The Relationship between Working Memory and Arithmetic in Primary School Children: A Meta-Analysis
Abstract
:1. Introduction
- (1)
- Is there a significant relationship between WM and arithmetic?
- (2)
- Is the WM-arithmetic relationship different dependent on types of WM domains, WM sub-domains, children’s age, arithmetic operations, and types of arithmetic tasks?
2. Materials and Methods
2.1. Search Strategy and Study Selection Criteria
2.2. Data Extraction and Coding
2.3. Analytical Strategy
2.4. Heterogeneity Analyses
2.5. Publication Bias
3. Results
3.1. Summary Effect Size
3.2. The Moderation Effects of WM Domains
3.3. The Moderation Effects of Age
3.4. The Moderation Effects of Operation Types
3.5. The Moderation Effect of Arithmetic Task Types
3.6. Publication Bias
4. Discussion
4.1. WM Domains and Age
4.2. Operation Types
4.3. Types of Arithmetic Tasks
4.4. Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, E.H.; Bailey, D.H. Dual-task studies of working memory and arithmetic performance: A meta-analysis. J. Exp. Psychol. Learn Mem. Cogn. 2021, 47, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Raghubar, K.P.; Barnes, M.A.; Hecht, S.A. Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learn. Individ. Differ. 2010, 20, 110–122. [Google Scholar] [CrossRef]
- Friso-van den Bos, I.; van der Ven, S.H.G.; Kroesbergen, E.H.; van Luit, J.E.H. Working memory and mathematics in primary school children: A meta-analysis. Educ. Res. Rev. 2013, 10, 29–44. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory. Curr. Biol. 2010, 20, R136–R140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, M.J.; Conway, A.R.; Hambrick, D.Z.; Engle, R.W. Variation in working memory capacity as variation in executive attention and control. Var. Work. Mem. 2007, 1, 21–48. [Google Scholar]
- Moore, A.M.; Rudig, N.O.; Ashcraft, M.H. Affect, motivation, working memory, and mathematics. Oxf. Handb. Numer. 2015, 933–952. [Google Scholar] [CrossRef]
- Attout, L.; Majerus, S. Serial order working memory and numerical ordinal processing share common processes and predict arithmetic abilities. Br. J. Dev. Psychol. 2018, 36, 285–298. [Google Scholar] [CrossRef]
- Bull, R.; Espy, K.A.; Wiebe, S.A. Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Dev. Neuropsychol. 2008, 33, 205–228. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, B.; Janssen, R.; Bouwens, K.; Verschaffel, L.; Boets, B.; Ghesquière, P. Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. J. Exp. Child Psychol. 2009, 103, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Kahl, T.; Segerer, R.; Grob, A.; Möhring, W. Bidirectional associations among executive functions, visual-spatial skills, and mathematical achievement in primary school students: Insights from a longitudinal study. Cogn. Dev. 2022, 62, 101149. [Google Scholar] [CrossRef]
- Menon, V. Working memory in children’s math learning and its disruption in dyscalculia. Curr. Opin. Behav. Sci. 2016, 10, 125–132. [Google Scholar] [CrossRef]
- Demir, O.E.; Prado, J.; Booth, J.R. The differential role of verbal and spatial working memory in the neural basis of arithmetic. Dev. Neuropsychol. 2014, 39, 440–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szűcs, D.; Devine, A.; Soltesz, F.; Nobes, A.; Gabriel, F. Cognitive components of a mathematical processing network in 9-year-old children. Dev. Sci. 2014, 17, 506–524. [Google Scholar] [CrossRef] [Green Version]
- Andersson, U.; Östergren, R. Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learn. Individ. Differ. 2012, 22, 701–714. [Google Scholar] [CrossRef]
- Seitz, K.; Schumann-Hengsteler, R. Phonological loop and central executive processes in mental addition and multiplication. Psychol. Test Assess. Model. 2002, 44, 275. [Google Scholar]
- Vieira, F.D.; Ribeiro, D.O.; Farias, H.B.; Freitas, P.M. The Working Memory as Predictor of Performance in Arithmetic of Brazilian Students. Paidéia 2021, 31, e3119. [Google Scholar] [CrossRef]
- Cragg, L.; Keeble, S.; Richardson, S.; Roome, H.E.; Gilmore, C. Direct and indirect influences of executive functions on mathematics achievement. Cognition 2017, 162, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Geary, D.C. Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS ONE 2013, 8, e70160. [Google Scholar] [CrossRef]
