Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. American Board of Anesthesiology-Style Standardized Oral Board Exam
2.3. EEG Data Acquisition
2.4. Measures
2.5. Observational Assessment of Decision-Making Performance
2.6. Data Analysis
3. Results
3.1. Demographics
3.2. Self-Report and Observational Measures
3.3. Change in Individual EEG Features across Expertise Levels
3.4. Development of Evaluation Models for Performance and Cognitive Load Using EEG Features
4. Discussion
4.1. Reading Phase
4.2. Answer 1 Phase
4.3. Answer 2 Phase
4.4. EEG Features for Predicting Clinical Reasoning Performance and Cognitive Load
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eva, K.W. What every teacher needs to know about clinical reasoning. Med. Educ. 2005, 39, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Higgs, J.; Ellis, E. Factors influencing clinical decision making. Clin. Reason. Health Prof. 2008, 3, 89–100. [Google Scholar]
- Croskerry, P. Adaptive expertise in medical decision making. Med. Teach. 2018, 40, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.B.T. Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D.; Frederick, S. Representativeness Revisited: Attribute Substitution in Intuitive Judgment. In Heuristics and Biases; Cambrige University Press: Cambridge, UK, 2002; pp. 49–81. [Google Scholar]
- Rumelhart, D.E. Understanding understanding. In Memories, Thoughts and Emotions: Essays in Honor of George Mandler; Psychology Press: London, UK, 1991; pp. 257–275. [Google Scholar]
- Glaser, R. Education and thinking: The role of knowledge. Am. Psychol. 1984, 39, 93. [Google Scholar] [CrossRef]
- ten Cate, O.; Durning, S.J. Understanding Clinical Reasoning from Multiple Perspectives: A Conceptual and Theoretical Overview. In Principles and Practice of Case-Based Clinical Reasoning Education: A Method for Preclinical Students; ten Cate, O., Custers, E., Durning, S.J., Eds.; Springer: Cham, Switzerland, 2018; pp. 35–46. [Google Scholar]
- Haier, R.J.; Siegel, B.V.; MacLachlan, A.; Soderling, E.; Lottenberg, S.; Buchsbaum, M.S. Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Res. 1992, 570, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.; Freudenthaler, H.H.; Pfurtscheller, G. Intelligence and spatiotemporal patterns of event-related desynchronization (ERD). Intelligence 1995, 20, 249–266. [Google Scholar] [CrossRef]
- Neubauer, A.C.; Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef]
- Grabner, R.; Fink, A.; Stipacek, A.; Neuper, C.; Neubauer, A. Intelligence and working memory systems: Evidence of neural efficiency in alpha band ERD. Cogn. Brain Res. 2004, 20, 212–225. [Google Scholar] [CrossRef]
- Smith, E.E.; Jonides, J. Storage and Executive Processes in the Frontal Lobes. Science 1999, 283, 1657–1661. [Google Scholar] [CrossRef]
- Antonenko, P.D.; van Gog, T.; Paas, F. Implications of neuroimaging for educational research. In Handbook of Research on Educational Communications and Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 51–63. [Google Scholar]
- Antonenko, P.; Paas, F.; Grabner, R.; van Gog, T. Using Electroencephalography to Measure Cognitive Load. Educ. Psychol. Rev. 2010, 22, 425–438. [Google Scholar] [CrossRef]
- Genon, S.; Reid, A.; Langner, R.; Amunts, K.; Eickhoff, S.B. How to Characterize the Function of a Brain Region. Trends Cogn. Sci. 2018, 22, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Zarjam, P.; Epps, J.; Lovell, N.H. Beyond Subjective Self-Rating: EEG Signal Classification of Cognitive Workload. IEEE Trans. Auton. Ment. Dev. 2015, 7, 301–310. [Google Scholar] [CrossRef]
- Toy, S.; Huh, D.D.; Materi, J.; Nanavati, J.; Schwengel, D.A. Use of neuroimaging to measure neurocognitive engagement in health professions education: A scoping review. Med. Educ. Online 2022, 27, 2016357. [Google Scholar] [CrossRef] [PubMed]
