Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification
Abstract
:1. Introduction
- (a)
- the Z-scalogram classifiers outperform the standard S-scalogram classifiers;
- (b)
- the V-scalogram classifiers significantly outperform the S-scalogram and Z-scalogram classifiers;
- (c)
- the relative improvement of the V-scalogram classifiers over the standard S-scalogram classifiers is dramatic;
- (d)
- the improvement trends across the three scalogram approaches are remarkably consistent across the classifiers, ERP channels, and subjects;
- (e)
- the region outside the COI does not carry useful discriminatory information;
- (f)
- the subsampling strategy to generate small-sample ERP ensembles enables customized classifier design for single subjects.
2. Materials and Methods
2.1. COI
2.1.1. Edge Artifacts
2.1.2. Scalogram Quality
2.2. The Three Scalogram Approaches
2.2.1. S-Scalogram Approach
2.2.2. Z-Scalogram Approach
2.2.3. V-Scalogram Approach
2.2.4. V-Complement Scalogram Classification
2.3. Subsample ERPs for Classifier Design
2.3.1. Generation of -ERPs through “-Subsample Averaging”
- (a)
- Draw a random subsample of 1-ERPs of size . The 1-ERPs in the subsample are drawn without replacement;
- (b)
- Average the 1-ERPs in the subsample to obtain an -ERP;
- (c)
- Replace the 1-ERPs of the subsample into the single trial ensemble;
- (d)
- Repeat steps (a)–(c) times to generate an ensemble of -ERPs. Each ensemble generation is referred to as a “run”;
- (e)
- Repeat steps (a)–(d) times to yield runs, with each run containing an -ERP ensemble of size .
2.4. Rank-of-Rank-Sum (RRS) Channel Ranking
2.5. Choice of Classifiers
2.6. Data Sets
2.7. Classification Experiments
2.7.1. Wavelet Choice
2.7.2. Selection of the Averaging Parameter
2.7.3. Feature Vector Generation
2.7.4. Classifier Architectures and Parameters
2.7.5. Cross-Validation
3. Results
3.1. m-ERP Classification Results
3.2. Single Trial Results
3.3. V-Complement Scalogram Results
4. Discussion
4.1. Performance Trends
4.2. Relative Improvements
4.3. Comparison of Classifiers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Types of Convolution
Appendix A.1.1. Full-Convolution
Appendix A.1.2. Same-Convolution
Appendix A.1.3. Valid Convolution
Appendix A.2. RRS Algorithm
Appendix B
Channel | Approach | Classifier | |||||
---|---|---|---|---|---|---|---|
SVM | RF | KNN | MLP | CNN-1 | CNN-2 | ||
P3 | 1 | 59.09 | 77.36 | 53.77 | 73.58 | 76.42 | 83.74 |
2 | 63.64 | 83.02 | 60.38 | 82.26 | 83.02 | 94.32 | |
3 | 72.73 | 89.77 | 69.81 | 87.74 | 90.57 | --- | |
P1 | 1 | 60.91 | 73.58 | 56.60 | 78.49 | 77.36 | 81.13 |
2 | 66.36 | 81.51 | 50.94 | 80.57 | 80.19 | 92.05 | |
3 | 71.82 | 86.36 | 63.21 | 90.57 | 92.62 | --- | |
P5 | 1 | 58.18 | 76.42 | 58.49 | 71.51 | 76.04 | 79.14 |
2 | 59.43 | 84.91 | 61.32 | 72.45 | 84.91 | 90.94 | |
3 | 69.81 | 87.74 | 68.11 | 86.79 | 91.38 | --- | |
Pz | 1 | 57.27 | 74.91 | 59.43 | 73.40 | 81.89 | 80.38 |
2 | 56.60 | 80.38 | 62.26 | 76.23 | 86.79 | 91.51 | |
3 | 66.04 | 88.64 | 71.70 | 84.91 | 92.46 | --- | |
P7 | 1 | 60.00 | 76.42 | 57.55 | 67.92 | 75.09 | 82.45 |