- van der Ven, S.H.; van der Maas, H.L.; Straatemeier, M.; Jansen, B.R. Visuospatial working memory and mathematical ability at different ages throughout primary school. Learn. Individ. Differ. 2013, 27, 182–192. [Google Scholar] [CrossRef]
- Van de Weijer-Bergsma, E.; Kroesbergen, E.H.; Van Luit, J.E. Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school. Mem. Cogn. 2015, 43, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Dong, P.; Zhou, Y.; Feng, S.; Zhang, Q. Whether verbal and visuospatial working memory play different roles in pupil’s mathematical abilities. Br. J. Educ. Psychol. 2022, 92, e12454. [Google Scholar] [CrossRef]
- Gordon, R.; De Morais, D.S.; Whitelock, E.; Mukarram, A. Mapping components of verbal and visuospatial working memory to mathematical topics in seven- to fifteen-year-olds. Br. J. Educ. Psychol. 2022, 92, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cragg, L.; Richardson, S.; Hubber, P.J.; Keeble, S.; Gilmore, C. When is working memory important for arithmetic? The impact of strategy and age. PLoS ONE 2017, 12, e0188693. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.H.; Littlefield, A.; Geary, D.C. The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: Individual and sex differences from first to sixth grades. J. Exp. Child Psychol. 2012, 113, 78–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, M.L.; Salimpoor, V.N.; Wu, S.S.; Geary, D.C.; Menon, V. Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learn. Individ. Differ. 2010, 20, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Soltanlou, M.; Pixner, S.; Nuerk, H.-C. Contribution of working memory in multiplication fact network in children may shift from verbal to visuo-spatial: A longitudinal investigation. Front. Psychol. 2015, 6, 1062. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.; Bisanz, J. Representation and working memory in early arithmetic. J. Exp. Child Psychol. 2005, 91, 137–157. [Google Scholar] [CrossRef]
- Li, Y.; Geary, D.C. Children’s visuospatial memory predicts mathematics achievement through early adolescence. PLoS ONE 2017, 12, e0172046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mix, K.S. Why are spatial skill and mathematics related? Child Dev. Perspect. 2019, 13, 121–126. [Google Scholar] [CrossRef]
- Allen, K.; Higgins, S.; Adams, J. The Relationship between Visuospatial Working Memory and Mathematical Performance in School-Aged Children: A Systematic Review. Educ. Psychol. Rev. 2019, 31, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Cornoldi, C.; Vecchi, T. Visuo-Spatial Working Memory and Individual Differences; Psychology Press: London, UK, 2004. [Google Scholar]
- Holmes, J.; Adams, J.W.; Hamilton, C.J. The relationship between visuospatial sketchpad capacity and children’s mathematical skills. Eur. J. Cogn. Psychol. 2008, 20, 272–289. [Google Scholar] [CrossRef]
- Fanari, R.; Meloni, C.; Massidda, D. Visual and spatial working memory abilities predict early math skills: A longitudinal study. Front. Psychol. 2019, 10, 2460. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, I.C.; Borella, E.; Pastore, M.; Pazzaglia, F. The structure of visuospatial memory in adulthood. Learn. Individ. Differ. 2013, 25, 99–110. [Google Scholar] [CrossRef]
- Allen, K.; Giofre, D.; Higgins, S.; Adams, J. Using working memory performance to predict mathematics performance 2 years on. Psychol. Res. 2021, 85, 1986–1996. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Caviola, S.; Giofre, D.; Szucs, D. The underlying structure of visuospatial working memory in children with mathematical learning disability. Br. J. Dev. Psychol. 2018, 36, 220–235. [Google Scholar] [CrossRef]
