Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size Calculation
2.4. Motor Function Assessment
2.5. Repetitive Transcranial Magnetic Stimulation and MEP Measurement
2.6. Resting-State Functional Magnetic Resonance Imaging Acquisition
2.7. MRI Data Preprocessing and Analysis
2.8. Statistical Analysis
3. Results
3.1. Clinical and Functional Characteristics
3.2. Assessment of Upper Extremity Motor Function
3.3. Assessment of MEPs
3.4. Regions with Increased Functional Connectivity in the 20-Session rTMS Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barthels, D.; Das, H. Current advances in ischemic stroke research and therapies. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2020, 1866, 165260. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Li, Z.-X.; Gu, H.-Q.; Zhai, Y.; Zhou, Q.; Jiang, Y.; Zhao, X.-Q.; Wang, Y.-L.; Yang, X.; Wang, C.-J.; et al. China Stroke Statistics: An update on the 2019 report from the National Center for Healthcare Quality Management in Neurological Diseases, China National Clinical Research Center for Neurological Diseases, the Chinese Stroke Association, National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention and Institute for Global Neuroscience and Stroke Collaborations. Stroke Vasc. Neurol. 2022, 7, 415–450. [Google Scholar] [CrossRef] [PubMed]
- Velde, A.T.; Morgan, C.; Finch-Edmondson, M.; McNamara, L.; McNamara, M.; Paton, M.C.B.; Stanton, E.; Webb, A.; Badawi, N.; Novak, I. Neurodevelopmental Therapy for Cerebral Palsy: A Meta-analysis. Pediatrics 2022, 149, e2021055061. [Google Scholar] [CrossRef] [PubMed]
- Ghrouz, A.; Marco, E.; Muñoz-Redondo, E.; Boza, R.; Ramirez-Fuentes, C.; Duarte, E. The effect of motor relearning on balance, mobility and performance of activities of daily living among post-stroke patients: Study protocol for a randomised controlled trial. Eur. Stroke J. 2022, 7, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Alsubiheen, A.M.; Choi, W.; Yu, W.; Lee, H. The Effect of Task-Oriented Activities Training on Upper-Limb Function, Daily Activities, and Quality of Life in Chronic Stroke Patients: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 14125. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Jin, Y.; Wu, D.; Cun, Y.; Zhang, C.; Peng, Y.; Chen, N.; Yang, X.; Zhang, S.; Ning, R.; et al. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front. Neurosci. 2023, 17, 1177283. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Kim, W.; Rosselin, C.; Amatya, B.; Hafezi, P.; Khan, F. Repetitive transcranial magnetic stimulation for management of post-stroke impairments: An overview of systematic reviews. J. Rehabil. Med. 2020, 52, jrm00015. [Google Scholar] [CrossRef]
- Baur, D.; Galevska, D.; Hussain, S.; Cohen, L.G.; Ziemann, U.; Zrenner, C. Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor μ-rhythm. Brain Stimul. 2020, 13, 1580–1587. [Google Scholar] [CrossRef]
- Buetefisch, C.M.; Wei, L.; Gu, X.; Epstein, C.M.; Yu, S.P. Neuroprotection of Low-Frequency Repetitive Transcranial Magnetic Stimulation after Ischemic Stroke in Rats. Ann. Neurol. 2023, 93, 336–347. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, B.-M.; Park, S.-H.; Han, T.R. Low-Frequency Repetitive Transcranial Magnetic Stimulation in the Early Subacute Phase of Stroke Enhances Angiogenic Mechanisms in Rats. Ann. Rehabil. Med. 2022, 46, 228–236. [Google Scholar] [CrossRef]