2 | 65.09 | 85.08 | 65.66 | 72.83 | 82.26 | 93.40 | |
3 | 70.81 | 90.91 | 73.77 | 87.36 | 90.09 | --- | |
POz | 1 | 60.91 | 79.25 | 54.72 | 71.89 | 83.10 | 84.72 |
2 | 66.04 | 84.15 | 59.06 | 74.34 | 87.36 | 92.22 | |
3 | 76.23 | 90.57 | 66.04 | 85.85 | 94.34 | --- | |
PO2 | 1 | 56.36 | 78.87 | 53.02 | 76.42 | 80.57 | 81.70 |
2 | 57.55 | 79.62 | 60.38 | 80.06 | 84.90 | 94.34 | |
3 | 64.16 | 88.68 | 68.49 | 90.38 | 95.00 | --- | |
PO1 | 1 | 54.55 | 74.34 | 50.94 | 77.36 | 79.43 | 79.81 |
2 | 61.32 | 80.38 | 56.60 | 80.38 | 85.09 | 92.45 | |
3 | 71.70 | 85.85 | 67.92 | 88.68 | 91.89 | --- |
Channel | Approach | Classifier | |||||
---|---|---|---|---|---|---|---|
SVM | RF | KNN | MLP | CNN-1 | CNN-2 | ||
PO4 | 1 | 55.46 | 72.73 | 64.14 | 72.76 | 73.47 | 80.53 |
2 | 60.00 | 81.82 | 65.86 | 83.62 | 83.67 | 91.68 | |
3 | 72.73 | 88.18 | 78.45 | 90.52 | 91.86 | --- | |
F3 | 1 | 60.91 | 75.00 | 68.79 | 77.86 | 76.53 | 84.21 |
2 | 64.55 | 82.55 | 75.35 | 76.07 | 81.63 | 93.69 | |
3 | 76.36 | 90.91 | 79.10 | 88.95 | 91.84 | --- | |
CP5 | 1 | 54.55 | 81.83 | 65.52 | 75.52 | 75.00 | 79.31 |
2 | 66.36 | 85.45 | 71.55 | 81.03 | 79.59 | 91.58 | |
3 | 70.00 | 93.64 | 82.83 | 88.08 | 90.89 | --- | |
PO2 | 1 | 63.64 | 72.76 | 60.52 | 77.79 | 79.59 | 76.21 |
2 | 68.18 | 79.31 | 66.38 | 83.91 | 83.33 | 90.42 | |
3 | 78.18 | 86.36 | 79.83 | 90.91 | 91.67 | --- | |
Oz | 1 | 59.09 | 73.64 | 61.21 | 74.83 | 76.95 | 81.52 |
2 | 61.82 | 85.45 | 65.52 | 85.69 | 88.56 | 93.89 | |
3 | 71.82 | 91.82 | 77.59 | 90.51 | 93.63 | --- | |
PO6 | 1 | 50.91 | 80.52 | 66.38 | 84.48 | 77.10 | 81.13 |
2 | 59.09 | 85.35 | 66.67 | 89.66 | 83.73 | 92.03 | |
3 | 67.27 | 91.38 | 75.35 | 95.52 | 92.75 | --- | |
TP7 | 1 | 60.91 | 75.86 | 64.66 | 79.31 | 73.33 | 78.64 |
2 | 65.55 | 82.21 | 70.69 | 80.07 | 79.24 | 90.86 | |
3 | 72.73 | 90.24 | 79.14 | 88.79 | 90.84 | --- | |
O1 | 1 | 58.72 | 78.79 | 63.79 | 77.41 | 77.79 | 83.10 |
2 | 62.93 | 81.72 | 70.69 | 76.72 | 86.36 | 92.76 | |
3 | 73.07 | 90.52 | 74.75 | 87.27 | 94.67 | --- |
Channel | Approach | Classifier | |||||
---|---|---|---|---|---|---|---|
SVM | RF | KNN | MLP | CNN-1 | CNN-2 | ||
O2 | 1 | 61.21 | 72.41 | 68.10 | 79.32 | 78.62 | 82.66 |
2 | 68.10 | 79.31 | 68.97 | 82.76 | 81.72 | 92.69 | |
3 | 75.00 | 92.24 | 75.52 | 91.38 | 93.10 | --- | |
Oz | 1 | 68.97 | 72.06 | 62.93 | 78.97 | 71.72 | 80.21 |
2 | 67.59 | 86.55 | 64.66 | 87.07 | 72.41 | 90.83 | |
3 | 78.10 | 92.68 | 72.41 | 92.83 | 88.28 | --- | |
O1 | 1 | 63.28 | 82.77 | 62.07 | 69.83 | 75.00 | 81.79 |
2 | 74.14 | 89.10 | 65.52 | 86.21 | 84.83 | 94.41 | |
3 | 76.72 | 93.14 | 75.86 | 91.38 | 95.69 | --- | |
PO6 | 1 | 67.24 | 75.00 | 64.14 | 75.86 | 75.86 | 82.76 |
2 | 74.14 | 84.83 | 62.07 | 84.48 | 82.76 | 95.69 | |
3 | 78.45 | 90.41 | 68.10 | 92.24 | 94.83 | --- | |
PO4 | 1 | 68.10 | 71.72 | 61.21 | 82.76 | 80.69 | 80.17 |
2 | 68.97 | 83.97 | 65.52 | 89.66 | 89.66 | 90.86 | |
3 | 79.48 | 89.41 | 71.55 | 95.52 | 96.55 | --- | |
PO2 | 1 | 62.07 | 73.47 | 61.72 | 75.17 | 81.90 | 78.45 |
2 | 73.28 | 89.66 | 65.17 | 81.72 | 86.21 | 89.66 | |
3 | 77.55 | 94.83 | 74.14 | 90.52 | 92.24 | --- | |