- Allen, K.; Giofrè, D.; Higgins, S.; Adams, J. Working memory predictors of written mathematics in 7-to 8-year-old children. Q. J. Exp. Psychol. 2020, 73, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Button, K.S.; Ioannidis, J.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Prado, J.; Mutreja, R.; Zhang, H.; Mehta, R.; Desroches, A.S.; Minas, J.E.; Booth, J.R. Distinct representations of subtraction and multiplication in the neural systems for numerosity and language. Hum. Brain Mapp. 2011, 32, 1932–1947. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-M.; Kang, S.-Y. Arithmetic operation and working memory: Differential suppression in dual tasks. Cognition 2002, 83, B63–B68. [Google Scholar] [CrossRef]
- Imbo, I.; LeFevre, J.-A. The role of phonological and visual working memory in complex arithmetic for Chinese-and Canadian-educated adults. Mem. Cogn. 2010, 38, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Tsang, J.M.; Dougherty, R.F.; Deutsch, G.K.; Wandell, B.A.; Ben-Shachar, M. Frontoparietal white matter diffusion properties predict mental arithmetic skills in children. Proc. Natl. Acad. Sci. USA 2009, 106, 22546–22551. [Google Scholar] [CrossRef] [Green Version]
- van Eimeren, L.; Niogi, S.N.; McCandliss, B.D.; Holloway, I.D.; Ansari, D. White matter microstructures underlying mathematical abilities in children. Neuroreport 2008, 19, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Threlfall, J. Flexible mental calculation. Educ. Stud. Math. 2002, 50, 29–47. [Google Scholar] [CrossRef]
- Dowker, A.; Sheridan, H. Relationships between mathematics performance and attitudes to mathematics: Influences of gender, test anxiety and working memory. Front. Psychol. 2022, 13. [Google Scholar] [CrossRef]
- Hitch, G.J. The role of short-term working memory in mental arithmetic. Cogn. Psychol. 1978, 10, 302–323. [Google Scholar] [CrossRef]
- Proulx, J. Mental Mathematics and Operations on Functions; North American Chapter of the International Group for the Psychology of Mathematics Education: Nashville, TN, USA, 2014. [Google Scholar]
- Allen, L.; Dowker, A. Spatial Working Memory Counts: Evidence for a Specific Association Between Visuo-spatial Working Memory and Arithmetic in Children. Int. Electron. J. Elem. Educ. 2022, 14, 199–211. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodcock, R.W.; McGrew, K.S.; Mather, N. Woodcock-Johnson III Tests of Achievement; Riverside Publishing: Rolling Meadows, IL, USA, 2001. [Google Scholar]
- Pickering, S.J.; Gathercole, S.E. The Working Memory Test Battery for Children; The Psychological Corporation: Hove, UK, 2001. [Google Scholar]
- Swanson, H.L. Swanson Cognitive Processing Test (S-CPT): A Dynamic Assessment Measure; Pro-Ed: Austin, TX, USA, 1996. [Google Scholar]
- Fuchs, L.; Hamlett, C.; Powell, S. Grade 3 Math Battery; LS Fuchs, Department of Special Education, 328 Peabody, Vanderbilt University: Nashville, TN, USA, 2003. [Google Scholar]
- Fuchs, L.S.; Fuchs, D.; Eaton, S.B.; Hamlett, C.L.; Karns, K.M. Supplementing teacher judgments of mathematics test accommodations with objective data sources. Sch. Psychol. Rev. 2000, 29, 65–85. [Google Scholar] [CrossRef]
- Fuchs, L.; Hamlett, C.; Powell, S. Second-grade calculations battery. LS Fuchs 2003, 228. [Google Scholar] [CrossRef]
- Wechsler, D. The Wechsler Intelligence Scale for Children—Fourth Edition (Vol. 4); Wechsler, D., Kodama, H., Eds.; Psychological Corporation: New York, NY, USA, 2004. [Google Scholar]
- Wilkenson, G.; Jastak, J. Wide Range Achievement Test—Third Edition (WRAT-3). In Wilmington, DE: Wide Range; Springer: Boston, MA, USA, 1993. [Google Scholar]
- Corporation, P. Wechsler Individual Achievement Test; Wechsler, D., Ed.; Psychological Corporation: San Antonio, TX, USA, 1992. [Google Scholar]
- Lichtenberger, E.O. Stanford Diagnostic Mathematics Test–Fourth Edition (SDMT4). Encycl. Spec. Educ. 2008, 1915. [Google Scholar] [CrossRef]
- Haffner, J. HRT 1–4: Heidelberger Rechentest; Erfassung Mathematischer Basiskompetenzen im Grundschulalter; Hogrefe: Göttingen, Germany, 2005. [Google Scholar]
- Fisher, Z.; Tipton, E. Robumeta: An R-package for robust variance estimation in meta-analysis. arXiv 2015, arXiv:1503.02220. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Fisher, Z.; Tipton, E.; Zhipeng, H.; Fisher, M.Z. Package ‘Robumeta’. 2017. Available online: https://cran.r-project.org/web/packages/robumeta/robumeta.pdf (accessed on 22 November 2022).
