Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Study Selection
2.4. Data Collection
2.5. Quality Evaluation
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Quality Evaluation
3.4. Meta-Analysis Results
3.4.1. Differences in CTP Parameter Values between HT and non-HT Groups
3.4.2. Recombinant Tissue Plasminogen Activator (rt-PA) Usage
3.4.3. The Predictive Performance of rPS, rCBF, and rCBV for HT
3.4.4. Meta-Regression
4. Discussion
4.1. Summary of Findings
4.2. Advantages of CTP and Its Potential for Detecting HT
4.3. Heterogeneity among Studies: Comparison of Absolute and Relative Parameters of CTP
4.4. Pathophysiological Mechanisms of HT after AIS
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Béjot, Y. Forty Years of Descriptive Epidemiology of Stroke. Neuroepidemiology 2022, 56, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Chinese Society of Neurology, Chinese Stroke Society. Consensus on diagnosis and treatment of hemorrhagic transformation after acute ischemic stroke in China 2019. Chin. J. Neurol. 2019, 52, 252–265. [Google Scholar] [CrossRef]
- Balami, J.S.; Chen, R.-L.; Grunwald, I.Q.; Buchan, A.M. Neurological complications of acute ischaemic stroke. Lancet Neurol. 2011, 10, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, W.N.; Emberson, J.; Lees, K.R.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke: A secondary analysis of an individual patient data meta-analysis. Lancet Neurol. 2016, 15, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, C.H.; Jung, S.C.; Cho, S.J.; Kim, D.; Bin Lee, J.; Woo, D.-C.; Oh, W.Y.; Lee, J.G.; Kim, K.W. Perfusion CT for prediction of hemorrhagic transformation in acute ischemic stroke: A systematic review and meta-analysis. Eur. Radiol. 2019, 29, 4077–4087. [Google Scholar] [CrossRef]
- Kalinin, M.N.; Khasanova, D.R.; Ibatullin, M.M. The hemorrhagic transformation index score: A prediction tool in middle cerebral artery ischemic stroke. BMC Neurol. 2017, 17, 177. [Google Scholar] [CrossRef] [Green Version]
- Saposnik, G.; Fang, J.; Kapral, M.K.; Tu, J.V.; Mamdani, M.; Austin, P.; Johnston, S.C. The iScore Predicts Effectiveness of Thrombolytic Therapy for Acute Ischemic Stroke. Stroke 2012, 43, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Guo, G.; Liu, L.; Ren, Y.; Yang, L. Microvascular permeability detected by perfusion CT predicts hemorrhagic transformation in ischemic stroke patients. Chin. J. Geriatr. Heart Brain Vessel. Dis. 2015, 17, 1286–1288. [Google Scholar] [CrossRef]
- Aviv, R.I.; D’Esterre, C.D.; Murphy, B.D.; Hopyan, J.J.; Buck, B.; Mallia, G.; Li, V.; Zhang, L.; Symons, S.P.; Lee, T.-Y. Hemorrhagic Transformation of Ischemic Stroke: Prediction with CT Perfusion. Radiology 2009, 250, 867–877. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, H.; Yu, L.; Sheng, J.; Fu, Y. Value of CT perfusion in predicting hemorhagic transformation in acute ischemic cerebral infarction patients after thrombolysis. Chin. J. Geriatr. Heart Brain Vessel. Dis. 2021, 23, 63–66. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Xiong, Q.; Liu, X.; Yang, R.; Zeng, W. Whole Brain Perfusion Combined with Multiphase CT Angiography in Predicting Hemorrhagic Transformation of Patients with M1 Segment Occlusion of Middle Cerebral Artery. Chin. J. Med. Imaging 2020, 28, 575–579. [Google Scholar] [CrossRef]
- Fu, F.; Xu, Q.; Zhang, W.; Chen, W. Application of Micro-vascular Permeabmty Surface for Predicting Hemorrhage Transformation after Acute Ischemic Stroke using CT Perfusion imaging. Prev. Treat. Cardio-Cerebra-Vasc. Dis. 2012, 12, 352–355. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, W.; Fu, F. Prediction of hemorrhagic transformation in acute ischemic stroke using permeability surface of CT perfusion. Chin. J. Radiol. 2012, 46, 593–597. [Google Scholar] [CrossRef]
