrossRef]
- Xiong, J.; Ye, M.; Wang, L.; Zheng, G. Effects of Physical Exercise on Executive Function in Cognitively Healthy Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials: Physical Exercise for Executive Function. Int. J. Nurs. Stud. 2021, 114, 103810. [Google Scholar] [CrossRef] [PubMed]
- Pacheco Lopes Filho, B.J.; De Oliveira, C.R.; Valle Gottlieb, M.G. Effects of Karate-Dō Training in Older Adults Cognition: Randomized Controlled Trial. J. Phys. Educ. 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Roh, H.-T. Taekwondo Enhances Cognitive Function as a Result of Increased Neurotrophic Growth Factors in Elderly Women. Int. J. Environ. Res. Public Health 2019, 16, 962. [Google Scholar] [CrossRef]
- Jansen, P.; Dahmen-Zimmer, K. Effects of Cognitive, Motor, and Karate Training on Cognitive Functioning and Emotional Well-Being of Elderly People. Front. Psychol. 2012, 3, 40. [Google Scholar] [CrossRef]
- Witte, K.; Kropf, S.; Darius, S.; Emmermacher, P.; Böckelmann, I. Comparing the Effectiveness of Karate and Fitness Training on Cognitive Functioning in Older Adults—A Randomized Controlled Trial. J. Sport Health Sci. 2016, 5, 484–490. [Google Scholar] [CrossRef]
- Jansen, P.; Dahmen-Zimmer, K.; Kudielka, B.M.; Schulz, A. Effects of Karate Training Versus Mindfulness Training on Emotional Well-Being and Cognitive Performance in Later Life. Res. Aging 2017, 39, 1118–1144. [Google Scholar] [CrossRef]
- Albinet, C.T.; Abou-Dest, A.; André, N.; Audiffren, M. Executive Functions Improvement Following a 5-Month Aquaerobics Program in Older Adults: Role of Cardiac Vagal Control in Inhibition Performance. Biol. Psychol. 2016, 115, 69–77. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Pan, C.-Y.; Chen, F.-C.; Tseng, Y.-T. Open- and Closed-Skill Exercise Interventions Produce Different Neurocognitive Effects on Executive Functions in the Elderly: A 6-Month Randomized, Controlled Trial. Front. Aging Neurosci. 2017, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Lee, S.; Akishita, M.; Kozaki, K.; Iijima, K.; Nagai, K.; Ishii, S.; Tanaka, M.; Koshiba, H.; Tanaka, T.; et al. Effects of Golf Training on Cognition in Older Adults: A Randomised Controlled Trial. J. Epidemiol. Commun. Health 2018, 72, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Kanwar, K.D.; Moore, J.L.; Hawkes, R.; Salem, G.J. Golf as a Physical Activity to Improve Walking Speed and Cognition in Older Adults: A Non-Randomized, Pre-Post, Pilot Study. Ment. Health Phys. Act. 2021, 21, 100410. [Google Scholar] [CrossRef]
- Nemoto, Y.; Sakurai, R.; Ogawa, S.; Maruo, K.; Fujiwara, Y. Effects of an Unsupervised Nordic Walking Intervention on Cognitive and Physical Function among Older Women Engaging in Volunteer Activity. J. Exerc. Sci. Fit. 2021, 19, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Dias, I.; Holland, C.; Campbell, N.; Nagar, I.; Connolly, L.; Krustrup, P.; Hubball, H. Walking Football as Sustainable Exercise for Older Adults—A Pilot Investigation. Eur. J. Sport Sci. 2017, 17, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Snyder, E.E.; Spreitzer, E. Sociology of Sport: An Overview. Sociol. Q. 1974, 15, 467–487. [Google Scholar] [CrossRef]
- You, Y.; Ma, Y.; Ji, Z.; Meng, F.; Li, A.; Zhang, C. Unconscious Response Inhibition Differences between Table Tennis Athletes and Non-Athletes. PeerJ 2018, 6, e5548. [Google Scholar] [CrossRef]
- Chiu, Y.K.; Pan, C.Y.; Chen, F.C.; Tseng, Y.T.; Tsai, C.L. Behavioral and Cognitive Electrophysiological Differences in the Executive Functions of Taiwanese Basketball Players as a Function of Playing Position. Brain Sci. 2020, 10, 387. [Google Scholar] [CrossRef]
- Ding, Q.; Huang, L.; Chen, J.; Dehghani, F.; Du, J.; Li, Y.; Li, Q.; Zhang, H.; Qian, Z.; Shen, W.; et al. Sports Augmented Cognitive Benefits: An FMRI Study of Executive Function with Go/NoGo Task. Neural Plast. 2021, 2021, 7476717. [Google Scholar] [CrossRef]
