Collateral Circulation and BNP in Predicting Outcome of Acute Ischemic Stroke Patients with Atherosclerotic versus Cardioembolic Cerebral Large-Vessel Occlusion Who Underwent Endovascular Treatment
Abstract
:1. Background
2. Patients and Methods
2.1. Study Population
2.2. Data Collection
2.2.1. Imaging Data Collection
2.2.2. Clinical Data Collection
2.2.3. Related Factors for EVTs
2.3. Statistic Analysis
3. Results
3.1. Baseline Characteristics
3.2. The Predictive Values of Baseline Factors in Poor Outcome (mRS > 2) Group and Stroke Subtypes
3.3. Diagnostic Performance of Serum BNP and 4D CTA-CS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giles, J.A.; Vellimana, A.K.; Adeoye, O.M. Endovascular Treatment of Acute Stroke. Curr. Neurol. Neurosci. Rep. 2022, 22, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, C.; Zhang, R.; Shi, F.; Liu, C.; Yan, S.; Ding, X.; Zhang, M.; Lou, M. Longer Length of Delayed-Contrast Filling of Clot on 4-Dimensional Computed Tomographic Angiography Predicts Cardiogenic Embolism. Stroke 2019, 50, 2568–2570. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-F.; Sudlow, C.L.M.; Anderson, N.; Jeng, J.-S. Variations of risk factors for ischemic stroke and its subtypes in Chinese patients in Taiwan. Sci. Rep. 2021, 11, 9700. [Google Scholar] [CrossRef] [PubMed]
- Arboix, A.; Oliveres, M.; Massons, J.; Pujades, R.; Eroles, L.G. Early differentiation of cardioembolic from atherothrombotic cerebral infarction: A multivariate analysis. Eur. J. Neurol. 1999, 6, 677–683. [Google Scholar] [CrossRef]
- Puig, J.; Shankar, J.; Liebeskind, D.; Terceño, M.; Nael, K.; Demchuk, A.M.; Menon, B.; Dowlatshahi, D.; Leiva-Salinas, C.; Wintermark, M.; et al. From “Time is Brain” to “Imaging is Brain”: A Paradigm Shift in the Management of Acute Ischemic Stroke. J. Neuroimaging 2020, 30, 562–571. [Google Scholar] [CrossRef]
- Wannamaker, R.; Buck, B.; Butcher, K. Multimodal CT in Acute Stroke. Curr. Neurol. Neurosci. Rep. 2019, 19, 63. [Google Scholar] [CrossRef]
- Sundaram, S.; Kannoth, S.; Thomas, B.; Sarma, P.; Sylaja, P. Collateral Assessment by CT Angiography as a Predictor of Outcome in Symptomatic Cervical Internal Carotid Artery Occlusion. Am. J. Neuroradiol. 2017, 38, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Qi, P.; Liu, Y.; Ma, X.; Shen, Z.; Chen, J. Improving Prognostic Evaluation by 4D CTA for Endovascular Treatment in Acute Ischemic Stroke Patients: A Preliminary Study. J. Stroke Cerebrovasc. Dis. 2019, 28, 1971–1978. [Google Scholar] [CrossRef]
- Rebello, L.C.; Bouslama, M.; Haussen, D.C.; Grossberg, J.A.; Dehkharghani, S.; Anderson, A.; Belagaje, S.R.; Bianchi, N.A.; Grigoryan, M.; Frankel, M.R.; et al. Stroke etiology and collaterals: Atheroembolic strokes have greater collateral recruitment than cardioembolic strokes. Eur. J. Neurol. 2017, 24, 762–767. [Google Scholar] [CrossRef]
- Guglielmi, V.; LeCouffe, N.E.; Zinkstok, S.M.; Compagne, K.C.; Eker, R.; Treurniet, K.M.; Tolhuisen, M.L.; van der Worp, H.B.; Jansen, I.G.; van Oostenbrugge, R.J.; et al. Collateral Circulation and Outcome in Atherosclerotic Versus Cardioembolic Cerebral Large Vessel Occlusion. Stroke 2019, 50, 3360–3368. [Google Scholar] [CrossRef]