- Cao, H.; Zuo, C.; Gu, Z.; Huang, Y.; Yang, Y.; Zhu, L.; Jiang, Y.; Wang, F. High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis. Redox Biol. 2022, 54, 102354. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Y.; Li, Y.; Lu, Y.; Wang, Z. Comparative Efficacy of Different Repetitive Transcranial Magnetic Stimulation Protocols for Stroke: A Network Meta-Analysis. Front. Neurol. 2022, 13, 918786. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Huang, Y.-Z.; Chen, C.-Y.; Chen, C.-L.; Chen, H.-C.; Wu, C.-Y.; Lin, K.-C.; Chang, T.-L. Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: A pilot randomized controlled trial. BMC Neurol. 2019, 19, 69. [Google Scholar] [CrossRef]
- Ye, E.; Lee, S.; Park, W.; Park, E.; Cho, D.-W.; Jang, J.; Park, S.-M. In Vitro study of neurochemical changes following low-intensity magnetic stimulation. IEEE Access 2020, 8, 194363–194372. [Google Scholar] [CrossRef]
- Manganotti, P.; Acler, M.; Zanette, G.P.; Smania, N.; Fiaschi, A. Motor cortical disinhibition during early and late recovery after stroke. Neurorehabil. Neural Repair 2008, 22, 396–403. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Zhou, H.; Xu, Y.; Zhang, H.; Yang, W.; Tang, X.; Wang, J.; Lv, Y.; Yan, P.; et al. Enriched Rehabilitation Improves Gait Disorder and Cognitive Function in Parkinson’s Disease: A Randomized Clinical Trial. Front. Neurosci. 2021, 15, 733311. [Google Scholar] [CrossRef]
- Wanleenuwat, P.; Suntharampillai, N.; Iwanowski, P. Antibiotic-induced epileptic seizures: Mechanisms of action and clinical considerations. Seizure 2020, 81, 167–174. [Google Scholar] [CrossRef]
- Chow, S.C.; Shao, J.; Wang, H.; Lokhnygina, Y. Sample Size Calculations in Clinical Research; CRC Press: Boca Raton, FL, USA, 2017; p. 71. [Google Scholar]
- Kim, S.-H.; Ji, D.-M.; Kim, C.-Y.; Choi, S.-B.; Joo, M.-C.; Kim, M.-S. Therapeutic Effects of a Newly Developed 3D Magnetic Finger Rehabilitation Device in Subacute Stroke Patients: A Pilot Study. Brain Sci. 2022, 12, 113. [Google Scholar] [CrossRef]
- Meng, L.; Jiang, X.; Qin, H.; Fan, J.; Zeng, Z.; Chen, C.; Zhang, A.; Dai, C.; Wu, X.; Akay, Y.M.; et al. Automatic Upper-Limb Brunnstrom Recovery Stage Evaluation via Daily Activity Monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2589–2599. [Google Scholar] [CrossRef]
- Deng, Z.-D.; Lisanby, S.H.; Peterchev, A.V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.; Nenonen, J.; Stenroos, M.; Gramfort, A.; Dalal, S.S.; Westner, B.U.; Litvak, V.; Mosher, J.C.; Schoffelen, J.-M.; Witton, C.; et al. Comparison of beamformer implementations for MEG source localization. NeuroImage 2020, 216, 116797. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.-Z.; Wang, J.; Sun, H.-Y.; Zhang, H.; Liao, W.; Wang, Z.; Yan, C.-G.; Song, X.-W.; Zang, Y.-F. RESTplus: An improved toolkit for resting-state functional magnetic resonance imaging data processing. Sci. Bull. 2019, 64, 953–954. [Google Scholar] [CrossRef]
- Aston-Mourney, K.; McLeod, J.; Rivera, L.R.; McNeill, B.A.; Baldi, D.L. Prior degree and academic performance in medical school: Evidence for prioritising health students and moving away from a bio-medical science-focused entry stream. BMC Med. Educ. 2022, 22, 700. [Google Scholar] [CrossRef] [PubMed]
