Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Psychological Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Data Extraction and Outcome Measures
2.3. Statistical Analysis
3. Results
3.1. Overview
Intervention | Author (Year) | Subject Sample | Study Design | Sample Size (Active/Sham) | Mean Age ± SD (y) (Active/Sham) | Male Gender (Active/Sham) | rTMS Parameters | Outcomes Measured | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sessions | Localization | Frequency | Intensity | Total Pulses | Timing of Stimulation | ||||||||
rTMS + CBT | Neacsiu et al. [58] | Adults with low use of cognitive restructuring | RCT (between-subject) | 14/15 | 33.29 ± 13.98/29.53 ± 10.56 | 3/2 | 4 | Left DLPFC | 10 Hz | 120% RMT | 800 | online | (1) Functional outcome: WSA |
17/15 | 27.76 ± 7.23/29.53 ± 10.56 | 3/2 | 4 | Right DLPFC | 10 Hz | 120% RMT | 800 | online | |||||
Hu et al. [52] | Alcohol-dependent patients | RCT (between-subject) | 42/37 | 44 ± 10/46 ± 10 | 32/28 | 10 | Right DLPFC | 10 HZ | 110% RMT | 1500 | offline | (1) Clinical symptoms: OCDS, PHQ-9 | |
40/37 | 48 ± 11/46 ± 10 | 28/28 | 10 | Left DLPFC | 10 HZ | 110% RMT | 1500 | offline | |||||
Kozel et al. [60] | PTSD | RCT (between-subject) | 32/30 | 34.06 ± 7.56/32.93 ± 6.04 | 31/23 | 12–15 | Right DLPFC | 1 Hz | 110% RMT | 1800 | offline | (1) Clinical symptoms: CAPS, QIDS (2) Functional outcome: IPF | |
Deppermann et al. [61] | Panic disorder | RCT (between-subject) | 22/22 | Mean (Range): 37.6 (19–63)/36.3 (22–56) | 9/8 | 15 | Left DLPFC | iTBS | 80% RMT | 600 | offline | (1) Clinical symptoms: PAS | |
Guhn et al. [62] | Healthy participants | RCT (between-subject) | 21/24 | 23.9 ± 3.0/24.6 ± 4.5 | 21/22 | 1 | mPFC | 10 Hz | 110% RMT | 1560 | offline | (1) Clinical symptoms: PANAS | |
Dieler et al. [63] | Smokers | RCT (between-subject) | 38/36 | 23.9 ± 3.0/24.6 ± 4.5 | 16/24 | 4 | Right DLPFC | iTBS | 80% RMT | 600 | offline | (1) Clinical symptoms: QSU | |
rTMS + CT | Qin et al. [64] | AD | RCT (between-subject) | 10/6 | 65.60 ± 8.06/66.50 ± 9.40 | 2/3 | 20 | L-DLPFC and LTL | 10 Hz | 100% RMT | 1000 | online | (1) Cognition: MMSE (2) Functional outcome: ADL |
Vecchio et al. [56] | AD | RCT (between-subject) | 30/17 | 71.07 ± 1.25/72.24 ± 2.29 | 14/10 | 30 | Broca’s area, bilateral DLPFC, Wernicke’s area, bilateral pSAC | 10 Hz | Frontal: 90% RMT; other areas:110% RMT | 1200–1400 | online | (1) Cognition: ADAS-Cog | |
Yingli et al. [65] | Post-stroke cognitive impairment | RCT (between-subject) | 18/18 | 60.39 ± 10.87/59.50 ± 11.25 | 13/12 | 40 | Left or right DLPFC | 1 Hz | 80% RMT | 600 | offline | (1) Cognition: LOTCA | |
Lechner et al. [54] | Smokers | RCT (between-subject) | 12/11 | 42.50 ±10.45/45.72 ± 9.23 | 8/8 | 10 | Left DLPFC | 10 Hz | 100% RMT | 2000 | offline | (1) Cognition: Maastricht working memory training program, NIH Examiner n-back (2 back); NIH Examiner Dot Counting | |
Bleich-Cohen et al. [57] | ADHD | RCT (between-subject) | 24/16 | 35.6 ± 8.7/34.7 ± 9.2 | 17/8 | 15 | Right PFC | 18 Hz | 120% RMT | 1440 | online | (1) Clinical symptoms: CAARS, BDI (2) Functional outcome: AAQoL (3) Cognition: Mindstreams, BRIEF-A | |