- Huang, D.; Wang, H.; Wang, P. Application of Computed Tomography Perfusion (CTP) in Predicting Hemorrhagic Transformation after Thrombolytic Therapy in Acute Ischemic Stroke Patients. J. Clin. Radiol. 2014, 33, 166–170. [Google Scholar] [CrossRef]
- Arba, F.; Piccardi, B.; Palumbo, V.; Biagini, S.; Galmozzi, F.; Iovene, V.; Giannini, A.; Testa, G.D.; Sodero, A.; Nesi, M.; et al. Blood–brain barrier leakage and hemorrhagic transformation: The Reperfusion Injury in Ischemic StroKe (RISK) study. Eur. J. Neurol. 2021, 28, 3147–3154. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Jain, M.; Kanthala, A.; Damania, D.; Stead, L.; Wang, H.; Jahromi, B.S. Association of CT Perfusion Parameters with Hemorrhagic Transformation in Acute Ischemic Stroke. Am. J. Neuroradiol. 2013, 34, 1895–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Koo, J.; Kim, S.-H.; Song, I.-U.; Chung, S.-W.; Lee, K.-S. Blood-brain barrier permeability assessed by perfusion computed tomography predicts hemorrhagic transformation in acute reperfusion therapy. Neurol. Sci. 2018, 39, 1579–1584. [Google Scholar] [CrossRef]
- Langel, C.; Popovic, K.S. Infarct-core CT perfusion parameters in predicting post-thrombolysis hemorrhagic transformation of acute ischemic stroke. Radiol. Oncol. 2018, 53, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Zink, W.E.; Tsiouris, A.J.; John, M.; Tekchandani, L.; Sanelli, P.C. Risk Assessment of Hemorrhagic Transformation of Acute Middle Cerebral Artery Stroke Using Multimodal CT. J. Neuroimaging 2012, 22, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Yen, P.; Cobb, A.; Shankar, J.J.S. Does computed tomography permeability predict hemorrhagic transformation after ischemic stroke? World J. Radiol. 2016, 8, 594–599. [Google Scholar] [CrossRef]
- Bennink, E.; Horsch, A.D.; Dankbaar, J.W.; Velthuis, B.K.; Viergever, M.A.; de Jong, H.W.A.M. CT perfusion analysis by nonlinear regression for predicting hemorrhagic transformation in ischemic stroke. Med Phys. 2015, 42, 4610–4618. [Google Scholar] [CrossRef]
- Elsaid, N.; Bigliardi, G.; Dell’Acqua, M.L.; Vandelli, L.; Ciolli, L.; Picchetto, L.; Borzì, G.; Ricceri, R.; Pentore, R.; Vallone, S.; et al. The role of automated computed topography perfusion in prediction of hemorrhagic transformation after acute ischemic stroke. Neuroradiol. J. 2022, 19714009221111084. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, X.; Yao, Z.; Feng, X.; He, H.; Xue, J.; Gao, P.; Yang, L.; Cheng, X.; Chen, W.; et al. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke. Stroke 2017, 48, 2412–2418. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.C.; Payabvash, S.; Wang, Y.; Kamalian, S.; Schaefer, P.; Gonzalez, R.G.; Furie, K.L.; Lev, M.H. Admission CT Perfusion Is an Independent Predictor of Hemorrhagic Transformation in Acute Stroke with Similar Accuracy to DWI. Cerebrovasc. Dis. 2012, 33, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Sun, L. Application of Cranial CTA combined CTP in prediction of hemorrhagic transformation after acute cerebral infarction. J. Inn. Mong. Med. Univ. 2020, 42, 135–139. [Google Scholar]
- Zuo, M.; Zhang, Z.; Wang, J.; Li, J.; Wang, J. Investigate the application of cranial CTA combined with CTP in predicting hemorrhagic transformation after acute cerebral infarction. Electron. J. Clin. Med. Lit. 2020, 158, 167. [Google Scholar]
- Zhang, J.; Zhang, R.; Pan, F.; Hao, X. Value of cerebral perfusion-weighted imaging in predicting the risk of hemorrhagic transformation in patients with acute ischemic stroke after mechanical thrombectomy. Chin. Clin. Med. Imaging 2021, 32, 761–765. [Google Scholar] [CrossRef]