- Mekbib, D.B.; Zhao, Z.; Wang, J.; Xu, B.; Zhang, L.; Cheng, R.; Fang, S.; Shao, Y.; Yang, W.; Han, J.; et al. Proactive Motor Functional Recovery Following Immersive Virtual Reality–Based Limb Mirroring Therapy in Patients with Subacute Stroke. Neurotherapeutics 2020, 17, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Ma, W.; Wang, Q.; Pan, X.; Wang, Y.; Han, C.; Meng, P. The Effect of Repetitive Transcranial Magnetic Stimulation of Cerebellar Swallowing Cortex on Brain Neural Activities: A Resting-State fMRI Study. Front. Hum. Neurosci. 2022, 16, 802996. [Google Scholar] [CrossRef]
- Hiragami, S.; Inoue, Y.; Harada, K. Minimal clinically important difference for the Fugl-Meyer assessment of the upper extremity in convalescent stroke patients with moderate to severe hemiparesis. J. Phys. Ther. Sci. 2019, 31, 917–921. [Google Scholar] [CrossRef]
- Nowak, D.A.; Grefkes, C.; Ameli, M.; Fink, G.R. Interhemispheric competition after stroke: Brain stimulation to enhance recovery of function of the affected hand. Neurorehabil. Neural Repair 2009, 23, 641–656. [Google Scholar] [CrossRef]
- Tang, Z.; Han, K.; Wang, R.; Zhang, Y.; Zhang, H. Excitatory Repetitive Transcranial Magnetic Stimulation Over the Ipsilesional Hemisphere for Upper Limb Motor Function After Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2022, 13, 918597. [Google Scholar] [CrossRef]
- Hordacre, B.; Austin, D.; Brown, K.E.; Graetz, L.; Pareés, I.; De Trane, S.; Vallence, A.-M.; Koblar, S.; Kleinig, T.; McDonnell, M.N.; et al. Evidence for a Window of Enhanced Plasticity in the Human Motor Cortex Following Ischemic Stroke. Neurorehabil. Neural Repair 2021, 35, 307–320. [Google Scholar] [CrossRef]
- Dromerick, A.W.; Geed, S.; Barth, J.; Brady, K.; Giannetti, M.L.; Mitchell, A.; Edwardson, M.A.; Tan, M.T.; Zhou, Y.; Newport, E.L.; et al. Critical Period After Stroke Study (CPASS): A phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc. Natl. Acad. Sci. USA 2021, 118, e2026676118. [Google Scholar] [CrossRef]
- Du, J.; Tian, L.; Liu, W.; Hu, J.; Xu, G.; Ma, M.; Fan, X.; Ye, R.; Jiang, Y.; Yin, Q.; et al. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: A randomized controlled trial. Eur. J. Neurol. 2016, 23, 1666–1672. [Google Scholar] [CrossRef]
- Lüdemann-Podubecká, J.; Bösl, K.; Theilig, S.; Wiederer, R.; Nowak, D.A. The Effectiveness of 1Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance. Brain Stimul. 2015, 8, 823–830. [Google Scholar] [CrossRef]
- Takeuchi, N.; Tada, T.; Chuma, T.; Matsuo, Y.; Ikoma, K.; Dennis, A.; Bosnell, R.; Dawes, H.; Howells, K.; Cockburn, J.; et al. Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke. Stroke 2007, 38, 1551–1556. [Google Scholar] [CrossRef]
- Poh, E.Z.; Hahne, D.; Moretti, J.; Harvey, A.R.; Clarke, M.W.; Rodger, J. Simultaneous quantification of dopamine, serotonin, their metabolites and amino acids by LC-MS/MS in mouse brain following repetitive transcranial magnetic stimulation. Neurochem. Int. 2019, 131, 104546. [Google Scholar] [CrossRef]
- Leblhuber, F.; Geisler, S.; Ehrlich, D.; Steiner, K.; Reibnegger, G.; Fuchs, D.; Kurz, K. Repetitive transcranial magnetic stimulation in the treatment of resistant depression: Changes of specific neurotransmitter precursor amino acids. J. Neural Transm. 2021, 128, 1225–1231. [Google Scholar] [CrossRef]
- Choung, J.S.; Kim, J.M.; Ko, M.-H.; Cho, D.S.; Kim, M. Therapeutic efficacy of repetitive transcranial magnetic stimulation in an animal model of Alzheimer’s disease. Sci. Rep. 2021, 11, 437. [Google Scholar] [CrossRef]