22/16 | 35.1 ± 10/34.7 ± 9.2 | 15/8 | 15 | Left PFC | 18 Hz | 120% RMT | 1440 | online | |||||
Gy et al. [46] | Mild cognitive impairment | RCT (within-subject) | 22 | 66.36 ± 5.12 | 9 | 30 | Left DLPFC | 5 Hz | 100% RMT | 1500 | offline | (1) Clinical symptoms: GDS (2) Functional outcome: IWI (3) Cognition: MMSE, MoCA, Stroop, Digit detection, ROCF | |
Palaus et al. [66] | Healthy participants | RCT (between-subject) | 14/13 | 29.86 ± 5.26/29.00 ± 7.43 | 7/6 | 10 | Right DLPFC | iTBS | 80%AMT | 600 | offline | (1) Cognition: Reaction time tasks, 3-Back task, Digit span task, Stop-switching task, Raven’s progressive matrices, Mental rotation task | |
Brem et al. [49] | AD | RCT (between-subject) | 16/10 | 69.25 ± 6.80/69.10 ± 5.24 | 4/5 | 30 | Left IFG, left STG, bilateral DLPFC, bilateral IPL | 10 Hz | 120% RMT | 400 | online | (1) Cognition: ADAS-Cog | |
Bagattini et al. [67] | AD | RCT (between-subject) | 27/23 | 73.56 ± 4.91/73.53 ± 1.09 | 17/12 | 20 | Left DLPFC | 20 Hz | 100% RMT | 2000 | offline | (1) Clinical symptoms: GDS (2) Cognition: MMSE, Face-name associative memory task, ROCF, RAVLT, phonemic/semantic verbal fluency, Attention matrices, TMT-A, Raven’s progressive matrices | |
Li et al. [68] | Post-stroke cognitive impairment | RCT (between-subject) | 15/15 | 65.47 ± 3.68/64.53 ± 4.72 | 7/9 | 15 | Left DLPFC | 5 Hz | 100% RMT | 2000 | offline | (1) Cognition: MMSE, MoCA | |
Liu et al. [69] | Stroke patients with attention dysfunction | RCT (between-subject) | 29/29 | 58.55 ± 6.24/57.69 ± 7.25 | 10/16 | 20 | Left DLPFC | 10 Hz | 90% RMT | 700 | offline | (1) Functional outcome: FIM (2) Cognition: MMSE, TMT-A, DST, DS | |
Zhang et al. [70] | AD | RCT (between-subject) | 15/13 | 69.00 ± 8.19/68.54 ± 7.93 | 3/3 | 20 | L-DLPFC and LTL | 10 Hz | 100% RMT | 1000 | online | (1) Clinical symptoms: NPI (2) Functional outcome: ADL (3) Cognition: ADAS-cog, ACE-III | |
Li et al. [55] | MDD | RCT (between-subject) | 12/12 | 43.4 ± 9.0/39.4 ± 13.2 | 4/5 | 10 | Left DLPFC | 10 Hz | 100% RMT | 1600 | offline | (1) Clinical symptoms/Depression: HDRS-17 (2) Cognition: Visual attention, Go/no-go | |
rTMS + exposure therapy | Isserles et al. [71] | PTSD | RCT (between-subject) | 40/51 | 44.8 ± 13.19/43.7 ± 12.25 | 21/21 | 12 | Bilateral mPFC and ACC | 18 Hz | 100% RMT | 2880 | offline | (1) Clinical symptoms: CAPS-5, HDRS-21 |
Carmi et al. [72] | OCD | RCT (between-subject) | 16/14 | 36 ± 2.1/35 ± 3.5 | 7/7 | 25 | mPFC and ACC | 20 Hz | 110% RMT | 2000 | offline | (1) Clinical symptoms: Y-BOCS | |
Herrmann et al. [73] | Height phobia | RCT (between-subject) | 20/19 | 43.2 ± 12.6/46.6 ± 13.7 | 7/6 | 2 | vmPFC | 10 Hz | 100% RMT | 1560 | offline | (1) Clinical symptoms: AQ | |
Dinur-Klein et al. [50] | Smokers | RCT (between-subject) | 16/15 | 49.9 ± 12.0/51.6 ± 10.9 | 11/10 | 13 | Lateral PFC | 10 Hz | 120% RMT | 990 | offline | (1) Clinical symptoms: FTND | |
7/15 | 48.3 ± 10.8/51.6 ± 10.9 | 5/10 | 13 | Lateral PFC | 1 Hz | 120% RMT | 600 | offline | |||||