- I Rotgans, J.; Schmidt, H.G.; Rosby, L.V.; Tan, G.J.S.; Mamede, S.; Zwaan, L.; Low-Beer, N. Evidence supporting dual-process theory of medical diagnosis: A functional near-infrared spectroscopy study. Med. Educ. 2019, 53, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Hruska, P.; Krigolson, O.; Coderre, S.; McLaughlin, K.; Cortese, F.; Doig, C.; Beran, T.; Wright, B.; Hecker, K.G. Erratum to: Working memory, reasoning, and expertise in medicine-insights into their relationship using functional neuroimaging. Adv. Health Sci. Educ. Theory Pract. 2016, 21, 935–952. [Google Scholar] [CrossRef] [PubMed]
- Hruska, P.; Hecker, K.G.; Coderre, S.; McLaughlin, K.; Cortese, F.; Doig, C.; Beran, T.; Wright, B.; Krigolson, O. Hemispheric activation differences in novice and expert clinicians during clinical decision making. Adv. Health Sci. Educ. Theory Pract. 2016, 21, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Durning, S.J.; Graner, J.; Artino, A.R.; Pangaro, L.N.; Beckman, T.; Holmboe, E.; Oakes, T.; Roy, M.; Riedy, G.; Capaldi, V.; et al. Using Functional Neuroimaging Combined with a Think-Aloud Protocol to Explore Clinical Reasoning Expertise in Internal Medicine. Mil. Med. 2012, 177 (Suppl. S9), 72–78. [Google Scholar] [CrossRef]
- Atchley, R.; Klee, D.; Oken, B. EEG Frequency Changes Prior to Making Errors in an Easy Stroop Task. Front. Hum. Neurosci. 2017, 11, 521. [Google Scholar] [CrossRef]
- Tafuro, A.; Ambrosini, E.; Puccioni, O.; Vallesi, A. Brain oscillations in cognitive control: A cross-sectional study with a spatial stroop task. Neuropsychologia 2019, 133, 107190. [Google Scholar] [CrossRef]
- Horinouchi, T.; Watanabe, T.; Kuwabara, T.; Matsumoto, T.; Yunoki, K.; Ito, K.; Ishida, H.; Kirimoto, H. Reaction time and brain oscillations in Go/No-go tasks with different meanings of stimulus color. Cortex 2023, 169, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Smith, M.E.; Leong, H.; McEvoy, L.; Whitfield, S.; Du, R.; Rush, G. Monitoring Working Memory Load during Computer-Based Tasks with EEG Pattern Recognition Methods. Hum. Factors J. Hum. Factors Ergon. Soc. 1998, 40, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; McEvoy, L.K.; Gevins, A. Neurophysiological indices of strategy development and skill acquisition. Cogn. Brain Res. 1999, 7, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Chikhi, S.; Matton, N.; Blanchet, S. EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology 2022, 59, e14009. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Siegel, S.N.; Liu, Y.; Bengson, J.; Mangun, G.R.; Ding, M. Theta Oscillations Index Frontal Decision-Making and Mediate Reciprocal Frontal–Parietal Interactions in Willed Attention. Cereb. Cortex 2019, 29, 2832–2843. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.; Mazaheri, A. Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Front. Hum. Neurosci. 2010, 4, 186. [Google Scholar] [CrossRef]
- Lim, S.; Yeo, M.; Yoon, G. Comparison between Concentration and Immersion Based on EEG Analysis. Sensors 2019, 19, 1669. [Google Scholar] [CrossRef]
- Schmidt, R.; Ruiz, M.H.; Kilavik, B.E.; Lundqvist, M.; A Starr, P.; Aron, A.R. Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function. J. Neurosci. 2019, 39, 8231–8238. [Google Scholar] [CrossRef]
- Maddox, M.M.; Lopez, A.; Mandava, S.H.; Boonjindasup, A.; Viriyasiripong, S.; Silberstein, J.L.; Lee, B.R. Electroencephalographic monitoring of brain wave activity during laparoscopic surgical simulation to measure surgeon concentration and stress: Can the student become the master? J. Endourol. 2015, 29, 1329–1333. [Google Scholar] [CrossRef]
- Nowak, M.; Zich, C.; Stagg, C.J. Motor cortical gamma oscillations: What have we learnt and where are we headed? Curr. Behav. Neurosci. Rep. 2018, 5, 136–142. [Google Scholar] [CrossRef]
- Cohen, M.X. Where does EEG come from and what does it mean? Trends Neurosci. 2017, 40, 208–218. [Google Scholar] [CrossRef]
- Kamzanova, A.; Matthews, G.; Kustubayeva, A. EEG Coherence Metrics for Vigilance: Sensitivity to Workload, Time-on-Task, and Individual Differences. Appl. Psychophysiol. Biofeedback 2020, 45, 183–194. [Google Scholar] [CrossRef]
- Srinivasan, R.; Winter, W.R.; Ding, J.; Nunez, P.L. EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods 2007, 166, 41–52. [Google Scholar] [CrossRef]
- GitHub. XDF File Format. Available online: https://github.com/sccn/xdf/wiki/Specifications (accessed on 20 December 2018).