- Berghuis, K.; Fagioli, S.; Maurits, N.; Zijdewind, I.; Marsman, J.; Hortobágyi, T.; Koch, G.; Bozzali, M. Age-related changes in brain deactivation but not in activation after motor learning. NeuroImage 2019, 186, 358–368. [Google Scholar] [CrossRef]
- Krauth, R.; Schwertner, J.; Vogt, S.; Lindquist, S.; Sailer, M.; Sickert, A.; Lamprecht, J.; Perdikis, S.; Corbet, T.; Millán, J.d.R.; et al. Cortico-Muscular Coherence Is Reduced Acutely Post-stroke and Increases Bilaterally During Motor Recovery: A Pilot Study. Front. Neurol. 2019, 10, 126. [Google Scholar] [CrossRef]
- Weitnauer, L.; Frisch, S.; Melie-Garcia, L.; Preisig, M.; Schroeter, M.L.; Sajfutdinow, I.; Kherif, F.; Draganski, B. Mapping grip force to motor networks. NeuroImage 2021, 229, 117735. [Google Scholar] [CrossRef]
- Xu, G.; Huo, C.; Yin, J.; Li, W.; Xie, H.; Li, X.; Li, Z.; Wang, Y.; Wang, D. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke. Med. Phys. 2022, 49, 3333–3346. [Google Scholar] [CrossRef]
- Harry, B.B.; Margulies, D.S.; Falkiewicz, M.; Keller, P.E. Brain networks for temporal adaptation, anticipation, and sensory-motor integration in rhythmic human behavior. Neuropsychologia 2023, 183, 108524. [Google Scholar] [CrossRef]
- Hayward, K.S.; Ferris, J.K.; Lohse, K.R.; Borich, M.R.; Borstad, A.; Cassidy, J.M.; Cramer, S.C.; Dukelow, S.P.; Findlater, S.E.; Hawe, R.L.; et al. Observational Study of Neuroimaging Biomarkers of Severe Upper Limb Impairment After Stroke. Neurology 2022, 99, e402–e413. [Google Scholar] [CrossRef]
- Kropf, E.; Syan, S.K.; Minuzzi, L.; Frey, B.N. From anatomy to function: The role of the somatosensory cortex in emotional regulation. Rev. Bras. Psiquiatr. 2019, 41, 261–269. [Google Scholar] [CrossRef]
- Lloyd, D.M.; McGlone, F.P.; Yosipovitch, G. Somatosensory pleasure circuit: From skin to brain and back. Exp. Dermatol. 2015, 24, 321–324. [Google Scholar] [CrossRef]
- Lee, B.; Kim, J.S.; Chung, C.K. Parietal and medial temporal lobe interactions in working memory goal-directed behavior. Cortex 2022, 150, 126–136. [Google Scholar] [CrossRef]
- Rolls, E.T.; Wirth, S.; Deco, G.; Huang, C.; Feng, J. The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum. Brain Mapp. 2023, 44, 629–655. [Google Scholar] [CrossRef]
- Hausman, H.K.; Hardcastle, C.; Albizu, A.; Kraft, J.N.; Evangelista, N.D.; Boutzoukas, E.M.; Langer, K.; O’Shea, A.; Van Etten, E.J.; Bharadwaj, P.K.; et al. Cingulo-opercular and frontoparietal control network connectivity and executive functioning in older adults. GeroScience 2022, 44, 847–866. [Google Scholar] [CrossRef]
Characteristics | Control Group (n = 18) | 10-Session rTMS Group (n = 18) | 20-Session rTMS Group (n = 18) | 30-Session rTMS Group (n = 18) | p |
---|---|---|---|---|---|
Age (years) | 57.8 ± 17.6 | 58.0 ± 12.3 | 57.3 ± 11.5 | 57.6 ± 11.7 | 0.99 |
Sex (M) | 10 (56%) | 10 (56%) | 11 (61%) | 9 (50%) | 0.99 |
Affected hemisphere (L) | 10 (56%) | 11 (61%) | 10 (56%) | 10 (56%) | 0.98 |
Stroke site (Supratentorial) | 14 (78%) | 14 (78%) | 15 (83%) | 15 (83%) | 0.99 |
Time from stroke onset (d) | 18.5 ± 2.3 | 18.28 ± 2.7 | 18.22 ± 3.4 | 18.9 ± 3.6 | 0.91 |
Education (years) | 12.2 ± 3.6 | 12.0 ± 3.0 | 11.3 ± 2.8 | 11.7 ± 3.2 | 0.87 |
History of diabetes | 8 (44%) | 9 (50%) | 7 (39%) | 9 (50%) | 0.95 |