Isserles et al. [53] | PTSD | RCT (between-subject) | 9/9 | 49 ± 12.5/40.4 ± 10.5 | 7/8 | 12 | mPFC | 20 Hz | 120% RMT | 1680 | offline | (1) Clinical symptoms: CAPS, HDRS-24, BDI | |
Osuch et al. [47] | PTSD | RCT (within-subject) | 9 | 41.4 ± 12.3 | 1 | 20 | Right DLPFC | 1 Hz | 100% RMT | 1800 | online | (1) Clinical symptoms: CAPS, HDRS | |
Amiaz et al. [48] | Smokers | RCT (between-subject) | 12/9 | 51.5 ± 2.6/48.7 ± 3.5 | 6/3 | 10 | Left DLPFC | 10 Hz | 100% RMT | 1000 | offline | (1) Clinical symptoms: modified FTND | |
rTMS + MBSR | Duan et al. [51] | Post-stroke Depression | RCT (between-subject) | 23/24 | 58.30 ± 13.06/53.63 ± 13.01 | 19/20 | 20 | Left DLPFC | 10 Hz | 80% RMT | 1400 | offline | (1) Clinical symptoms: HAMD-17 (2) Functional outcome: MBI |
3.2. Clinical Outcomes in Healthy and Clinical Populations
3.3. Functional Outcomes in Clinical Populations
3.4. Cognitive Outcomes in Healthy and Clinical Populations
3.5. Publication Bias
3.6. Risk of Bias Assessment and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricou, M.; Marina, S.; Vieira, P.M.; Duarte, I.; Sampaio, I.; Regalado, J.; Canário, C. Psychological intervention at a primary health care center: Predictors of success. BMC Fam. Pract. 2019, 20, 116. [Google Scholar] [CrossRef] [PubMed]
- van Agteren, J.; Iasiello, M.; Lo, L.; Bartholomaeus, J.; Kopsaftis, Z.; Carey, M.; Kyrios, M. A systematic review and meta-analysis of psychological interventions to improve mental wellbeing. Nat. Hum. Behav. 2021, 5, 631–652. [Google Scholar] [CrossRef] [PubMed]
- Tatti, E.; Phillips, A.L.; Paciorek, R.; Romanella, S.M.; Dettore, D.; Di Lorenzo, G.; Ruffini, G.; Rossi, S.; Santarnecchi, E. Boosting psychological change: Combining non-invasive brain stimulation with psychotherapy. Neurosci. Biobehav. Rev. 2022, 142, 104867. [Google Scholar] [CrossRef] [PubMed]
- Miklowitz, D.J.; Efthimiou, O.; Furukawa, T.A.; Scott, J.; McLaren, R.; Geddes, J.R.; Cipriani, A. Adjunctive Psychotherapy for Bipolar Disorder: A Systematic Review and Component Network Meta-analysis. JAMA Psychiatry 2021, 78, 141–150. [Google Scholar] [CrossRef]
- Gelenberg, A.J.; Freeman, M.; Markowitz, J.; Rosenbaum, J.; Thase, M.; Trivedi, M.; Van Rhoads, R. American Psychiatric Association practice guidelines for the treatment of patients with major depressive disorder. Am. J. Psychiatry 2010, 167, 9–118. [Google Scholar]
- Malhi, G.S.; Bell, E.; Bassett, D.; Boyce, P.; Bryant, R.; Hazell, P.; Hopwood, M.; Lyndon, B.; Mulder, R.; Porter, R.; et al. The 2020 Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust. N. Z. J. Psychiatry 2021, 55, 7–117. [Google Scholar] [CrossRef] [PubMed]
- Ray, L.A.; Meredith, L.R.; Kiluk, B.D.; Walthers, J.; Carroll, K.M.; Magill, M. Combined Pharmacotherapy and Cognitive Behavioral Therapy for Adults with Alcohol or Substance Use Disorders: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e208279. [Google Scholar] [CrossRef]