- Yassi, N.; Parsons, M.W.; Christensen, S.; Sharma, G.; Bivard, A.; Donnan, G.A.; Levi, C.R.; Desmond, P.M.; Davis, S.M.; Campbell, B.C. Prediction of Poststroke Hemorrhagic Transformation Using Computed Tomography Perfusion. Stroke 2013, 44, 3039–3043. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Meng, Z.; Xie, S.; Fang, J.; Li, L.; Chen, Z.; Liu, J.; Jiang, G. Correlation between Hypoperfusion Intensity Ratio and Functional Outcome in Large-Vessel Occlusion Acute Ischemic Stroke: Comparison with Multi-Phase CT Angiography. J. Clin. Med. 2022, 11, 5274. [Google Scholar] [CrossRef]
- Olivot, J.-M.; Mlynash, M.; Thijs, V.N.; Kemp, S.; Lansberg, M.; Wechsler, L.; Bammer, R.; Marks, M.P.; Albers, G.W. Optimal Tmax Threshold for Predicting Penumbral Tissue in Acute Stroke. Stroke 2009, 40, 469–475. [Google Scholar] [CrossRef]
- Purushotham, A.; Campbell, B.; Straka, M.; Mlynash, M.; Olivot, J.-M.; Bammer, R.; Kemp, S.M.; Albers, G.W.; Lansberg, M. Apparent Diffusion Coefficient Threshold for Delineation of Ischemic Core. Int. J. Stroke 2015, 10, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Li, X.; Yang, R. Research Progress of CT Perfusion Imaging in Predicting Hemorrhage Transformation after Reperfusion Therapy in Acute Ischemic Stroke. Mod. Med. Imageology 2022, 31, 252–257. [Google Scholar]
- Hacke, W.; Kaste, M.; Fieschi, C.; von Kummer, R.; Davalos, A.; Meier, D.; Larrue, V.; Bluhmki, E.; Davis, S.; Donnan, G.; et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 1998, 352, 1245–1251. [Google Scholar] [CrossRef]
- Van Enst, W.A.; Ochodo, E.; Scholten, R.J.P.M.; Hooft, L.; Leeflang, M.M. Investigation of publication bias in meta-analyses of diagnostic test accuracy: A meta-epidemiological study. Med Res. Methodol. 2014, 14, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Kameda, K.; Uno, J.; Otsuji, R.; Ren, N.; Nagaoka, S.; Maeda, K.; Ikai, Y.; Gi, H. Optimal thresholds for ischemic penumbra predicted by computed tomography perfusion in patients with acute ischemic stroke treated with mechanical thrombectomy. J. NeuroInterv. Surg. 2018, 10, 279–284. [Google Scholar] [CrossRef]
- A Rava, R.; Snyder, K.V.; Mokin, M.; Waqas, M.; Podgorsak, A.R.; Allman, A.B.; Senko, J.; Bhurwani, M.M.S.; Hoi, Y.; Davies, J.M.; et al. Enhancing performance of a computed tomography perfusion software for improved prediction of final infarct volume in acute ischemic stroke patients. Neuroradiol. J. 2021, 34, 222–237. [Google Scholar] [CrossRef]
- Xu, S.; Wang, L.; Zhao, L. Clinical application value of brain CT perfusion imaging in the treatment of acute ischemic stroke thrombolytic therapy. Exp. Ther. Med. 2019, 17, 3971–3976. [Google Scholar] [CrossRef] [Green Version]
- Renú, A.; Laredo, C.; Tudela, R.; Urra, X.; Lopez-Rueda, A.; Llull, L.; Oleaga, L.; Amaro, S.; Chamorro, A. Brain hemorrhage after endovascular reperfusion therapy of ischemic stroke: A threshold-finding whole-brain perfusion CT study. J. Cereb. Blood Flow Metab. 2017, 37, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Bouts, M.; Tiebosch, I.A.; Rudrapatna, S.U.; Van Der Toorn, A.; Wu, O.; Dijkhuizen, R.M. Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms. J. Cereb. Blood Flow Metab. 2017, 37, 3065–3076. [Google Scholar] [CrossRef]