TP7 | 1 | 64.66 | 75.86 | 67.24 | 78.62 | 79.31 | 79.32 |
2 | 67.24 | 82.76 | 69.83 | 84.83 | 84.14 | 93.97 | |
3 | 72.41 | 90.10 | 77.59 | 93.97 | 97.41 | --- | |
POz | 1 | 68.97 | 76.55 | 60.34 | 80.69 | 72.07 | 74.14 |
2 | 62.07 | 80.34 | 65.52 | 83.79 | 81.04 | 92.24 | |
3 | 75.86 | 89.21 | 74.14 | 91.14 | 90.52 | --- |
Channel | Approach | Classifier | |||||
---|---|---|---|---|---|---|---|
SVM | RF | KNN | MLP | CNN-1 | CNN-2 | ||
O2 | 1 | 57.55 | 73.58 | 52.83 | 74.15 | 76.42 | 81.89 |
2 | 60.75 | 80.38 | 58.49 | 80.19 | 83.02 | 93.77 | |
3 | 69.81 | 87.74 | 64.15 | 88.68 | 92.51 | --- | |
Oz | 1 | 54.72 | 76.23 | 52.45 | 77.36 | 79.81 | 80.75 |
2 | 58.46 | 84.91 | 59.43 | 82.08 | 84.91 | 92.83 | |
3 | 66.98 | 89.62 | 63.77 | 90.56 | 93.38 | --- | |
TP7 | 1 | 51.89 | 70.57 | 56.60 | 69.81 | 76.98 | 80.19 |
2 | 57.36 | 77.36 | 61.32 | 76.42 | 82.83 | 94.34 | |
3 | 63.21 | 85.85 | 68.30 | 83.96 | 92.89 | --- | |
O1 | 1 | 50.94 | 75.66 | 56.23 | 77.92 | 78.30 | 80.00 |
2 | 53.20 | 79.06 | 55.85 | 80.94 | 86.79 | 92.66 | |
3 | 63.21 | 86.79 | 67.17 | 89.62 | 93.58 | --- | |
F3 | 1 | 56.60 | 79.25 | 60.38 | 75.47 | 81.13 | 83.96 |
2 | 61.13 | 83.02 | 62.26 | 82.08 | 87.74 | 90.23 | |
3 | 70.38 | 89.43 | 66.04 | 90.94 | 93.77 | --- | |
F1 | 1 | 54.72 | 76.79 | 51.51 | 78.11 | 80.57 | 82.45 |
2 | 62.26 | 83.02 | 54.53 | 83.92 | 85.85 | 95.09 | |
3 | 70.19 | 90.57 | 65.09 | 90.19 | 96.70 | --- | |
F5 | 1 | 58.49 | 74.34 | 59.06 | 70.76 | 74.53 | 80.94 |
2 | 60.38 | 80.19 | 62.26 | 79.62 | 80.02 | 93.58 | |
3 | 71.70 | 88.68 | 73.58 | 86.79 | 92.75 | --- | |
CP5 | 1 | 53.77 | 76.42 | 58.49 | 77.17 | 79.25 | 81.02 |
2 | 53.21 | 80.94 | 62.08 | 83.02 | 83.40 | 90.36 | |
3 | 64.15 | 87.74 | 69.81 | 89.06 | 92.45 | --- |
Channel | Approach | Classifier | |||||
---|---|---|---|---|---|---|---|
SVM | RF | KNN | MLP | CNN-1 | CNN-2 | ||
C2 | 1 | 51.89 | 75.51 | 51.02 | 76.73 | 77.55 | 81.25 |
2 | 57.55 | 79.17 | 59.18 | 84.69 | 84.38 | 92.71 | |
3 | 64.15 | 87.50 | 60.20 | 89.80 | 92.63 | --- | |
P5 | 1 | 52.83 | 77.55 | 57.14 | 79.59 | 74.49 | 80.61 |
2 | 58.33 | 81.63 | 63.27 | 80.41 | 83.47 | 91.67 | |
3 | 65.31 | 88.54 | 68.37 | 87.76 | 92.76 | --- | |
Cz | 1 | 58.16 | 69.80 | 53.06 | 74.49 | 79.59 | 81.63 |
2 | 61.46 | 71.63 | 61.22 | 78.57 | 85.71 | 92.86 | |
3 | 69.39 | 86.46 | 67.35 | 86.94 | 91.84 | --- | |
C4 | 1 | 56.25 | 74.29 | 55.31 | 75.51 | 79.69 | 83.68 |
2 | 60.42 | 79.59 | 63.64 | 81.86 | 84.69 | 92.92 | |
3 | 69.17 | 85.42 | 66.12 | 88.98 | 93.88 | --- | |
P3 | 1 | 54.79 | 71.43 | 58.17 | 72.45 | 81.63 | 83.33 |
2 | 56.88 | 78.16 | 64.49 | 79.39 | 86.74 | 93.88 | |
3 | 70.83 | 84.69 | 68.37 | 85.71 | 92.45 | --- | |
P7 | 1 | 56.67 | 73.47 | 62.22 | 76.53 | 81.08 | 82.45 |
2 | 58.96 | 79.39 | 62.04 | 80.21 | 88.78 | 93.90 | |
3 | 68.55 | 87.76 | 67.35 | 89.80 | 94.83 | --- | |
C1 | 1 | 53.06 | 74.08 | 55.10 | 72.45 | 75.00 | 81.63 |
2 | 59.38 | 77.55 | 57.14 | 81.22 | 79.80 | 92.86 | |
3 | 66.67 | 85.71 | 68.98 | 87.76 | 93.20 | --- | |
FCz | 1 | 54.82 | 71.02 | 46.94 | 73.47 | 76.33 | 84.08 |
2 | 59.80 | 74.29 | 53.06 | 79.59 | 84.69 | 92.22 | |