- Guidi, J.; Fava, G.A. Sequential Combination of Pharmacotherapy and Psychotherapy in Major Depressive Disorder: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021, 78, 261–269. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Martin, D.M.; Moffa, A.; Nikolin, S.; Bennabi, D.; Brunoni, A.R.; Flannery, W.; Haffen, E.; McClintock, S.M.; Moreno, M.L.; Padberg, F.; et al. Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: An individual patient data meta-analysis of randomised, sham-controlled trials. Neurosci. Biobehav. Rev. 2018, 90, 137–145. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 2000, 406, 147–150. [Google Scholar] [CrossRef]
- Martin, D.M.; McClintock, S.M.; Forster, J.; Loo, C.K. Does Therapeutic Repetitive Transcranial Magnetic Stimulation Cause Cognitive Enhancing Effects in Patients with Neuropsychiatric Conditions? A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Neuropsychol. Rev. 2016, 26, 295–309. [Google Scholar] [CrossRef]
- Klomjai, W.; Katz, R.; Lackmy-Vallée, A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil. Med. 2015, 58, 208–213. [Google Scholar] [CrossRef]
- Xu, M.; Nikolin, S.; Samaratunga, N.; Chow, E.J.H.; Loo, C.K.; Martin, D.M. Cognitive Effects Following Offline High-Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) in Healthy Populations: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2023, 1–27. [Google Scholar] [CrossRef]
- Chou, Y.H.; Ton That, V.; Sundman, M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2020, 86, 1–10. [Google Scholar] [CrossRef]
- Iimori, T.; Nakajima, S.; Miyazaki, T.; Tarumi, R.; Ogyu, K.; Wada, M.; Tsugawa, S.; Masuda, F.; Daskalakis, Z.J.; Blumberger, D.M.; et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 31–40. [Google Scholar] [CrossRef]
- Martin, D.M.; McClintock, S.M.; Forster, J.J.; Lo, T.Y.; Loo, C.K. Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and meta-analysis of individual task effects. Depress. Anxiety 2017, 34, 1029–1039. [Google Scholar] [CrossRef]
- Mix, A.; Benali, A.; Eysel, U.T.; Funke, K. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently. Eur. J. Neurosci. 2010, 32, 1575–1586. [Google Scholar] [CrossRef]
- Blumberger, D.M.; Mulsant, B.H.; Thorpe, K.E.; McClintock, S.M.; Konstantinou, G.N.; Lee, H.H.; Nestor, S.M.; Noda, Y.; Rajji, T.K.; Trevizol, A.P.; et al. Effectiveness of Standard Sequential Bilateral Repetitive Transcranial Magnetic Stimulation vs. Bilateral Theta Burst Stimulation in Older Adults with Depression: The FOUR-D Randomized Noninferiority Clinical Trial. JAMA Psychiatry 2022, 79, 1065–1073. [Google Scholar] [CrossRef]
- De Risio, L.; Borgi, M.; Pettorruso, M.; Miuli, A.; Ottomana, A.M.; Sociali, A.; Martinotti, G.; Nicolò, G.; Macrì, S.; di Giannantonio, M.; et al. Recovering from depression with repetitive transcranial magnetic stimulation (rTMS): A systematic review and meta-analysis of preclinical studies. Transl. Psychiatry 2020, 10, 393. [Google Scholar] [CrossRef]
- Xiang, H.; Sun, J.; Tang, X.; Zeng, K.; Wu, X. The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2019, 33, 847–864. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Dong, Z.; Pan, L.; Liu, Y.; Ye, Z.; Qin, L.; Liu, Q.; Qin, C. Effects of repetitive transcranial magnetic stimulation on gait disorders and cognitive dysfunction in Parkinson’s disease: A systematic review with meta-analysis. Brain Behav. 2022, 12, e2697. [Google Scholar] [CrossRef]