- Shibazaki, K.; Kimura, K.; Iguchi, Y.; Okada, Y.; Inoue, T. Plasma Brain Natriuretic Peptide Can be a Biological Marker to Distinguish Cardioembolic Stroke from Other Stroke Types in Acute Ischemic Stroke. Intern. Med. 2009, 48, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Rost, N.S.; Biffi, A.; Cloonan, L.; Chorba, J.; Kelly, P.; Greer, D.; Ellinor, P.; Furie, K.L. Brain Natriuretic Peptide Predicts Functional Outcome in Ischemic Stroke. Stroke 2012, 43, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Ye, G.; Wang, R.; Xu, L.; Jiang, Y.; Wang, G.; Wang, D.; Chen, J. Collateral Vessels on 4D CTA as a Predictor of Hemorrhage Transformation After Endovascular Treatments in Patients With Acute Ischemic Stroke: A Single-Center Study. Front. Neurol. 2020, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Mehrkhani, F.; Berkhemer, O.A.; Majoie, C.B.; Mansouri, M.; Karimi, Z.; Lev, M.H.; Yoo, A.J. Combined Evaluation of Noncontrast CT ASPECTS and CT Angiography Collaterals Improves Detection of Large Infarcts in Proximal Artery Occlusive Stroke. J. Neuroimaging 2018, 28, 524–529. [Google Scholar] [CrossRef]
- Cao, R.; Qi, P.; Jiang, Y.; Hu, S.; Ye, G.; Zhu, Y.; Li, L.; You, Z.; Chen, J. Preliminary Application of a Quantitative Collateral Assessment Method in Acute Ischemic Stroke Patients With Endovascular Treatments: A Single-Center Study. Front. Neurol. 2021, 12, 2343. [Google Scholar] [CrossRef]
- Derraz, I.; Pou, M.; Labreuche, J.; Legrand, L.; Soize, S.; Tisserand, M.; Rosso, C.; Piotin, M.; Boulouis, G.; Oppenheim, C.; et al. Clot Burden Score and Collateral Status and Their Impact on Functional Outcome in Acute Ischemic Stroke. Am. J. Neuroradiol. 2021, 42, 42–48. [Google Scholar] [CrossRef]
- Dziadkowiak, E.; Chojdak-Łukasiewicz, J.; Guziński, M.; Noga, L.; Paradowski, B. The Usefulness of the TOAST Classification and Prognostic Significance of Pyramidal Symptoms During the Acute Phase of Cerebellar Ischemic Stroke. Cerebellum 2015, 15, 159–164. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Badacz, R.; Przewłocki, T.; Karch, I.; Pieniążek, P.; Rosławiecka, A.; Mleczko, S.; Brzychczy, A.; Trystuła, M.; Zmudka, K.; Kabłak-Ziembicka, A. Low prevalence of collateral cerebral circulation in the circle of Willis in patients with severe carotid artery stenosis and recent ischemic stroke. Adv. Interv. Cardiol. 2015, 11, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Raman, G.; Moorthy, D.; Hadar, N.; Dahabreh, I.J.; O’Donnell, T.F.; Thaler, D.E.; Feldmann, E.; Lau, J.; Kitsios, G.D. Management Strategies for Asymptomatic Carotid Stenosis. Ann. Intern. Med. 2013, 158, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418, Correction in Stroke 2019, 50, e440–e441. [Google Scholar] [PubMed]
- Ginsberg, M.D. The cerebral collateral circulation: Relevance to pathophysiology and treatment of stroke. Neuropharmacology 2018, 134, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Liggins, J.T.P.; Mlynash, M.; Jovin, T.G.; Straka, M.; Kemp, S.; Bammer, R.; Marks, M.P.; Albers, G.W.; Lansberg, M. Interhospital variation in reperfusion rates following endovascular treatment for acute ischemic stroke. J. Neurointerv. Surg. 2015, 7, 231–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.-H.; Yoon, W. Current Opinion on Endovascular Therapy for Emergent Large Vessel Occlusion Due to Underlying Intracranial Atherosclerotic Stenosis. Korean J. Radiol. 2019, 20, 739–748. [Google Scholar] [CrossRef]