3 | 65.31 | 86.74 | 64.29 | 85.31 | 93.82 | --- |
Channel | Approach | Classifier | |||||
---|---|---|---|---|---|---|---|
SVM | RF | KNN | MLP | CNN-1 | CNN-2 | ||
O2 | 1 | 44.64 | 52.73 | 40.77 | 54.46 | 55.10 | 63.47 |
2 | 50.21 | 58.16 | 47.64 | 57.14 | 59.23 | 76.73 | |
3 | 55.10 | 63.54 | 50.86 | 65.63 | 82.53 | --- | |
Oz | 1 | 45.92 | 51.38 | 40.19 | 53.64 | 58.16 | 63.85 |
2 | 47.00 | 53.10 | 44.83 | 57.27 | 65.31 | 78.54 | |
3 | 54.90 | 61.40 | 50.64 | 66.36 | 83.62 | --- | |
O1 | 1 | 44.83 | 52.76 | 40.38 | 54.14 | 52.79 | 67.08 |
2 | 49.79 | 58.62 | 42.94 | 59.09 | 61.22 | 75.71 | |
3 | 55.17 | 63.79 | 50.43 | 68.42 | 81.63 | --- | |
PO6 | 1 | 42.42 | 49.06 | 43.40 | 54.72 | 51.07 | 61.88 |
2 | 48.93 | 56.60 | 45.28 | 59.48 | 57.14 | 79.30 | |
3 | 53.27 | 60.38 | 50.09 | 67.24 | 80.41 | --- | |
PO4 | 1 | 42.31 | 47.17 | 40.56 | 55.66 | 54.72 | 61.23 |
2 | 41.53 | 54.63 | 40.40 | 59.43 | 63.83 | 80.61 | |
3 | 53.96 | 61.32 | 51.89 | 66.57 | 77.55 | --- | |
PO2 | 1 | 42.59 | 44.45 | 40.74 | 52.24 | 50.86 | 69.79 |
2 | 43.08 | 50.96 | 43.70 | 55.66 | 64.29 | 80.18 | |
3 | 54.72 | 57.55 | 51.13 | 64.15 | 79.80 | --- | |
TP7 | 1 | 45.28 | 51.85 | 40.94 | 51.85 | 55.32 | 61.43 |
2 | 48.15 | 51.67 | 48.15 | 56.44 | 65.96 | 78.82 | |
3 | 56.60 | 62.26 | 52.83 | 63.77 | 80.83 | --- | |
POz | 1 | 43.43 | 50.00 | 40.03 | 50.56 | 51.50 | 66.15 |
2 | 49.23 | 57.41 | 47.96 | 59.26 | 63.86 | 72.73 | |
3 | 54.34 | 60.18 | 54.19 | 62.45 | 79.59 | --- |
References
- Stephen, M. Singularity detection and processing with wavelets. IEEE Trans Inf. Theory 1992, 38, 617–643. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Nobach, H.; Tropea, C.; Cordier, L.; Bonnet, J.P.; Delville, J.; Lewalle, J.; Farge, M.; Schneider, K.; Adrian, R. Review of some fundamentals of data processing. In Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1337–1398. [Google Scholar]
- Lilly, J.M. Element analysis: A wavelet-based method for analysing time-localized events in noisy time series. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160776. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zhou, L.; Chen, Z.; Zhang, L.; Zhou, Y. Automatic seizure detection using three-dimensional CNN based on multi-channel EEG. BMC Med. Inform. Decis. Mak. 2018, 18, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Türk, Ö.; Özerdem, M.S. Epilepsy detection by using scalogram based convolutional neural network from EEG signals. Brain Sci. 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Choi, Y.S. Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface. Entropy 2019, 21, 1199. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Fathurrahman, H.; Lee, Y.; Chang, T. EEG dataset classification using CNN method. In J. phys. Conf. Ser.; 2020; Volume 1456, p. 012017. [Google Scholar]
- Mammone, N.; Ieracitano, C.; Morabito, F.C. A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level. Neural Netw. 2020, 124, 357–372. [Google Scholar] [CrossRef]
- Aslan, Z.; Akin, M. A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals. Phys. Eng. Sci. Med. 2022, 45, 83–96. [Google Scholar] [CrossRef]