- Teselink, J.; Bawa, K.K.; Koo, G.K.; Sankhe, K.; Liu, C.S.; Rapoport, M.; Oh, P.; Marzolini, S.; Gallagher, D.; Swardfager, W.; et al. Efficacy of non-invasive brain stimulation on global cognition and neuropsychiatric symptoms in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review. Ageing Res. Rev. 2021, 72, 101499. [Google Scholar] [CrossRef]
- Cirillo, G.; Di Pino, G.; Capone, F.; Ranieri, F.; Florio, L.; Todisco, V.; Tedeschi, G.; Funke, K.; Di Lazzaro, V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Perera, M.P.N.; Mallawaarachchi, S.; Miljevic, A.; Bailey, N.W.; Herring, S.E.; Fitzgerald, P.B. Repetitive Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Meta-analysis of Randomized, Sham-Controlled Trials. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 947–960. [Google Scholar] [CrossRef]
- Song, S.; Zilverstand, A.; Gui, W.; Li, H.J.; Zhou, X. Effects of single-session versus multi-session non-invasive brain stimulation on craving and consumption in individuals with drug addiction, eating disorders or obesity: A meta-analysis. Brain Stimul. 2019, 12, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Schulze, L.; Feffer, K.; Lozano, C.; Giacobbe, P.; Daskalakis, Z.J.; Blumberger, D.M.; Downar, J. Number of pulses or number of sessions? An open-label study of trajectories of improvement for once-vs. twice-daily dorsomedial prefrontal rTMS in major depression. Brain Stimul. 2018, 11, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Kricheldorff, J.; Göke, K.; Kiebs, M.; Kasten, F.H.; Herrmann, C.S.; Witt, K.; Hurlemann, R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci. 2022, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, L.G.; Shenasa, M.A.; Stolz, L.; Daskalakis, Z. Synaptic plasticity and mental health: Methods, challenges and opportunities. Neuropsychopharmacology 2023, 48, 113–120. [Google Scholar] [CrossRef]
- Tzioras, M.; McGeachan, R.I.; Durrant, C.S.; Spires-Jones, T.L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 2023, 19, 19–38. [Google Scholar] [CrossRef]
- van Spronsen, M.; Hoogenraad, C.C. Synapse pathology in psychiatric and neurologic disease. Curr. Neurol. Neurosci. Rep. 2010, 10, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, M.; Zinbarg, R.E.; Mittal, V.A. Efficacy and mechanisms of non-invasive brain stimulation to enhance exposure therapy: A review. Clin. Psychol. Rev. 2019, 70, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Sathappan, A.V.; Luber, B.M.; Lisanby, S.H. The Dynamic Duo: Combining noninvasive brain stimulation with cognitive interventions. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Conelea, C.A.; Jacob, S.; Redish, A.D.; Ramsay, I.S. Considerations for Pairing Cognitive Behavioral Therapies and Non-invasive Brain Stimulation: Ignore at Your Own Risk. Front. Psychiatry 2021, 12, 660180. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 26 October 2023).
- Posit Team. RStudio: Integrated Development for R; Posit Software, PBC: Boston, MA, USA, 2022; Available online: http://www.posit.co/ (accessed on 26 October 2023).