- Aldekhyl, S.; Cavalcanti, R.B.; Naismith, L.M. Cognitive load predicts point-of-care ultrasound simulator performance. Perspect. Med. Educ. 2018, 7, 23–32. [Google Scholar] [CrossRef]
- Toy, S.; Miller, C.R.; Guris, R.J.M.D.; Duarte, S.S.; Koessel, S.; Schiavi, A. Evaluation of 3 Cognitive Load Measures During Repeated Simulation Exercises for Novice Anesthesiology Residents. Simul. Healthc. 2020, 15, 388–396. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [Google Scholar] [CrossRef]
- Deuschl, G.; Eisen, A. Recommendations for the practice of clinical neurophysiology. In Guidelines of the International Federation of Clinical Neurophysiology; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Roach, B.J.; Mathalon, D.H. Event-Related EEG Time-Frequency Analysis: An Overview of Measures and An Analysis of Early Gamma Band Phase Locking in Schizophrenia. Schizophr. Bull. 2008, 34, 907–926. [Google Scholar] [CrossRef]
- Toy, S.; Ozsoy, S.; Shafiei, S.; Antonenko, P.; Schwengel, D. Using electroencephalography to explore neurocognitive correlates of procedural proficiency: A pilot study to compare experts and novices during simulated endotracheal intubation. Brain Cogn. 2023, 165, 105938. [Google Scholar] [CrossRef]
- Sauseng, P.; Klimesch, W.; Schabus, M.; Doppelmayr, M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 2005, 57, 97–103. [Google Scholar] [CrossRef]
- Sarnthein, J.; Petsche, H.; Rappelsberger, P.; Shaw, G.L.; von Stein, A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc. Natl. Acad. Sci. USA 1998, 95, 7092–7096. [Google Scholar] [CrossRef]
- Weiss, S.; Rappelsberger, P. Long-range EEG synchronization during word encoding correlates with successful memory performance. Cogn. Brain Res. 2000, 9, 299–312. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, X.; Bengson, J.J.; Kelley, T.A.; Ding, M.; Mangun, G.R. Deciding where to attend: Large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis. NeuroImage 2017, 157, 45–60. [Google Scholar] [CrossRef]
- Szczepanski, S.M.; Crone, N.E.; Kuperman, R.A.; Auguste, K.I.; Parvizi, J.; Knight, R.T. Dynamic Changes in Phase-Amplitude Coupling Facilitate Spatial Attention Control in Fronto-Parietal Cortex. PLoS Biol. 2014, 12, e1001936. [Google Scholar] [CrossRef]
- Mizuhara, H.; Yamaguchi, Y. Human cortical circuits for central executive function emerge by theta phase synchronization. NeuroImage 2007, 36, 232–244. [Google Scholar] [CrossRef]
Task | Frequency Band | Fellows’ Mean (SD) | Residents’ Mean (SD) | Coherence Channel 1 | Coherence Channel 2 | p-Value |
---|---|---|---|---|---|---|
Reading | Theta | 0.13 (0.11) | 0.52(0.34) | FC5 | FC6 | 0.009 |
0.30 (0.35) | 0.03 (0.03) | P7 | F8 | 0.047 | ||
Alpha | 0.19 (0.15) | 0.52 (0.35) | F7 | FC6 | 0.029 | |
0.20 (0.15) | 0.51 (0.360 | FC5 | FC6 | 0.038 | ||
Gamma | 0.11 (0.16) | 0.41 (0.31) | O1 | T8 | 0.033 | |
0.68 (0.26) | 0.32 (0.27) | P8 | F8 | 0.017 | ||
Answer 1 Main Question | Theta | 0.40 (0.29) | 0.14 (0.15) | F7 | F8 | 0.038 |
Beta | 0.53 (0.25) | 0.27 (0.22) | F7 | F8 | 0.047 | |
Gamma | 0.51 (0.27) | 0.22 (0.18) | F7 | F8 | 0.028 | |