- Nguyen, T.N.P.; Lefevre, J.; Kanagaratnam, L.; Pires, P.; Djelouah, M.; Paiusan, L.; Pagano, P.; Manceau, P.-F.; Soize, S.; Gelmini, C.; et al. ADC measurement relevance to predict hemorrhage transformation after mechanical thrombectomy. J. Neurol. Sci. 2022, 441, 120370. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Yamagami, H.; Yoshimoto, T.; Morita, Y.; Yamamoto, H.; Toyoda, K.; Ihara, M. Cerebral hyperperfusion on arterial spin labeling MRI after reperfusion therapy is related to hemorrhagic transformation. J. Cereb. Blood Flow Metab. 2017, 37, 3087–3090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinoda, N.; Hori, S.; Mikami, K.; Bando, T.; Shimo, D.; Kuroyama, T.; Kuramoto, Y.; Matsumoto, M.; Hirai, O.; Ueno, Y. Prediction of hemorrhagic transformation after acute thrombolysis following major artery occlusion using relative ADC ratio: A retrospective study. J. Neuroradiol. 2017, 44, 361–366. [Google Scholar] [CrossRef]
- Thrippleton, M.J.; Backes, W.H.; Sourbron, S.; Ingrisch, M.; van Osch, M.J.; Dichgans, M.; Fazekas, F.; Ropele, S.; Frayne, R.; van Oostenbrugge, R.J.; et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer’s Dement. 2019, 15, 840–858. [Google Scholar] [CrossRef]
- Zhang, X.H.; Liang, H.M. Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke. Medicine 2019, 98, e16360. [Google Scholar] [CrossRef]
- Renou, P.; Sibon, I.; Tourdias, T.; Rouanet, F.; Rosso, C.; Galanaud, D.; Drier, A.; Coudert, M.; Deltour, S.; Crozier, S.; et al. Reliability of the ECASS Radiological Classification of Postthrombolysis Brain Haemorrhage: A Comparison of CT and Three MRI Sequences. Cerebrovasc. Dis. 2010, 29, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Jovin, T.G.; Nogueira, R.G.; Lansberg, M.G.; Demchuk, A.M.; O Martins, S.; Mocco, J.; Ribo, M.; Jadhav, A.P.; Ortega-Gutierrez, S.; Hill, M.D.; et al. Thrombectomy for anterior circulation stroke beyond 6 h from time last known well (AURORA): A systematic review and individual patient data meta-analysis. Lancet 2022, 399, 249–258. [Google Scholar] [CrossRef]
- Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-Brain Barrier Dysfunction in Ischemic Stroke: Targeting Tight Junctions and Transporters for Vascular Protection. Am. J. Physiol. Cell Physiol. 2018, 315, c343–c356. [Google Scholar] [CrossRef]
- Ng, F.C.; Churilov, L.; Yassi, N.; Kleinig, T.J.; Thijs, V.; Wu, T.Y.; Shah, D.G.; Dewey, H.M.; Sharma, G.; Desmond, P.M.; et al. Microvascular Dysfunction in Blood-Brain Barrier Disruption and Hypoperfusion Within the Infarct Posttreatment Are Associated With Cerebral Edema. Stroke 2022, 53, 1597–1605. [Google Scholar] [CrossRef]
- Liu, C.; Yan, S.; Zhang, R.; Chen, Z.; Shi, F.; Zhou, Y.; Zhang, M.; Lou, M. Increased blood-brain barrier permeability in contralateral hemisphere predicts worse outcome in acute ischemic stroke after reperfusion therapy. J. NeuroInterv. Surg. 2018, 10, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Bunker, L.D.; Walker, A.; Meier, E.; Goldberg, E.; Leigh, R.; Hillis, A.E. Hyperintense vessels on imaging account for neurological function independent of lesion volume in acute ischemic stroke. NeuroImage Clin. 2022, 34, 102991. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Guo, D.; Lou, M.; Liebeskind, D.S.; Scalzo, F. Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI. IEEE Trans. Biomed. Eng. 2018, 65, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Chen, N.; Zhou, X.; Wu, Y.; Ma, C. Deep Learning-Based Computed Tomography Perfusion Imaging to Evaluate the Effectiveness and Safety of Thrombolytic Therapy for Cerebral Infarct with Unknown Time of Onset. Contrast Media Mol. Imaging 2022, 2022, 9684584. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Hsu, T.-M.; Zhang, Y.; Cheng, X. Neuroimaging Prediction of Hemorrhagic Transformation for Acute Ischemic Stroke. Cerebrovasc. Dis. 2022, 51, 542–552. [Google Scholar] [CrossRef]
- Honig, A.; Molad, J.; Horev, A.; Simaan, N.; Sacagiu, T.; Figolio, A.; Gomori, J.M.; Hallevi, H.; Seyman, E.; Rotschild, O.; et al. Predictors and Prognostic Implications of Hemorrhagic Transformation Following Cerebral Endovascular Thrombectomy in Acute Ischemic Stroke: A Multicenter Analysis. Cardiovasc. Interv. Radiol. 2022, 45, 826–833. [Google Scholar] [CrossRef]