- Sachdev, P.; Blacker, D.; Blazer, D.; Ganguli, M.; Jeste, D.; Paulsen, J.; Petersen, R. Classifying neurocognitive disorders: The DSM-5 approach. Nat. Rev. Neurol. 2014, 10, 634–642. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Begemann, M.J.; Brand, B.A.; Ćurčić-Blake, B.; Aleman, A.; Sommer, I.E. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychol. Med. 2020, 50, 2465–2486. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef]
- Tiemens, B.; Kloos, M.; Spijker, J.; Ingenhoven, T.; Kampman, M.; Hendriks, G.-J. Lower versus higher frequency of sessions in starting outpatient mental health care and the risk of a chronic course; a naturalistic cohort study. BMC Psychiatry 2019, 19, 228. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Gy, R.R.; Reyes-López, J.V.; Garcell, R.; Ar, C.M.; Na, A.G. Effect of transcranial magnetic stimulation as an enhancer of cognitive stimulation sessions on mild cognitive impairment: Preliminary results. Psychiatry Res. 2021, 304, 114151. [Google Scholar] [CrossRef]
- Osuch, E.A.; Benson, B.E.; Luckenbaugh, D.A.; Geraci, M.; Post, R.M.; McCann, U. Repetitive TMS combined with exposure therapy for PTSD: A preliminary study. J. Anxiety Disord. 2009, 23, 54–59. [Google Scholar] [CrossRef]
- Amiaz, R.; Levy, D.; Vainiger, D.; Grunhaus, L.; Zangen, A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction 2009, 104, 653–660. [Google Scholar] [CrossRef]
- Brem, A.K.; Di Iorio, R.; Fried, P.J.; Oliveira-Maia, A.J.; Marra, C.; Profice, P.; Quaranta, D.; Schilberg, L.; Atkinson, N.J.; Seligson, E.E.; et al. Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 200. [Google Scholar] [CrossRef]
- Dinur-Klein, L.; Dannon, P.; Hadar, A.; Rosenberg, O.; Roth, Y.; Kotler, M.; Zangen, A. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: A prospective, randomized controlled trial. Biol. Psychiatry 2014, 76, 742–749. [Google Scholar] [CrossRef]
- Duan, H.; Yan, X.; Meng, S.; Qiu, L.; Zhang, J.; Yang, C.; Liu, S. Effectiveness Evaluation of Repetitive Transcranial Magnetic Stimulation Therapy Combined with Mindfulness-Based Stress Reduction for People with Post-Stroke Depression: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 930. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, T.; Ma, H.; Zhou, X.; Wang, H.; Wang, X.; Cheng, C.; Li, Y.; Duan, R.; Zhang, B.; et al. Repetitive transcranial magnetic stimulation combined with cognitive behavioral therapy treatment in alcohol-dependent patients: A randomized, double-blind sham-controlled multicenter clinical trial. Front. Psychiatry 2022, 13, 935491. [Google Scholar] [CrossRef]
- Isserles, M.; Shalev, A.Y.; Roth, Y.; Peri, T.; Kutz, I.; Zlotnick, E.; Zangen, A. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder—A pilot study. Brain Stimul. 2013, 6, 377–383. [Google Scholar] [CrossRef]
- Lechner, W.V.; Philip, N.S.; Kahler, C.W.; Houben, K.; Tirrell, E.; Carpenter, L.L. Combined Working Memory Training and Transcranial Magnetic Stimulation Demonstrates Low Feasibility and Potentially Worse Outcomes on Delay to Smoking and Cognitive Tasks: A Randomized 2 × 2 Factorial Design Pilot and Feasibility Study. Nicotine Tob. Res. 2022, 24, 1871–1880. [Google Scholar] [CrossRef]
- Li, C.-T.; Hsieh, J.-C.; Huang, H.-H.; Chen, M.-H.; Juan, C.-H.; Tu, P.-C.; Lee, Y.-C.; Wang, S.-J.; Cheng, C.-M.; Su, T.-P. Cognition-modulated frontal activity in prediction and augmentation of antidepressant efficacy: A randomized controlled pilot study. Cereb. Cortex 2016, 26, 202–210. [Google Scholar] [CrossRef]
- Vecchio, F.; Quaranta, D.; Miraglia, F.; Pappalettera, C.; Di Iorio, R.; L’Abbate, F.; Cotelli, M.; Marra, C.; Rossini, P.M. Neuronavigated Magnetic Stimulation combined with cognitive training for Alzheimer’s patients: An EEG graph study. Geroscience 2022, 44, 159–172. [Google Scholar] [CrossRef]