0.17 (0.12) | 0.50 (0.30) | P7 | T8 | 0.013 | ||
Answer 2 Random Question | Beta | 0.11 (0.15) | 0.40 (0.35) | F3 | T7 | 0.046 |
Gamma | 0.06 (0.07) | 0.44 (0.36) | F3 | T7 | 0.010 | |
0.07 (0.07) | 0.34 (0.32) | O1 | T8 | 0.034 | ||
0.05 (0.04) | 0.31 (0.33) | O1 | FC6 | 0.043 | ||
0.15 (0.18) | 0.46 (0.35) | O1 | F4 | 0.045 | ||
0.05 (0.03) | 0.30 (0.32) | O1 | AF4 | 0.042 |
Variable | Coefficient | Std. Error | p-Value |
---|---|---|---|
(Intercept) | 77.919 | 9.733 | <0.001 |
Reading, Gamma coherence between F7 and FC5 | −18.418 | 10.17 | 0.130 |
Reading, Gamma coherence between P8 and F8 | 10.723 | 12.374 | 0.426 |
Reading, Gamma coherence between T8 and AF4 | 4.453 | 13.226 | 0.750 |
Answer 1, Beta coherence between F7 and F8 | 30.216 | 13.823 | 0.081 |
Answer 1, Gamma coherence between P7 and T8 | −17.316 | 18.468 | 0.391 |
Answer 2, Alpha coherence between P7 and P8 | −6.21 | 13.38 | 0.662 |
Answer 2, Gamma coherence between F7 and F3 | −9.002 | 14.823 | 0.570 |
Answer 2, Gamma coherence between F3 and T7 | −4.092 | 11.078 | 0.727 |
Answer 2, Gamma coherence between O1 and F8 | −25.169 | 14.786 | 0.149 |
Beta power (PSD), channel F7 | −4.811 | 18.055 | 0.800 |
Variable | Coefficient | Std. Error | p-Value |
---|---|---|---|
(Intercept) | 0.59433 | 0.03666 | <0.001 |
Answer 1, Theta coherence between F4 and F8 | 0.16768 | 0.06632 | 0.026 |
Answer 2, Theta coherence between F7 and AF4 | −0.25325 | 0.05181 | <0.001 |
Answer 2, Alpha power (PSD), channel F3 | 0.12333 | 0.07644 | 0.132607 |
Study Measures | Results | Discussion |
---|---|---|
Cognitive Load | No difference between groups, p = 0.840 | Oral examinations require concentration. |
Performance | Fellows outperformed novices, p < 0.001 | Fellows had years of experience and practice taking this type of examination. |
Power Spectral Density | No difference between groups | |
Coherence Analysis by examination phases | ||
Reading Clinical Vignette |
| |
Answer 1—the main segment of examination based on the clinical vignette |
|
|
Answer 2—questions on a new case without reading preparation. Everything is verbal |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toy, S.; Shafiei, S.B.; Ozsoy, S.; Abernathy, J.; Bozdemir, E.; Rau, K.K.; Schwengel, D.A. Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography. Brain Sci. 2023, 13, 1661. https://doi.org/10.3390/brainsci13121661
Toy S, Shafiei SB, Ozsoy S, Abernathy J, Bozdemir E, Rau KK, Schwengel DA. Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography. Brain Sciences. 2023; 13(12):1661. https://doi.org/10.3390/brainsci13121661
Chicago/Turabian StyleToy, Serkan, Somayeh B. Shafiei, Sahin Ozsoy, James Abernathy, Eda Bozdemir, Kristofer K. Rau, and Deborah A. Schwengel. 2023. "Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography" Brain Sciences 13, no. 12: 1661. https://doi.org/10.3390/brainsci13121661
APA StyleToy, S., Shafiei, S. B., Ozsoy, S., Abernathy, J., Bozdemir, E., Rau, K. K., & Schwengel, D. A. (2023). Neurocognitive Correlates of Clinical Decision Making: A Pilot Study Using Electroencephalography. Brain Sciences, 13(12), 1661. https://doi.org/10.3390/brainsci13121661