- Daly, A.; Dekker, T.; Hess, S. Dummy coding vs effects coding for categorical variables: Clarifications and extensions. J. Choice Model. 2016, 21, 36–41. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, L.V.; Tipton, E.; Johnson, M.C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods 2010, 1, 39–65. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.; Giofre, D.; Higgins, S.; Adams, J. Working memory predictors of mathematics across the middle primary school years. Br. J. Educ. Psychol. 2020, 90, 848–869. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, B.; Bull, R.; Gray, C. The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educ. Child Psychol. 2003, 20, 93–108. [Google Scholar]
- Alloway, T.P.; Passolunghi, M.C. The relationship between working memory, IQ, and mathematical skills in children. Learn. Individ. Differ. 2011, 21, 133–137. [Google Scholar] [CrossRef]
- Noël, M.-P.; Désert, M.; Aubrun, A.; Seron, X. Involvement of short-term memory in complex mental calculation. Mem. Cogn. 2001, 29, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Cowan, N. An Embedded-Processes Model of Working Memory; Oxford Academic: Oxford, UK, 1999. [Google Scholar]
- Peng, P.; Namkung, J.; Barnes, M.; Sun, C. A meta-analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. J. Educ. Psychol. 2016, 108, 455–473. [Google Scholar] [CrossRef]
- Hitch, G.J.; Halliday, S.; Schaafstal, A.M.; Schraagen, J.M.C. Visual working memory in young children. Mem. Cogn. 1988, 16, 120–132. [Google Scholar] [CrossRef]
- Fürst, A.J.; Hitch, G.J. Separate roles for executive and phonological components of working memory in mental arithmetic. Mem. Cogn. 2000, 28, 774–782. [Google Scholar] [CrossRef] [Green Version]
- Zamarian, L.; Ischebeck, A.; Delazer, M. Neuroscience of learning arithmetic—Evidence from brain imaging studies. Neurosci. Biobehav. Rev. 2009, 33, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Dumontheil, I.; Klingberg, T. Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later. Cereb. Cortex 2012, 22, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Swanson, H.L. Word problem solving, working memory and serious math difficulties: Do cognitive strategies really make a difference? J. Appl. Res. Mem. Cogn. 2016, 5, 368–383. [Google Scholar] [CrossRef]
- Logie, R.H. Visuo-Spatial Working Memory; Psychology Press: London, UK, 2014. [Google Scholar]
- Caviola, S.; Colling, L.J.; Mammarella, I.C.; Szucs, D. Predictors of mathematics in primary school: Magnitude comparison, verbal and spatial working memory measures. Dev. Sci. 2020, 23, e12957. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Fuchs, D.; Compton, D.L.; Powell, S.R.; Seethaler, P.M.; Capizzi, A.M.; Schatschneider, C.; Fletcher, J.M. The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. J. Educ. Psychol. 2006, 98, 29–43. [Google Scholar] [CrossRef]
- Cavdaroglu, S.; Knops, A. Mental subtraction and multiplication recruit both phonological and visuospatial resources: Evidence from a symmetric dual-task design. Psychol. Res. 2016, 80, 608–624. [Google Scholar] [CrossRef]
- Robert, N.D.; LeFevre, J.-A. Ending up with less: The role of working memory in solving simple subtraction problems with positive and negative answers. Res. Math. Educ. 2013, 15, 165–176. [Google Scholar] [CrossRef]
- Liu, R.-D.; Ding, Y.; Xu, L.; Wang, J. Involvement of working memory in mental multiplication in Chinese elementary students. J. Educ. Res. 2017, 110, 380–390. [Google Scholar] [CrossRef]
- Hickendorff, M.; Torbeyns, J.; Verschaffel, L. Multi-digit addition, subtraction, multiplication, and division strategies. In International Handbook of Mathematical Learning Difficulties; Springer: Berlin/Heidelberg, Germany, 2019; pp. 543–560. [Google Scholar]