- Liu, H.; Wang, D.; Leng, X. State-of-the-art computational models of circle of willis with physiological appli-cations: A review. IEEE Access 2020, 8, 156261–156273. [Google Scholar] [CrossRef]
- Fabritius, M.P.; Tiedt, S.; Puhr-Westerheide, D.; Grosu, S.; Maurus, S.; Schwarze, V.; Rübenthaler, J.; Stueckelschweiger, L.; Ricke, J.; Liebig, T.; et al. Computed Tomography Perfusion Deficit Volumes Predict Functional Outcome in Patients With Basilar Artery Occlusion. Stroke 2021, 52, 2016–2023. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Han, Y.; Wang, S.; Yang, H.; Zhao, Y.; Li, P.; Wang, Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. Phytomedicine 2021, 90, 153660. [Google Scholar] [CrossRef]
- Yi, X.; Sui, G.; Zhou, Q.; Wang, C.; Lin, J.; Chai, Z.; Zhou, J. Variants in matrix metalloproteinase-9 gene are associated with hemorrhagic transformation in acute ischemic stroke patients with atherothrombosis, small artery disease, and cardioembolic stroke. Brain Behav. 2019, 9, e01294. [Google Scholar] [CrossRef] [Green Version]
- Bieber, M.; Foerster, K.I.; Haefeli, W.E.; Pham, M.; Schuhmann, M.K.; Kraft, P. Treatment with Edoxaban Attenuates Acute Stroke Severity in Mice by Reducing Blood–Brain Barrier Damage and Inflammation. Int. J. Mol. Sci. 2021, 22, 9893. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; He, Q.; Shen, Y.; Cao, F. Potential biomarkers for predicting hemorrhagic transformation of ischemic stroke. Int. J. Neurosci. 2018, 128, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. tPA Helpers in the Treatment of Acute Ischemic Stroke: Are They Ready for Clinical Use? J. Stroke 2019, 21, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhong, W.; Jiang, Z.; Tang, X. New progress in the approaches for blood–brain barrier protection in acute ischemic stroke. Brain Res. Bull. 2019, 144, 46–57. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L.; et al. Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Luo, Y.; Shen, J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free. Radic. Res. 2018, 52, 1220–1239. [Google Scholar] [CrossRef]
- Hong, J.M.; Kim, D.S.; Kim, M. Hemorrhagic Transformation After Ischemic Stroke: Mechanisms and Management. Front. Neurol. 2021, 12, 703258. [Google Scholar] [CrossRef]
- Spronk, E.; Sykes, G.; Falcione, S.; Munsterman, D.; Joy, T.; Kamtchum-Tatuene, J.; Jickling, G.C. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front. Neurol. 2021, 12, 661955. [Google Scholar] [CrossRef]
- Yuan, S.; Li, W.; Hou, C.; Kang, H.; Ma, Q.; Ji, X.; Qi, Z.; Liu, K.J. Serum Occludin Level Combined With NIHSS Score Predicts Hemorrhage Transformation in Ischemic Stroke Patients With Reperfusion. Front. Cell. Neurosci. 2021, 15, 714171. [Google Scholar] [CrossRef]
- Otsu, Y.; Namekawa, M.; Toriyabe, M.; Ninomiya, I.; Hatakeyama, M.; Uemura, M.; Onodera, O.; Shimohata, T.; Kanazawa, M. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: A literature review. J. Neurol. Sci. 2020, 419, 117217. [Google Scholar] [CrossRef]
- Tan, S.; Wang, D.; Liu, M.; Zhang, S.; Wu, B.; Liu, B. Frequency and predictors of spontaneous hemorrhagic transformation in ischemic stroke and its association with prognosis. J. Neurol. 2014, 261, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Gubern-Mérida, C.; Comajoan, P.; Huguet, G.; García-Yebenes, I.; Lizasoain, I.; Moro, M.A.; Puig-Parnau, I.; Sánchez, J.M.; Serena, J.; Kádár, E.; et al. Cav-1 Protein Levels in Serum and Infarcted Brain Correlate with Hemorrhagic Volume in a Mouse Model of Thromboembolic Stroke, Independently of rt-PA Administration. Mol. Neurobiol. 2022, 59, 1320–1332. [Google Scholar] [CrossRef] [PubMed]