History of hypertension | 12 (67%) | 11 (61%) | 11 (61%) | 10 (56%) | 0.92 |
Current smoking | 3 (17%) | 4 (22%) | 4 (22%) | 3 (17%) | 0.99 |
Current alcohol drinking | 5 (28%) | 4 (22%) | 5 (28%) | 4 (22%) | 0.99 |
Brunnstrom stage (upper extremity) | 2 (2–3) | 2 (2–2) | 2 (1–3) | 2 (2–2.25) | 0.92 |
Brunnstrom stage (hand) | 1 (1–1) | 1 (1–2) | 1 (1–1.25) | 1 (1–2) | 0.11 |
Ashworth scale | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0.5 (0–1) | 0.98 |
Control Group (n = 18) | 10 Sessions TMS Group (n = 18) | 20 Sessions TMS Group (n = 18) | 30 Sessions TMS Group (n = 18) | |
---|---|---|---|---|
Pre-intervention | 7.1 ± 3.5 | 7.4 ± 3.3 | 7.4 ± 3.6 | 7.6 ± 2.7 |
10 sessions later | 10. ± 3.9 | 14.0 ± 3.5 a,b | 14.3 ± 4.9 a,b | 14.9 ± 4.1 a,b |
20 sessions later | 13.9 ± 5.1 b,c | 16.5 ± 3.5 b,c | 21.3 ± 6.0 a,b | 22.0 ± 6.4 a,b |
30 sessions later | 17.5 ± 6.4 b,c | 19.1 ± 4.2 b,c | 24.2 ± 6.7 a,b | 26.4 ± 6.8 a,b |
Control Group (n = 18) | 10 Sessions TMS Group (n = 18) | 20 Sessions TMS Group (n = 18) | 30 Sessions TMS Group (n = 18) | |
---|---|---|---|---|
Pre-intervention | 6.9 ± 4.5 | 7.1 ± 2.7 | 6.6 ± 3.3 | 7.3 ± 3.8 |
10 sessions later | 10.4 ± 4.8 | 14.2 ± 5.6 a,b | 14.3 ± 4.1 a,b | 15.3 ± 6.0 a,b |
20 sessions later | 14.3 ± 5.8 b,c | 16.2 ± 5.7 b,c | 19.9 ± 5.2 a,b | 22.2 ± 7.1 a,b |
30 sessions later | 17.4 ± 6.7 b,c | 18.3 ± 6.1 b,c | 23.9 ± 6.8 a,b | 26.9 ± 8.2 a,b |
ROI | Cluster | Connected Region | Peak MNI Coordinates | Peak F Value | Cluster Size | ||
---|---|---|---|---|---|---|---|
X | Y | Z | |||||
M1 (ipsilesional side) | 1 | Precentral_L * | −39 | −21 | 63 | 2.78 | 17 |
2 | Postcentral_L * | −27 | −42 | 60 | 3.17 | 12 | |
3 | Postcentral_L * | −15 | −39 | 78 | 3.88 | 11 | |
4 | Calcarine_L | 0 | −99 | 3 | 5.52 | 57 | |
5 | Temporal_Pole_Mid_R | 57 | 12 | −27 | 3.94 | 13 | |
6 | Precuneus_R | 12 | −63 | 24 | 3.34 | 34 | |
PMC (ipsilesional side) | 1 | Precentral_L * | −33 | −24 | 60 | 3.96 | 70 |
2 | Rectus_L,Olfactory_L | 0 | 18 | −21 | 3.62 | 11 | |
3 | Occipital_Mid_L | −36 | −96 | 0 | 4.15 | 23 | |
4 | Parietal_Sup_L | −24 | −54 | 54 | 3.27 | 12 | |
5 | Calcarine_L | 0 | −99 | 3 | 5.48 | 43 | |
6 | Supp_Motor_Area_R | 3 | −6 | 60 | 3.55 | 16 | |
7 | Rectus_R | 9 | 36 | −21 | 3.55 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Zhang, J.J.; Wang, K.; Ju, L.; Zhang, H.; Zhao, Y.; Pan, Y.; Gong, J.; Wang, X.; Fong, K.N.K. Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial. Brain Sci. 2023, 13, 1662. https://doi.org/10.3390/brainsci13121662
Lv Y, Zhang JJ, Wang K, Ju L, Zhang H, Zhao Y, Pan Y, Gong J, Wang X, Fong KNK. Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial. Brain Sciences. 2023; 13(12):1662. https://doi.org/10.3390/brainsci13121662
Chicago/Turabian StyleLv, Yichen, Jack Jiaqi Zhang, Kui Wang, Leilei Ju, Hongying Zhang, Yuehan Zhao, Yao Pan, Jianwei Gong, Xin Wang, and Kenneth N. K. Fong. 2023. "Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial" Brain Sciences 13, no. 12: 1662. https://doi.org/10.3390/brainsci13121662
APA StyleLv, Y., Zhang, J. J., Wang, K., Ju, L., Zhang, H., Zhao, Y., Pan, Y., Gong, J., Wang, X., & Fong, K. N. K. (2023). Determining the Optimal Stimulation Sessions for TMS-Induced Recovery of Upper Extremity Motor Function Post Stroke: A Randomized Controlled Trial. Brain Sciences, 13(12), 1662. https://doi.org/10.3390/brainsci13121662