- Clearman, J.; linger, V.; Szucs, D. Visuospatial and verbal memory in mental arithmetic. Q. J. Exp. Psychol. 2017, 70, 1837–1855. [Google Scholar] [CrossRef] [PubMed]
- Ramani, G.B.; Jaeggi, S.M.; Daubert, E.N.; Buschkuehl, M. Domain-specific and domain-general training to improve kindergarten children’s mathematics. J. Numer. Cogn. 2017, 3, 468–495. [Google Scholar] [CrossRef] [Green Version]
- Arndt, D.; Sahr, K.; Opfermann, M.; Leutner, D.; Fritz, A. Core knowledge and working memory as prerequisites of early school arithmetic. S. Afr. J. Child. Educ. 2013, 3, 1–20. [Google Scholar] [CrossRef]
- Berg, D.H. Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. J. Exp. Child Psychol. 2008, 99, 288–308. [Google Scholar] [CrossRef]
- Ching, B.H.-H.; Nunes, T. The importance of additive reasoning in children’s mathematical achievement: A longitudinal study. J. Educ. Psychol. 2017, 109, 477. [Google Scholar] [CrossRef]
- Cirino, P.T.; Tolar, T.D.; Fuchs, L.S.; Huston-Warren, E. Cognitive and numerosity predictors of mathematical skills in middle school. J. Exp. Child Psychol. 2016, 145, 95–119. [Google Scholar] [CrossRef]
- Fuchs, L.S.; Fuchs, D.; Compton, D.L.; Hamlett, C.L.; Wang, A.Y. Is word-problem solving a form of text comprehension? Sci. Stud. Read. 2015, 19, 204–223. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, L.S.; Geary, D.C.; Compton, D.L.; Fuchs, D.; Hamlett, C.L.; Bryant, J.D. The contributions of numerosity and domain-general abilities to school readiness. Child Dev. 2010, 81, 1520–1533. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, L.S.; Gilbert, J.K.; Fuchs, D.; Seethaler, P.M.; Martin, B.N. Text comprehension and oral language as predictors of word-problem solving: Insights into word-problem solving as a form of text comprehension. Sci. Stud. Read. 2018, 22, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Georges, C.; Cornu, V.; Schiltz, C. Spatial skills first: The importance of mental rotation for arithmetic skill acquisition. J. Numer. Cogn. 2019, 5, 5–23. [Google Scholar] [CrossRef] [Green Version]
- de Magalhães, C.G.; Mervis, C.B.; Cardoso-Martins, C. Cognitive predictors of arithmetic, reading, and spelling in Brazilian Portuguese-speaking children. Read. Writ. 2021, 34, 171–198. [Google Scholar] [CrossRef]
- Holmes, J.; Adams, J.W. Working memory and children’s mathematical skills: Implications for mathematical development and mathematics curricula. Educ. Psychol. 2006, 26, 339–366. [Google Scholar] [CrossRef]
- Jordan, N.C.; Hansen, N.; Fuchs, L.S.; Siegler, R.S.; Gersten, R.; Micklos, D. Developmental predictors of fraction concepts and procedures. J. Exp. Child Psychol. 2013, 116, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Kleemans, T.; Segers, E.; Verhoeven, L. Cognitive and linguistic predictors of basic arithmetic skills: Evidence from first-language and second-language learners. Int. J. Disabil. Dev. Educ. 2014, 61, 306–316. [Google Scholar] [CrossRef]
- Korhonen, J.; Nyroos, M.; Jonsson, B.; Eklöf, H. Additive and multiplicative effects of working memory and test anxiety on mathematics performance in grade 3 students. Educ. Psychol. 2018, 38, 572–595. [Google Scholar] [CrossRef]
- Lan, X.; Legare, C.H.; Ponitz, C.C.; Li, S.; Morrison, F.J. Investigating the links between the subcomponents of executive function and academic achievement: A cross-cultural analysis of Chinese and American preschoolers. J. Exp. Child Psychol. 2011, 108, 677–692. [Google Scholar] [CrossRef]
- Lee, K.; Ng, S.F.; Bull, R.; Pe, M.L.; Ho, R.H.M. Are patterns important? An investigation of the relationships between proficiencies in patterns, computation, executive functioning, and algebraic word problems. J. Educ. Psychol. 2011, 103, 269. [Google Scholar] [CrossRef]