- García-Culebras, A.; Palma-Tortosa, S.; Moraga, A.; García-Yébenes, I.; Durán-Laforet, V.; Cuartero, M.I.; de la Parra, J.; Barrios-Muñoz, A.L.; Díaz-Guzmán, J.; Pradillo, J.M.; et al. Toll-Like Receptor 4 Mediates Hemorrhagic Transformation After Delayed Tissue Plasminogen Activator Administration in In Situ Thromboembolic Stroke. Stroke 2017, 48, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Zou, M.; Jia, D.-M.; Shi, S.; Yang, X.; Liu, Q.; Dong, J.-F.; Sheth, K.N.; Wang, X.; Shi, F.-D. tPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circ. Res. 2021, 128, 62–75. [Google Scholar] [CrossRef]
- Honig, A.; Percy, J.; Sepehry, A.A.; Gomez, A.G.; Field, T.S.; Benavente, O.R. Hemorrhagic Transformation in Acute Ischemic Stroke: A Quantitative Systematic Review. J. Clin. Med. 2022, 11, 1162. [Google Scholar] [CrossRef]
- Zhang, Z.; Pu, Y.; Mi, D.; Liu, L. Cerebral Hemodynamic Evaluation After Cerebral Recanalization Therapy for Acute Ischemic Stroke. Front. Neurol. 2019, 10, 719. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.-L.; Hong, Z.; Li, J.-Y.; Yang, Y.-X.; Chen, C.; Du, J.-R. Phthalide derivative CD21 attenuates tissue plasminogen activator-induced hemorrhagic transformation in ischemic stroke by enhancing macrophage scavenger receptor 1-mediated DAMP (peroxiredoxin 1) clearance. J. Neuroinflam. 2021, 18, 143. [Google Scholar] [CrossRef]
- Ma, G.; Pan, Z.; Kong, L.; Du, G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int. Immunopharmacol. 2021, 90, 107216. [Google Scholar] [CrossRef]
- Chen, H.-S.; Chen, X.; Li, W.-T.; Shen, J.-G. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery. Acta Pharmacol. Sin. 2018, 39, 669–682. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, I.; Nyúl-Tóth, Á.; Suciu, M.; Hermenean, A.; A Krizbai, I. Heterogeneity of the blood-brain barrier. Tissue Barriers 2016, 4, e1143544. [Google Scholar] [CrossRef]
- Zeng, G.; Ding, W.; Li, Y.; Sun, M.; Deng, L. Morroniside protects against cerebral ischemia/reperfusion injury by inhibiting neuron apoptosis and MMP2/9 expression. Exp. Ther. Med. 2018, 16, 2229–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.J.; Stanfill, A.; Pourmotabbed, T. The Role of Matrix Metalloproteinase Polymorphisms in Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, B.C.; Parsons, M.W. Imaging selection for acute stroke intervention. Int. J. Stroke 2018, 13, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Nael, K.; Sakai, Y.; Larson, J.; Goldstein, J.; Deutsch, J.; Awad, A.J.; Pawha, P.; Aggarwal, A.; Fifi, J.; Deleacy, R.; et al. CT Perfusion collateral index in assessment of collaterals in acute ischemic stroke with delayed presentation: Comparison to single phase CTA. J. Neuroradiol. 2022, 49, 198–204. [Google Scholar] [CrossRef]
- Lan, L.; Leng, X.; Ip, V.; Soo, Y.; Abrigo, J.; Liu, H.; Fan, F.; Ma, S.H.; Ma, K.; Ip, B.Y.; et al. Sustaining cerebral perfusion in intracranial atherosclerotic stenosis: The roles of antegrade residual flow and leptomeningeal collateral flow. J. Cereb. Blood Flow Metab. 2020, 40, 126–134. [Google Scholar] [CrossRef]
- Li, C.; Hao, X.; Lin, L.; Sun, C.; Yu, H.; Yao, Z.; Feng, X.; Yang, Y. Prognostic Value of a New Integrated Parameter—Both Collateral Circulation and Permeability Surface—In Hemorrhagic Transformation of Middle Cerebral Artery Occlusion Acute Ischemic Stroke: Retrospective Cohort Study. Front. Aging Neurosci. 2021, 13, 703734. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Yang, J.; Ronaldson, P.T.; Davis, T.P. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front. Physiol. 2020, 11, 914. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018, 163–164, 144–171. [Google Scholar] [CrossRef]