- Kaur, A.; Shashvat, K. Implementation of convolution neural network using scalogram for identification of epileptic activity. Chaos Solitons Fractals 2022, 162, 112528. [Google Scholar] [CrossRef]
- Kumar, J.L.M.; Rashid, M.; Musa, R.M.; Razman, M.A.M.; Sulaiman, N.; Jailani, R.; Majeed, A.P.A. The classification of EEG-based wink signals: A CWT-transfer learning pipeline. ICT Express 2021, 7, 421–425. [Google Scholar] [CrossRef]
- Buriro, A.B.; Ahmed, B.; Baloch, G.; Ahmed, J.; Shoorangiz, R.; Weddell, S.J.; Jones, R.D. Classification of alcoholic EEG signals using wavelet scattering transform-based features. Comput. Biol. Med. 2021, 139, 104969. [Google Scholar] [CrossRef]
- Kant, P.; Hazarika, J.; Laskar, S. Wavelet transform based approach for EEG feature selection of motor imagery data for braincomputer interfaces. In Proceedings of the 2019 Third International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 10–11 January 2019; pp. 101–105. [Google Scholar]
- Yasoda, K.; Ponmagal, R.; Bhuvaneshwari, K.; Venkatachalam, K. Automatic detection and classification of EEG artifacts using fuzzy kernel SVM and wavelet ICA (WICA). Soft Comput. 2020, 24, 16011–16019. [Google Scholar] [CrossRef]
- Kumar, J.L.M.; Rashid, M.; Musa, R.M.; Razman, M.A.M.; Sulaiman, N.; Jailani, R.; Majeed, A.P.A. The classification of EEG-based winking signals: A transfer learning and random forest pipeline. PeerJ 2021, 9, e11182. [Google Scholar] [CrossRef] [PubMed]
- Fraiwan, L.; Lweesy, K.; Khasawneh, N.; Wenz, H.; Dickhaus, H. Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed. 2012, 108, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Altameem, A.; Sachdev, J.S.; Singh, V.; Poonia, R.C.; Kumar, S.; Saudagar, A.K.J. Performance Analysis of Machine Learning Algorithms for Classifying Hand Motion-Based EEG Brain Signals. Comput. Syst. Sci. Eng. 2022, 42, 1095–1107. [Google Scholar] [CrossRef]
- Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Light, G.A.; Williams, L.E.; Minow, F.; Sprock, J.; Rissling, A.; Sharp, R.; Swerdlow, N.R.; Braff, D.L. Electroencephalograph (EEG) and event-related potentials (ERPs) with human participants. Curr. Protoc. Neurosci. 2010, 52, 6–25. [Google Scholar] [CrossRef] [Green Version]
- Kappenman, E.S.; Luck, S.J. Best practices for event-related potential research in clinical populations. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Phadikar, S.; Sinha, N.; Ghosh, R.; Ghaderpour, E. Automatic Muscle Artifacts Identification and Removal from Single-Channe EEG Using Wavelet Transform with Meta-Heuristically Optimized Non-Local Means Filter. Sensors 2022, 22, 2948. [Google Scholar] [CrossRef]
- Celka, P.; Le, K.N.; Cutmore, T.R. Noise reduction in rhythmic and multitrial biosignals with applications to event-related potentials. IEEE Trans. Biomed. Eng. 2008, 55, 1809–1821. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.Z.I.; Sinha, N.; Phadikar, S.; Ghaderpour, E. Automated Feature Extraction on AsMap for Emotion Classification Using EEG. Sensors 2022, 22, 2346. [Google Scholar] [CrossRef] [PubMed]