- LeFevre, J.-A.; Berrigan, L.; Vendetti, C.; Kamawar, D.; Bisanz, J.; Skwarchuk, S.-L.; Smith-Chant, B.L. The role of executive attention in the acquisition of mathematical skills for children in Grades 2 through 4. J. Exp. Child Psychol. 2013, 114, 243–261. [Google Scholar] [CrossRef]
- Lundberg, I.; Sterner, G. Reading, arithmetic, and task orientation—How are they related? Ann. Dyslexia 2006, 56, 361–377. [Google Scholar] [CrossRef]
- Martin, R.B.; Cirino, P.T.; Sharp, C.; Barnes, M. Number and counting skills in kindergarten as predictors of grade 1 mathematical skills. Learn. Individ. Differ. 2014, 34, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mix, K.S.; Levine, S.C.; Cheng, Y.-L.; Young, C.; Hambrick, D.Z.; Ping, R.; Konstantopoulos, S. Separate but correlated: The latent structure of space and mathematics across development. J. Exp. Psychol. Gen. 2016, 145, 1206. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Farran, E.K.; Dumontheil, I. Field independence associates with mathematics and science performance in 5-to 10-year-olds after accounting for domain-general factors. Mind Brain Educ. 2019, 13, 268–278. [Google Scholar] [CrossRef]
- Rivella, C.; Cornoldi, C.; Caviola, S.; Giofrè, D. Learning a new geometric concept: The role of working memory and of domain-specific abilities. Br. J. Educ. Psychol. 2021, 91, 1537–1554. [Google Scholar] [CrossRef] [PubMed]
- Scofield, J.E.; Hoard, M.K.; Nugent, L.; LaMendola, V.J.; Geary, D.C. Mathematics Clusters Reveal Strengths and Weaknesses in Adolescents’ Mathematical Competencies, Spatial Abilities, and Mathematics Attitudes. J. Cogn. Dev. 2021, 22, 695–720. [Google Scholar] [CrossRef]
- Seethaler, P.M.; Fuchs, L.S. The Cognitive Correlates of Computational Estimation Skill Among Third-Grade Students. Learn. Disabil. Res. Pract. 2006, 21, 233–243. [Google Scholar] [CrossRef]
- Seethaler, P.M.; Fuchs, L.S.; Star, J.R.; Bryant, J. The cognitive predictors of computational skill with whole versus rational numbers: An exploratory study. Learn. Individ. Differ. 2011, 21, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Simmons, F.R.; Willis, C.; Adams, A.-M. Different components of working memory have different relationships with different mathematical skills. J. Exp. Child Psychol. 2012, 111, 139–155. [Google Scholar] [CrossRef]
- Skagerlund, K.; Träff, U. Processing of space, time, and number contributes to mathematical abilities above and beyond domain-general cognitive abilities. J. Exp. Child Psychol. 2016, 143, 85–101. [Google Scholar] [CrossRef]
- Soltani, A.; Mirhosseini, S. The contribution of general cognitive abilities and specific number skills toward arithmetic performance in students with mild intellectual disability. Int. J. Disabil. Dev. Educ. 2020, 67, 547–562. [Google Scholar] [CrossRef]
- Swanson, H.L. Cross-sectional and incremental changes in working memory and mathematical problem solving. J. Educ. Psychol. 2006, 98, 265. [Google Scholar] [CrossRef]
- Swanson, H.L.; Fung, W. Working memory components and problem-solving accuracy: Are there multiple pathways? J. Educ. Psychol. 2016, 108, 1153. [Google Scholar] [CrossRef]
- Swanson, L.; Kim, K. Working memory, short-term memory, and naming speed as predictors of children’s mathematical performance. Intelligence 2007, 35, 151–168. [Google Scholar] [CrossRef]
- Träff, U. The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. J. Exp. Child Psychol. 2013, 116, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Träff, U.; Olsson, L.; Skagerlund, K.; Östergren, R. Cognitive mechanisms underlying third graders’ arithmetic skills: Expanding the pathways to mathematics model. J. Exp. Child Psychol. 2018, 167, 369–387. [Google Scholar] [CrossRef] [PubMed]