- Bivard, A.; Kleinig, T.; Churilov, L. Permeability measures predict haemorrhagic transformation after ischemic stroke. Ann. Neurol. 2020, 88, 466–476. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, D.; Wang, H.; Zi, W.; Zhang, M.; Geng, Y.; Zhou, Z.; Wang, W.; Xu, H.; Tian, X.; et al. Predictors for Symptomatic Intracranial Hemorrhage After Endovascular Treatment of Acute Ischemic Stroke. Stroke 2017, 48, 1203–1209. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, H.; Wu, C.; Liu, X.; Qu, L.; Shi, Y. Prediction Model of Hemorrhage Transformation in Patient with Acute Ischemic Stroke Based on Multiparametric MRI Radiomics and Machine Learning. Brain Sci. 2022, 12, 858. [Google Scholar] [CrossRef] [PubMed]
Study | Country of Included Patients | Study Design | Time (min) from Onset to Imaging | Number of Patients | Age Mean SD/Median (IQR) | Male (%) | CT Scanner Used | Circular Region of Roi | Treatment | Follow-Up Imaging | Hemorrhagic Transformation (n) |
---|---|---|---|---|---|---|---|---|---|---|---|
Bennink 2015 [21] | Netherlands | Prospective | <9 h | 60 | 69 ± 13 | 40 | 40–256 | Nr | IVT or EVT | Nr | 20 |
Francesco 2021 [15] | Italy | Prospective | <12 h | 171 | 75.5 ± 11.8 | 50 | 128 | D = 10 mm | IVT or EVT or both | 24–36 h | 31 |
Fu 2012 [12] | China | Retrospective | <8 h | 26 | 62.4 ± 14.21 | 57.7 | 16 | Nr | Nr | 1–7 d | 11 |
Geng 2015 [8] | China | Retrospective | <4.5 h | 80 | 67.5 4.9 | 66.3 | Nr | Nr | IVT or not | 7d | 38 |
Huang 2014 [14] | China | Retrospective | <6 h | 30 | Nr | Nr | 8 | S = 90 mm2 | IVT | 7d | 10 |
Jain 2012 [16] | America | Retrospective | <12 h | 83 | 72 (61–80) | 55.4 | 64 | Nr | Except EVT | Nr | 16 |
Kim 2018 [17] | Korea | Prospective | <9 h | 46 | 66 12 | 54 | 64 | Nr | IVT or EVT or both | 24 h | 15 |
Langel 2019 [18] | Slovenia | Prospective | <4.5 h | 75 | 72.63 11.7 | 62.7 | Nr | D = 15–20 mm | IVT | 24 h | 35 |
Li 2017 [23] | China | Retrospective | <6 h | 70 | Nr | 74.3 | Nr | Nr | IVT or EVT or not | 24 h | 14 |
Li 2020 [11] | China | Retrospective | <24 h | 64 | Nr | Nr | Nr | Nr | Nr | 7 d | 22 |
Lin 2012 [19] | America | Retrospective | <9 h | 84 | Nr | 52.4 | 16 | D = 15 mm | Nr | Nr | 22 |
Richard 2009 [9] | Canada | Prospective | <3 h | 41 | Nr | 63.4 | 64 | Nr | IVT or not | 1–5 d | 22 |
Sun 2019 [25] | China | Retrospective | <12 h | 200 | 61.85 ± 6.12 | 48.5 | 128 | Nr | Nr | Nr | 140 |
Sun 2021 [10] | China | Retrospective | <6 h | 58 | Nr | 55.1 | 256 | D = 15–20 mm | IVT | 1–3 d | 23 |
Xiong 2012 [13] | China | Prospective | <9 h | 31 | 65±12 | 67.7 | 16 | S = 100 mm2 | IVT | 1, 3, 7 d | 11 |
Yen 2016 [20] | Canada | Retrospective | <6 h | 42 | Nr | 42.3 | 128 | Nr | Nr | Nr | 15 |
Zhang 2021 [27] | China | Prospective | <6 h | 70 | Nr | 47.1 | 256 | Nr | EVT | 7 d | 39 |
Zuo 2020 [26] | China | Prospective | <12 h | 160 | 62.01 ± 5.98 | 61.25 | 64 | Nr | Nr | Nr | 140 |
Study | HI1 | HI2 | HI | PH1 | PH2 | PH | Any HT |
---|---|---|---|---|---|---|---|
Bennink 2015 [21] | — | — | — | — | — | — | 20 |
Francesco 2021 [15] | — | 17 | 17 | 4 | 10 | 14 | 31 |
Fu 2012 [12] | — | — | — | — | — | — | 11 |
Geng 2015 [8] | — | — | — | — | — | — | 38 |
Huang 2014 [14] | — | — | — | — | — | — | 10 |
Jain 2012 [16] | 7 | 6 | 15 | 0 | 1 | 1 | 16 |
Kim 2018 [17] | 6 | 2 | 8 | 3 | 4 | 7 | 15 |
Langel 2019 [18] | — | — | — | — | — | — | 35 |
Li 2017 [23] | — | — | — | 2 | 12 | 14 | 14 |
Li 2020 [11] | — | — | — | — | — | — | 22 |
Lin 2012 [19] | — | — | 12 | — | — | 10 | 22 |
Richard 2009 [9] | — | — | 15 | — | — | 8 | 22 |
Sun 2019 [25] | — | — | — | — | — | — | 140 |
Sun 2021 [10] | — | — | — | — | — | — | 23 |
Xiong 2012 [13] | — | — | — | — | — | — | 11 |