- Follis, J.L.; Lai, D. Modeling Volatility Characteristics of Epileptic EEGs using GARCH Models. Signals 2020, 1, 26–46. [Google Scholar] [CrossRef]
- Montanari, L.; Basu, B.; Spagnoli, A.; Broderick, B.M. A padding method to reduce edge effects for enhanced damage identification using wavelet analysis. Mech. Syst. Signal Process. 2015, 52, 264–277. [Google Scholar] [CrossRef]
- Su, H.; Liu, Q.; Li, J. Boundary effects reduction in wavelet transform for time-frequency analysis. Wseas Trans. Signal Process. 2012, 8, 169–179. [Google Scholar]
- Kharitonenko, I.; Zhang, X.; Twelves, S. A wavelet transform with point-symmetric extension at tile boundaries. IEEE Trans. Image Process. 2002, 11, 1357–1364. [Google Scholar] [CrossRef]
- Zhu, Y.y.; Man, Z.l.; Pei, W.; Wang, J. Research of a boundary prolongation method in runoff forecast based on wavelet transform. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 1254–1258. [Google Scholar]
- Silva, V.; De Sa, L. General method for perfect reconstruction subband processing of finite length signals using linear extensions. IEEE Trans. Signal Process. 1999, 47, 2572–2575. [Google Scholar] [CrossRef] [Green Version]
- Pacola, E.; Quandt, V.; Schneider, F.; Sovierzoski, M. The wavelet transform border effect in EEG spike signals. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Beijing, China, 26–31 May 2012; Springer: Berlin/Heidelberg, Germany, 2013; pp. 593–596. [Google Scholar]
- Unser, M. A practical guide to the implementation of the wavelet transform. In Wavelets in Medicine and Biology; Routledge: London, UK, 2017; pp. 37–74. [Google Scholar]
- Asman, S.H.; Abidin, A.F. Comparative Study of Extension Mode Method in Reducing Border Distortion Effect for Transient Voltage Disturbance. Indones. J. Electr. Eng. Comput. Sci 2017, 6, 628. [Google Scholar]
- Ghaderpour, E.; Pagiatakis, S.D. Least-squares wavelet analysis of unequally spaced and non-stationary time series and its applications. Math. Geosci. 2017, 49, 819–844. [Google Scholar] [CrossRef]
- Ideião, S.M.A.; Santos, C.A.G. Analysis of precipitation time series using the wavelet transform. Soc. Nat. 2005, 1, 736–745. [Google Scholar] [CrossRef]
- Lee, W.S.; Kassim, A.A. Signal and image approximation using interval wavelet transform. IEEE Trans. Image Process. 2006, 16, 46–56. [Google Scholar] [CrossRef]
- De Moortel, I.; Munday, S.; Hood, A.W. Wavelet analysis: The effect of varying basic wavelet parameters. Sol. Phys. 2004, 222, 203–228. [Google Scholar] [CrossRef]
- Li, Y.F. Image denoising based on undecimated discrete wavelet transform. In Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2–4 November 2007; Volome 2; pp. 527–531. [Google Scholar]
- Dragotti, P.L.; Vetterli, M. Wavelet footprints: Theory, algorithms, and applications. IEEE Trans. Signal Process. 2003, 51, 1306–1323. [Google Scholar] [CrossRef]
- Mota, H.d.O.; Vasconcelos, F.H.; de Castro, C.L. A comparison of cycle spinning versus stationary wavelet transform for the extraction of features of partial discharge signals. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1106–1118. [Google Scholar] [CrossRef]