- Bleich-Cohen, M.; Gurevitch, G.; Carmi, N.; Medvedovsky, M.; Bregman, N.; Nevler, N.; Elman, K.; Ginou, A.; Zangen, A.; Ash, E.L. A functional magnetic resonance imaging investigation of prefrontal cortex deep transcranial magnetic stimulation efficacy in adults with attention deficit/hyperactive disorder: A double blind, randomized clinical trial. Neuroimage Clin. 2021, 30, 102670. [Google Scholar] [CrossRef]
- Neacsiu, A.D.; Beynel, L.; Powers, J.P.; Szabo, S.T.; Appelbaum, L.G.; Lisanby, S.H.; LaBar, K.S. Enhancing Cognitive Restructuring with Concurrent Repetitive Transcranial Magnetic Stimulation: A Transdiagnostic Randomized Controlled Trial. Psychother. Psychosom. 2022, 91, 94–106. [Google Scholar] [CrossRef]
- Wang, J.; Luo, H.; Schülke, R.; Geng, X.; Sahakian, B.J.; Wang, S. Is transcranial direct current stimulation, alone or in combination with antidepressant medications or psychotherapies, effective in treating major depressive disorder? A systematic review and meta-analysis. BMC Med. 2021, 19, 319. [Google Scholar] [CrossRef]
- Kozel, F.A.; Motes, M.A.; Didehbani, N.; DeLaRosa, B.; Bass, C.; Schraufnagel, C.D.; Jones, P.; Morgan, C.R.; Spence, J.S.; Kraut, M.A.; et al. Repetitive TMS to augment cognitive processing therapy in combat veterans of recent conflicts with PTSD: A randomized clinical trial. J. Affect. Disord. 2018, 229, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Deppermann, S.; Vennewald, N.; Diemer, J.; Sickinger, S.; Haeussinger, F.B.; Dresler, T.; Notzon, S.; Laeger, I.; Arolt, V.; Ehlis, A.C.; et al. Neurobiological and clinical effects of fNIRS-controlled rTMS in patients with panic disorder/agoraphobia during cognitive-behavioural therapy. Neuroimage Clin. 2017, 16, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Guhn, A.; Dresler, T.; Andreatta, M.; Muller, L.D.; Hahn, T.; Tupak, S.V.; Polak, T.; Deckert, J.; Herrmann, M.J. Medial prefrontal cortex stimulation modulates the processing of conditioned fear. Front. Behav. Neurosci. 2014, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Dieler, A.C.; Dresler, T.; Joachim, K.; Deckert, J.; Herrmann, M.J.; Fallgatter, A.J. Can intermittent theta burst stimulation as add-on to psychotherapy improve nicotine abstinence? Results from a pilot study. Eur. Addict. Res. 2014, 20, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Ba, L.; Zhang, F.; Jian, S.; Zhang, M.; Zhu, W. Cerebral blood flow changes induced by high-frequency repetitive transcranial magnetic stimulation combined with cognitive training in Alzheimer’s disease. Front. Neurol. 2023, 14, 1037864. [Google Scholar] [CrossRef] [PubMed]
- Yingli, B.; Zunke, G.; Wei, C.; Shiyan, W. Cerebral activity manipulation of low-frequency repetitive transcranial magnetic stimulation in post-stroke patients with cognitive impairment. Front. Neurol. 2022, 13, 951209. [Google Scholar] [CrossRef] [PubMed]
- Palaus, M.; Viejo-Sobera, R.; Redolar-Ripoll, D.; Marrón, E.M. Cognitive Enhancement via Neuromodulation and Video Games: Synergistic Effects? Front. Hum. Neurosci. 2020, 14, 235. [Google Scholar] [CrossRef] [PubMed]
- Bagattini, C.; Zanni, M.; Barocco, F.; Caffarra, P.; Brignani, D.; Miniussi, C.; Defanti, C.A. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimul. 2020, 13, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, H.; Yu, Q.; Yin, L.; Li, K.; Li, Y.; Fu, J. Cerebral Functional Manipulation of Repetitive Transcranial Magnetic Stimulation in Cognitive Impairment Patients after Stroke: An fMRI Study. Front. Neurol. 2020, 11, 977. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, M.; Luo, J.; Huang, L.; Zhang, S.; Pan, C.; Hu, X. Effects of transcranial magnetic stimulation on the performance of the activities of daily living and attention function after stroke: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1465–1473. [Google Scholar] [CrossRef]