Yen 2016 [20] | — | — | — | — | — | — | 15 |
Zhang 2021 [27] | — | — | — | — | — | — | 39 |
Zuo 2020 [26] | — | — | — | — | — | — | 140 |
Study | Reference Standard | rPS | Cutoff rCBF | rCBV |
---|---|---|---|---|
Bennink 2015 [21] | Follow-up NCCT within 3 days or in | 1.12 | — | — |
case of clinical deterioration | ||||
Fu 2012 [12] | Follow-up NCCT or MRI at 1–7 days | 5.81 | — | — |
Jain 2012 [16] | Follow-up NCCT or MRI | — | — | 98% |
Langel 2019 [18] | Follow-up NCCT within 24 h | — | 4.5% | 8.5% |
Li 2017 [23] | Any follow-up imaging within 24 h | 2.89 | — | — |
Li 2020 [11] | Follow-up NCCT or within 7 days | 2.128 | — | — |
Sun 2019 [25] | Follow-up NCCT | — | 89.2% | 48.6% |
Sun 2021 [10] | Follow-up NCCT within 3 days | — | 23.5% | 62.5% |
Yen 2016 [20] | Follow-up NCCT | 1.3 | — | — |
Zhang 2021 [27] | Follow-up NCCT or MRI within 7 days | 5.6 | 75.8% | 56% |
Zuo 2020 [26] | Follow-up NCCT | — | 85.6% | 41.2% |
Study | A | B | C | D | E | F | G | H | Quality Total/9 | Funding Bias |
---|---|---|---|---|---|---|---|---|---|---|
Francesco 2021 [15] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | Low |
Fu 2012 [12] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | Moderate |
Geng 2015 [8] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | Low |
Huang 2014 [14] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | Moderate |
Jain 2012 [16] | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 8 | Low |
Kim 2018 [17] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 | Moderate |
Langel 2019 [18] | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 6 | Moderate |
Li 2020 [11] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | Moderate |
Lin 2012 [19] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | Low |
Richard 2009 [9] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | Low |
Sun 2021 [10] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | Low |
Xiong 2012 [13] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 | Moderate |
Yen 2016 [20] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 | Moderate |
CTP Parameter | Studies Involved | Patients Involved | I2 (%) | Random /Fixed Effect Model | MD (95% CI) HT VS. no-HT | p-Value | Figure |
---|---|---|---|---|---|---|---|
CBF | 5 | 344 | 76 | Random | −1.57 (−2.98–0.16) | <0.05 | Figure 3a |
CBV | 5 | 344 | 83 | Random | −0.31 (−0.63–0.00) | <0.05 | Figure 3b |
PS | 5 | 246 | 94 | Random | 1.62 (0.57–2.66) | <0.05 | Figure 3c |
rMTT | 6 | 307 | 19 | Fixed | 0.19 (−0.04–0.43) | >0.05 | Figure 4a |
rCBF | 7 | 333 | 39 | Fixed | −0.08 (−0.11--0.06) | p < 0.00001 | Figure 4b |
rCBV | 6 | 258 | 39 | Fixed | −0.16 (−0.22–0.10) | p < 0.00001 | Figure 4c |
rPS | 4 | 163 | 87 | Random | 2.20 (0.96-3.45) | p < 0.001 | Figure 4d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Dai, F.; Wang, B.; Wang, Y.; Li, J.; Pan, L.; Liu, J.; Liu, H.; He, S. Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sci. 2023, 13, 156. https://doi.org/10.3390/brainsci13010156
Xu J, Dai F, Wang B, Wang Y, Li J, Pan L, Liu J, Liu H, He S. Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sciences. 2023; 13(1):156. https://doi.org/10.3390/brainsci13010156
Chicago/Turabian StyleXu, Jie, Fangyu Dai, Binda Wang, Yiming Wang, Jiaqian Li, Lulan Pan, Jingjing Liu, Haipeng Liu, and Songbin He. 2023. "Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis" Brain Sciences 13, no. 1: 156. https://doi.org/10.3390/brainsci13010156
APA StyleXu, J., Dai, F., Wang, B., Wang, Y., Li, J., Pan, L., Liu, J., Liu, H., & He, S. (2023). Predictive Value of CT Perfusion in Hemorrhagic Transformation after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Brain Sciences, 13(1), 156. https://doi.org/10.3390/brainsci13010156