- Liu, Y.; San Liang, X.; Weisberg, R.H. Rectification of the bias in the wavelet power spectrum. J. Atmos. Ocean. Technol. 2007, 24, 2093–2102. [Google Scholar] [CrossRef]
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet analysis of ecological time series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef]
- Lilly, J.M.; Olhede, S.C. Generalized Morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal Process. 2012, 60, 6036–6041. [Google Scholar] [CrossRef] [Green Version]
- Gupta, L.; Chung, B.; Srinath, M.D.; Molfese, D.L.; Kook, H. Multichannel fusion models for the parametric classification of differential brain activity. IEEE Trans. Biomed. Eng. 2005, 52, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Kota, S.; Gupta, L.; Molfese, D.; Vaidyanathan, R. Diversity-Based Selection of Polychotomous Components for Multi-Sensor Fusion Classifiers. J. Eng. Med. 2013, 227, 655–662. [Google Scholar]
- Hart, P.E.; Stork, D.G.; Duda, R.O. Pattern classification; John Wiley Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Woody, C.D. Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals. Med. Biol. Eng. 1967, 5, 539–554. [Google Scholar] [CrossRef]
- Aunon, J.I.; McGillem, C.D.; Childers, D.G. Signal processing in evoked potential research: Averaging and modeling. Crit. Rev. Bioeng. 1981, 5, 323–367. [Google Scholar]
- Gupta, L.; Molfese, D.L.; Tammana, R.; Simos, P.G. Nonlinear alignment and averaging for estimating the evoked potential. IEEE Trans. Biomed. Eng. 1996, 43, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Gupta, L.; Phegley, J.; Molfese, D.L. Parametric classification of multichannel averaged event-related potentials. IEEE Trans. Biomed. Eng. 2002, 49, 905–911. [Google Scholar] [CrossRef]
- Kota, S.; Gupta, L.; Molfese, D.L.; Vaidyanathan, R. A dynamic channel selection strategy for dense-array ERP classification. IEEE Trans. Biomed. Eng. 2008, 56, 1040–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dien, J.; Spencer, K.M.; Donchin, E. Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology 2004, 41, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Kujawa, A.; Vago, D.R. A preliminary investigation of ERP components of attentional bias in anxious adults using temporospatial principal component analysis. J. Psychophysiol. 2021, 35, 223–236. [Google Scholar] [CrossRef]
- Alotaiby, T.; Abd El-Samie, F.E.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 2015, 66. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.Z.; Aslam, N.; Shum, H.P. Filtering techniques for channel selection in motor imagery EEG applications: A survey. Artif. Intell. Rev. 2020, 53, 1207–1232. [Google Scholar] [CrossRef] [Green Version]
- Guttmann-Flury, E.; Sheng, X.; Zhu, X. Channel selection from source localization: A review of four EEG-based brain–computer interfaces paradigms. Behav. Res. Methods 2022, 2022, 1–24. [Google Scholar]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Spinger: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2021. [Google Scholar]