- Vukovic, R.K.; Kieffer, M.J.; Bailey, S.P.; Harari, R.R. Mathematics anxiety in young children: Concurrent and longitudinal associations with mathematical performance. Contemp. Educ. Psychol. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Vukovic, R.K.; Lesaux, N.K. The language of mathematics: Investigating the ways language counts for children’s mathematical development. J. Exp. Child Psychol. 2013, 115, 227–244. [Google Scholar] [CrossRef]
- Wong, T.T.Y. Is conditional reasoning related to mathematical problem solving? Dev. Sci. 2018, 21, e12644. [Google Scholar] [CrossRef]
- Xu, C.; Lafay, A.; Douglas, H.; Di Lonardo Burr, S.; LeFevre, J.-A.; Osana, H.P.; Skwarchuk, S.-L.; Wylie, J.; Simms, V.; Maloney, E.A. The role of mathematical language skills in arithmetic fluency and word-problem solving for first-and second-language learners. J. Educ. Psychol. 2022, 114, 513. [Google Scholar] [CrossRef]
- Xu, C.; LeFevre, J.-A.; Skwarchuk, S.-L.; Di Lonardo Burr, S.; Lafay, A.; Wylie, J.; Osana, H.P.; Douglas, H.; Maloney, E.A.; Simms, V. Individual differences in the development of children’s arithmetic fluency from grades 2 to 3. Dev. Psychol. 2021, 57, 1067. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X. The relationship between mental rotation and arithmetic: Do number line estimation, working memory, or place-value concept matter? Br. J. Educ. Psychol. 2021, 91, 793–810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Räsänen, P.; Koponen, T.; Aunola, K.; Lerkkanen, M.-K.; Nurmi, J.-E. Knowing, applying, and reasoning about arithmetic: Roles of domain-general and numerical skills in multiple domains of arithmetic learning. Dev. Psychol. 2017, 53, 2304. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Swanson, H.L.; Marcoulides, G.A. Working memory components as predictors of children’s mathematical word problem solving. J. Exp. Child Psychol. 2011, 110, 481–498. [Google Scholar] [CrossRef] [PubMed]
Task Descriptions | Examples | |
---|---|---|
WM Domains | ||
Verbal WM | Tasks that involve processing and maintaining verbal information. Verbal information includes both letters and digits. | Backward digit span, backward letter span, counting span, listening span, WJ-III Numbers Reversed [50], WMTB-C Listening Recall [51], sentence span |
Visuospatial WM | Tasks that involve processing and maintaining visual (i.e., object features such as shape, size, and colour) and/or spatial information (i.e., locations). | Forward or backward block span, Corsi block, visual matrix task, spatial-sequential span, spatial-simultaneous span, odd-one-out task, mapping and directions task, Mr. X task, maze memory, eye chart E task |
Composite WM | Tasks that involve processing and maintaining the information within more than one domain: verbal, visual, and spatial, or composite scores of WM tasks across domains. | Composite of odd-one-out, spatial recall, listening recall, backward word span, composite of colour span backward and digit span backward and listening span, composite of Corsi block and forward digit span and backward digit span |
Subtypes of Spatial WM | ||
Spatial-sequential WM | Tasks that require processing and recalling a sequence of spatial locations in a specific order. | Corsi block, the block forward span, the block backward span, automated symmetry span, spatial span, block recall, spatial-sequential task |
Spatial-simultaneous WM | Tasks that require recalling an array of spatial locations that have been presented simultaneously. | S-CPT visual matrix task [52], visual matrix span, spatial-simultaneous task |
Arithmetic Task Types | ||
Mental arithmetic | Arithmetical calculations performed mentally, with no help from any external apparatus or or devices such as writting figures down, usually with a short-time limit (e.g., 1 min for 25 calculations). | Fact Fluency subtests of the Grade 3 Math Battery [53], Test of Computational Fluency [54], Math fact fluency, Arithmetic fact retrieval, 2-grade calculations battery-arithmetic [55], WISC mental arithmetic [56] |