- Zhang, F.; Qin, Y.; Xie, L.; Zheng, C.; Huang, X.; Zhang, M. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer’s disease. J. Neural. Transm. 2019, 126, 1081–1094. [Google Scholar] [CrossRef]
- Isserles, M.; Tendler, A.; Roth, Y.; Bystritsky, A.; Blumberger, D.M.; Ward, H.; Feifel, D.; Viner, L.; Duffy, W.; Zohar, J.; et al. Deep Transcranial Magnetic Stimulation Combined with Brief Exposure for Posttraumatic Stress Disorder: A Prospective Multisite Randomized Trial. Biol. Psychiatry 2021, 90, 721–728. [Google Scholar] [CrossRef]
- Carmi, L.; Alyagon, U.; Barnea-Ygael, N.; Zohar, J.; Dar, R.; Zangen, A. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul. 2018, 11, 158–165. [Google Scholar] [CrossRef]
- Herrmann, M.J.; Katzorke, A.; Busch, Y.; Gromer, D.; Polak, T.; Pauli, P.; Deckert, J. Medial prefrontal cortex stimulation accelerates therapy response of exposure therapy in acrophobia. Brain Stimul. 2017, 10, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, J.F.; Salas, J.; Norman, S.B.; Schnurr, P.P.; Chard, K.M.; Tuerk, P.; Schneider, F.D.; van den Berk-Clark, C.; Cohen, B.E.; Friedman, M.J.; et al. Association Between Clinically Meaningful Posttraumatic Stress Disorder Improvement and Risk of Type 2 Diabetes. JAMA Psychiatry 2019, 76, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Donse, L.; Padberg, F.; Sack, A.T.; Rush, A.J.; Arns, M. Simultaneous rTMS and psychotherapy in major depressive disorder: Clinical outcomes and predictors from a large naturalistic study. Brain Stimul. 2018, 11, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, D.; Bellack, A.S.; Gold, J.M. Social/communication skills, cognition, and vocational functioning in schizophrenia. Schizophr. Bull. 2007, 33, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.; Lydon, S.; Healy, O. Employment and Vocational Skills among Individuals with Autism Spectrum Disorder: Predictors, Impact, and Interventions. Rev. J. Autism Dev. Disord. 2014, 1, 266–275. [Google Scholar] [CrossRef]
- Cheng, C.P.W.; Wong, C.S.M.; Lee, K.K.; Chan, A.P.K.; Yeung, J.W.F.; Chan, W.C. Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: A systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 2018, 33, e1–e13. [Google Scholar] [CrossRef]
- Wang, X.; Mao, Z.; Ling, Z.; Yu, X. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer’s disease: A meta-analysis of randomized controlled trials. J. Neurol. 2020, 267, 791–801. [Google Scholar] [CrossRef]
- Kan, R.L.D.; Padberg, F.; Giron, C.G.; Lin, T.T.Z.; Zhang, B.B.B.; Brunoni, A.R.; Kranz, G.S. Effects of repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex on symptom domains in neuropsychiatric disorders: A systematic review and cross-diagnostic meta-analysis. Lancet Psychiatry 2023, 10, 252–259. [Google Scholar] [CrossRef]
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Xu, M.; Su, Y.; Cao, T.V.; Nikolin, S.; Moffa, A.; Loo, C.; Martin, D. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Psychological Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2023, 13, 1665. https://doi.org/10.3390/brainsci13121665
Xu X, Xu M, Su Y, Cao TV, Nikolin S, Moffa A, Loo C, Martin D. Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Psychological Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sciences. 2023; 13(12):1665. https://doi.org/10.3390/brainsci13121665
Chicago/Turabian StyleXu, Xiaomin, Mei Xu, Yon Su, Thanh Vinh Cao, Stevan Nikolin, Adriano Moffa, Colleen Loo, and Donel Martin. 2023. "Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Psychological Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Brain Sciences 13, no. 12: 1665. https://doi.org/10.3390/brainsci13121665
APA StyleXu, X., Xu, M., Su, Y., Cao, T. V., Nikolin, S., Moffa, A., Loo, C., & Martin, D. (2023). Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) Combined with Psychological Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sciences, 13(12), 1665. https://doi.org/10.3390/brainsci13121665