- Murphy, K. Probabilistic Machine Learning: Advanced Topics; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Auger, F.; Flandrin, P.; Gonçalvès, P.; Lemoine, O. Time-Frequency Toolbox; CNRS: Paris, France; Rice University: Houston, TX, USA, 1996; p. 46. [Google Scholar]
- Cohen, M.X. A better way to define and describe Morlet wavelets for time-frequency analysis. NeuroImage 2019, 199, 81–86. [Google Scholar] [CrossRef]
- Unser, M.; Aldroubi, A. A review of wavelets in biomedical applications. Proc. IEEE 1996, 84, 626–638. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: New Delhi, India, 1992. [Google Scholar]
- Amerineni, R.; Gupta, L.; Steadman, N.; Annauth, K.; Burr, C.; Wilson, S.; Barnaghi, P.; Vaidyanathan, R. Fusion Models for Generalized Classification of Multi-Axial Human Movement: Validation in Sport Performance. Sensors 2021, 21, 8409. [Google Scholar] [CrossRef] [PubMed]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Taswell, C.; McGill, K.C. Algorithm 735: Wavelet transform algorithms for finite-duration discrete-time signals. ACM Trans. Math. Softw. 1994, 20, 398–412. [Google Scholar] [CrossRef]
- Oppenheim, A.V. Discrete-Time Signal Processing; Pearson Education India: Bengaluru, India, 1999. [Google Scholar]
Subject | Top 8 Ranked Channels | |||||||
---|---|---|---|---|---|---|---|---|
P3 PO4 | P1 F3 | P5 CP5 | Pz PO2 | P7 Oz | POz | PO2 | PO1 | |
PO6 | TP7 | O1 | ||||||
O2 | Oz | O1 | PO6 | PO4 | PO2 | TP7 | POz | |
O2 | Oz | TP7 | O1 | F3 | F1 | F5 | CP5 | |
C2 | P5 | Cz | C4 | P3 | P7 | C1 | FCz |
Classifier | Approach | ||
---|---|---|---|
S-Scalogram | Z-Scalogram | V-Scalogram | |
SVM | 58.33 | 62.49 | 70.95 |
RF | 75.30 | 81.74 | 89.07 |
k-NN | 58.85 | 62.92 | 70.86 |
MLP | 75.84 | 81.27 | 89.34 |
CNN-1 | 77.68 | 83.91 | 92.96 |
Global Average | 69.20 | 74.46 | 82.64 |
CNN-2 * | 81.18 | 92.73 | ----- |
Classifier | Approach | |
---|---|---|
S-Scalogram | -Scalogram | |
SVM | 58.33 | 50.77 |
RF | 75.30 | 51.92 |
k-NN | 58.85 | 47.08 |
MLP | 75.84 | 53.85 |
CNN-1 | 77.68 | 56.15 |
Global Average | 69.20 | 51.95 |
Classifier | |||
---|---|---|---|
SVM | 7.13 | 13.54 | 21.64 |
RF | 8.55 | 8.97 | 18.28 |
k-NN | 6.93 | 12.62 | 20.42 |
MLP | 7.15 | 9.94 | 17.80 |
CNN-1 | 8.02 | 10.80 | 19.68 |
Global Average | 7.61 | 10.97 | 19.42 |
CNN-2 | 14.24 | ----- | ----- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gupta, R.S.; Gupta, L. Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification. Brain Sci. 2023, 13, 21. https://doi.org/10.3390/brainsci13010021
Chen X, Gupta RS, Gupta L. Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification. Brain Sciences. 2023; 13(1):21. https://doi.org/10.3390/brainsci13010021
Chicago/Turabian StyleChen, Xiaoqian, Resh S. Gupta, and Lalit Gupta. 2023. "Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification" Brain Sciences 13, no. 1: 21. https://doi.org/10.3390/brainsci13010021
APA StyleChen, X., Gupta, R. S., & Gupta, L. (2023). Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification. Brain Sciences, 13(1), 21. https://doi.org/10.3390/brainsci13010021