- Visser, A.; Büchel, D.; Lehmann, T.; Baumeister, J. Continuous Table Tennis Is Associated with Processing in Frontal Brain Areas: An EEG Approach. Exp. Brain Res. 2022, 240, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C. Shifting the Focus From Quantitative to Qualitative Exercise Characteristics in Exercise and Cognition Research. J. Sport Exerc. Psychol. 2012, 34, 766–786. [Google Scholar] [CrossRef]
- Tomporowski, P.D.; McCullick, B.; Pendleton, D.M.; Pesce, C. Exercise and Children’s Cognition: The Role of Exercise Characteristics and a Place for Metacognition. J. Sport Health Sci. 2015, 4, 47–55. [Google Scholar] [CrossRef]
- Best, J.R. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef]
- Diamond, A. Activities and Programs That Improve Children’s Executive Functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Tait, J.L.; Duckham, R.L.; Milte, C.M.; Main, L.C.; Daly, R.M. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults. Front. Aging Neurosci. 2017, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zang, M.; Klich, S.; Kawczyński, A.; Smoter, M.; Wang, B. Effect of Combined Physical and Cognitive Interventions on Executive Functions in Older Adults: A Meta-Analysis of Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6166. [Google Scholar] [CrossRef] [PubMed]
- Wollesen, B.; Wildbredt, A.; van Schooten, K.S.; Lim, M.L.; Delbaere, K. The Effects of Cognitive-Motor Training Interventions on Executive Functions in Older People: A Systematic Review and Meta-Analysis. Eur. Rev. Aging Phys. Act. 2020, 17, 9. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Frost, A.; Moussaoui, S.; Kaur, J.; Aziz, S.; Fukuda, K.; Niemeier, M. Is the N-Back Task a Measure of Unstructured Working Memory Capacity? Towards Understanding Its Connection to Other Working Memory Tasks. Acta Psychol. 2021, 219, 103398. [Google Scholar] [CrossRef]
- Barzykowski, K.; Wereszczyński, M.; Hajdas, S.; Radel, R. Cognitive Inhibition Behavioral Tasks in Online and Laboratory Settings: Data from Stroop, SART and Eriksen Flanker Tasks. Data Br. 2022, 43, 108398. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Sakuma, N.; Kobayashi, M.; Ogawa, S.; Inagaki, H.; Edahiro, A.; Ura, C.; Sugiyama, M.; Miyamae, F.; Watanabe, Y.; et al. Normative Data of the Trail Making Test Among Urban Community-Dwelling Older Adults in Japan. Front. Aging Neurosci. 2022, 14, 832158. [Google Scholar] [CrossRef] [PubMed]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data. Behav. Modif. 2017, 41, 323–339. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro Scale Is a Valid Measure of the Methodological Quality of Clinical Trials: A Demographic Study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Yamato, T.P.; Maher, C.; Koes, B.; Moseley, A. The PEDro Scale Had Acceptably High Convergent Validity, Construct Validity, and Interrater Reliability in Evaluating Methodological Quality of Pharmaceutical Trials. J. Clin. Epidemiol. 2017, 86, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Castillo, D.; Raya-González, J.; Moran, J.; de Villarreal, E.S.; Lloyd, R.S. Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 2125–2143. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Sánchez, J.; Romero-Moraleda, B.; Javier, Y.; García-Hermoso, A.; Clemente, F. Effects of Plyometric Jump Training in Female Soccer Player’s Vertical Jump Height: A Systematic Review with Meta-Analysis. J. Sports Sci. 2020, 38, 1475–1487. [Google Scholar] [CrossRef]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Valentine, J.; Pigott, T.; Rothstein, H. How Many Studies Do You Need? A Primer on Statistical Power for Meta-Analysis. J. Ed. Behav. Stat. 2010, 35, 215–247. [Google Scholar] [CrossRef]
- Pigott, T. Advances in Meta-Analysis; Springer Science & Business Media: New York, NY, USA, 2012; ISBN 978-1-4614-2277-8. [Google Scholar]