Written arithmetic | Arithmetical calculations performed with the help of external apparatus or devices such as pencil and paper. | Double-Digit Addition and Subtraction subtests of the Grade 3 Math Battery [53], WRAT-III arithmetic [57], WIAT numerical operations [58], SDMT-4 computation [59], KeyMath A arithmetic, The heidelberg mathematics test [60], BAS Arithmetic |
The Subgroup of Categorical Moderators | n | r | 95% CI | p | τ2 |
---|---|---|---|---|---|
Domains of WM | |||||
Verbal WM | 93 | 0.332 *** | [0.286, 0.379] | 0.000001 | 0.014 |
Visuospatial WM | 87 | 0.297 *** | [0.243, 0.350] | 0.000 | 0.013 |
Composite WM | 7 | 0.373 * | [0.216, 0.529] | 0.040 | 0.033 |
Spatial-sequential WM | 36 | 0.316 *** | [0.204, 0.428] | 0.000 | 0.030 |
Spatial-simultaneous WM | 20 | 0.257 *** | [0.231, 0.283] | 0.000 | 0.000 |
Operation Types | |||||
Addition | 12 | 0.208 ** | [0.121, 0.295] | 0.007 | 0.011 |
Subtraction | 7 | 0.210 * | [0.165, 0.255] | 0.019 | 0.000 |
Multiplication | 13 | 0.204 * | [0.136, 0.273] | 0.013 | 0.000 |
Division | 10 | 0.240 * | [0.185, 0.295] | 0.025 | 0.000 |
Additive domain | 63 | 0.289 *** | [0.244, 0.333] | 0.000 | 0.009 |
Multiplicative domain | 23 | 0.212 *** | [0.168, 0.256] | 0.000 | 0.000 |
Types of Arithmetic Tasks | |||||
Mental Arithmetic | 86 | 0.299 *** | [0.261, 0.337] | 0.000 | 0.008 |
Written Arithmetic | 98 | 0.311 *** | [0.265, 0.358] | 0.000 | 0.010 |
Variables | β | SE | t | 95% CI | p |
---|---|---|---|---|---|
Domains of WM | |||||
Verbal vs. visuospatial | −0.056 | 0.026 | −2.111 * | [−0.108, −0.004] | 0.041 |
Spatial-sequential vs. spatial-simultaneous | −0.159 | 0.086 | −1.860 | [−0.326, 0.012] | 0.083 |
Age | |||||
Age (the overall WM) | −0.001 | 0.001 | −1.639 | [−0.003, 0.000] | 0.109 |
Age (verbal WM) | −0.003 | 0.001 | −2.405 * | [−0.005, 0.000] | 0.023 |
Age (visuospatial WM) | −0.001 | 0.001 | −0.812 | [−0.004, 0.001] | 0.424 |
Age (spatial-sequential WM) | −0.005 | 0.003 | −1.760 | [−0.007, 0.004] | 0.107 |
Age (spatial-simultaneous WM) | 0.001 | 0.003 | 0.429 | [−0.005, 0.007] | 0.690 |
Operation Types | |||||
Additive vs. multiplicative (the overall WM) | −0.055 | 0.028 | −1.981 | [−0.110, −0.001] | 0.061 |
Additive vs. multiplicative (verbal WM) | −0.067 | 0.022 | −3.064 ** | [−0.110, −0.024] | 0.007 |
Additive vs. multiplicative (visuospatial WM) | 0.001 | 0.048 | 0.029 | [−0.092, 0.095] | 0.977 |
Types of Arithmetic Tasks | |||||
Mental vs. written (the overall WM) | −0.011 | 0.027 | −0.422 | [−0.063, 0.041] | 0.675 |
Mental vs. written (verbal WM) | −0.022 | 0.036 | −0.619 | [−0.081, 0.058] | 0.541 |
Mental vs. written (visuospatial WM) | 0.056 | 0.043 | 1.305 | [−0.096, 0.074] | 0.203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tolmie, A.; Gordon, R. The Relationship between Working Memory and Arithmetic in Primary School Children: A Meta-Analysis. Brain Sci. 2023, 13, 22. https://doi.org/10.3390/brainsci13010022
Zhang Y, Tolmie A, Gordon R. The Relationship between Working Memory and Arithmetic in Primary School Children: A Meta-Analysis. Brain Sciences. 2023; 13(1):22. https://doi.org/10.3390/brainsci13010022
Chicago/Turabian StyleZhang, Yuxin, Andrew Tolmie, and Rebecca Gordon. 2023. "The Relationship between Working Memory and Arithmetic in Primary School Children: A Meta-Analysis" Brain Sciences 13, no. 1: 22. https://doi.org/10.3390/brainsci13010022
APA StyleZhang, Y., Tolmie, A., & Gordon, R. (2023). The Relationship between Working Memory and Arithmetic in Primary School Children: A Meta-Analysis. Brain Sciences, 13(1), 22. https://doi.org/10.3390/brainsci13010022