- García-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies. Sports Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Ramirez-Campillo, R.; Granacher, U. Effects of Jumping Exercise on Muscular Power in Older Adults: A Meta-Analysis. Sports Med. 2018, 48, 2843–2857. [Google Scholar] [CrossRef] [PubMed]
- Kontopantelis, E.; Springate, D.A.; Reeves, D. A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses. PLoS ONE 2013, 8, e69930. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and Fill: A Simple Funnel-Plot-Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L. The Trim-and-Fill Method for Publication Bias: Practical Guidelines and Recommendations Based on a Large Database of Meta-Analyses. Medicine 2019, 98, e15987. [Google Scholar] [CrossRef]
PICOS | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Healthy older adults (mean age, ≥60 years) without restrictions based on sex or fitness level. | Children, adolescents, or middle-aged adults. Individuals with a medical condition that may limit their participation in sport-based activities, meaning that they must not have any neurological pathology, psychiatric disorder, or other types of medical conditions. Participants of paralympic sports or individuals with disabilities are not included. |
Intervention | Chronic intervention programs (with a minimum duration of 4 weeks) based on a sport, of a competitive or recreational type. The interventions should involve sport exercises (e.g., soccer) or sport-based or sport-adapted exercises (e.g., walking soccer). | Acute interventions. Chronic sport-based interventions combined with different types of exercises (for example, aerobics or resistance training) or with the aid of a nutritional supplement. Chronic interventions that are not related to a sport. |
Comparator | Group not exposed to the sports training program. The control group may be active (alternative training method, such as balance or stretching program) or passive (continuing their usual activities of daily living). | Absence of control group. |
Outcome | Pre-post-intervention values for one or more direct assessment measures for the executive functions of working memory, inhibition, or cognitive flexibility. | Indirect measures of executive functions (e.g., questionnaire). Measures of executive functions other than working memory, inhibition, or cognitive flexibility. |
Study design | Longitudinal studies with at least one experimental group and a control group, that include pre- and post-intervention measurements. | Cross-sectional studies; Single-group interventions. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Osorio, F.; Ramirez-Campillo, R.; Cerda-Vega, E.; Campos-Jara, R.; Martínez-Salazar, C.; Arellano-Roco, C.; Campos-Jara, C. Effects of Sport-Based Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis Protocol. Brain Sci. 2022, 12, 1142. https://doi.org/10.3390/brainsci12091142
Contreras-Osorio F, Ramirez-Campillo R, Cerda-Vega E, Campos-Jara R, Martínez-Salazar C, Arellano-Roco C, Campos-Jara C. Effects of Sport-Based Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis Protocol. Brain Sciences. 2022; 12(9):1142. https://doi.org/10.3390/brainsci12091142
Chicago/Turabian StyleContreras-Osorio, Falonn, Rodrigo Ramirez-Campillo, Enrique Cerda-Vega, Rodrigo Campos-Jara, Cristian Martínez-Salazar, Cristián Arellano-Roco, and Christian Campos-Jara. 2022. "Effects of Sport-Based Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis Protocol" Brain Sciences 12, no. 9: 1142. https://doi.org/10.3390/brainsci12091142
APA StyleContreras-Osorio, F., Ramirez-Campillo, R., Cerda-Vega, E., Campos-Jara, R., Martínez-Salazar, C., Arellano-Roco, C., & Campos-Jara, C. (2022). Effects of Sport-Based Interventions on Executive Function in Older Adults: A Systematic Review and Meta-Analysis Protocol. Brain Sciences, 12(9), 1142. https://doi.org/10.3390/brainsci12091142