- Lapergue, B.; Mohammad, A.; Shuaib, A. Endothelial progenitor cells and cerebrovascular diseases. Prog. Neurobiol. 2007, 83, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Saver, J.L.; Alger, J.R.; Starkman, S.; Ovbiagele, B.; Liebeskind, D.S. For the UCLA Collateral Investigators Determinants of the distribution and severity of hypoperfusion in patients with ischemic stroke. Neurology 2008, 71, 1804–1811. [Google Scholar] [CrossRef] [Green Version]
- Tu, H.T.; Campbell, B.C.; Christensen, S.; Collins, M.; De Silva, D.A.; Butcher, K.S.; Parsons, M.W.; Desmond, P.M.; Barber, P.A.; Levi, C.R.; et al. Pathophysiological Determinants of Worse Stroke Outcome in Atrial Fibrillation. Cerebrovasc. Dis. 2010, 30, 389–395. [Google Scholar] [CrossRef]
- McGirt, M.J.; Blessing, R.; Nimjee, S.M.; Friedman, A.H.; Alexander, M.J.; Laskowitz, D.T.; Lynch, J.R. Correlation of serum brain natriuretic peptide with hyponatremia and delayed ischemic neurological deficits after subarachnoid hemorrhage. Neurosurgery 2004, 54, 1369–1374. [Google Scholar] [CrossRef]
- Okada, Y.; Shibazaki, K.; Kimura, K.; Matsumoto, N.; Iguchi, Y.; Aoki, J.; Kobayashi, K.; Sakai, K. Brain natriuretic peptide is a marker associated with thrombus in stroke patients with atrial fibrillation. J. Neurol. Sci. 2011, 301, 86–89. [Google Scholar] [CrossRef]
- Okada, Y.; Shibazaki, K.; Kimura, K.; Iguchi, Y.; Miki, T. Brain natriuretic peptide as a predictor of delayed atrial fibrillation after ischaemic stroke and transient ischaemic attack. Eur. J. Neurol. 2010, 17, 326–331. [Google Scholar] [CrossRef]
- Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Rudilosso, S.; Rodríguez-Vázquez, A.; Urra, X.; Arboix, A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int. J. Mol. Sci. 2022, 23, 1497. [Google Scholar] [CrossRef]
Characteristic | All Patients (n = 182) | Good Outcome (mRS ≤ 2) (n = 99) | Poor Outcome (mRS > 2) (n = 83) | p-Value |
---|---|---|---|---|
Age, y; median (IQR) | 76.00 (63.75, 83.25) | 70.00 (59.00, 80.00) | 81.00 (72.00, 85.00) | <0.001 *** |
Female, n (%) | 79 (43.40) | 34 (34.34) | 45 (54.22) | 0.010 * |
NIHSS, median (IQR) | 12.50 (7.00, 17.00) | 9.00 (6.00, 15.00) | 15.00 (11.00, 19.00) | <0.001 *** |
IV-Tpa, n (%) | 43 (23.63) | 27 (27.27) | 16 (19.28) | 0.224 |
SBP, median (IQR) | 145.00 (132.75,159.25) | 143.00 (130.00,152.00) | 146.00 (135.00,146.00) | 0.079 |
DBP, median (IQR) | 80.00 (71.00, 90.00) | 80.00 (71.00, 88.00) | 80.00 (71.00, 94.00) | 0.320 |
Risk factors, n (%) | ||||
Smoking | 53 (29.12) | 37 (37.37) | 16 (19.28) | 0.009 ** |
AF | 75 (41.21) | 26 (26.27) | 49 (59.04) | <0.001 *** |
Hypertension | 140 (76.92) | 74 (74.75) | 66 (79.52) | 0.484 |
Diabetes mellitus | 73 (40.11) | 36 (36.36) | 37 (44.58) | 0.290 |
Hyperlipidemia | 83 (45.60) | 45 (45.45) | 38 (45.78) | 1.000 |
CHD | 79 (43.41) | 33 (33.33) | 46 (55.42) | 0.004 ** |
Previous stroke | 82 (45.05) | 39 (39.39) | 43 (51.81) | 0.102 |
Imaging examination, median (IQR)/n (%) | ||||
IC volume, mL | 22.55 (8.99, 57.65) | 19.28 (7.48, 37.10) | 45.82 (14.82, 113.56) | <0.001 *** |
IP volume, mL | 82.94 (42.92, 128.05) | 81.74 (33.05,128.23) | 87.09 (50.33,127.99) | 0.407 |
MMR | 3.04 (1.76, 6.25) | 3.54 (2.23, 7.20) | 2.21 (1.07, 4.00) | <0.001 *** |
FIV, mL | 39.44 (11.05,101.97) | 16.25 (6.23,41.67) | 101.97 (38.65, 230.23) | <0.001 *** |
ASPECTS | 8.00 (6.00, 9.00) | 8.00 (6.00, 9.00) | 7.00 (5.00, 9.00) | 0.197 |
4D CTA-CS scores | 3.00 (2.00, 4.00) | 3.00 (3.00, 4.00) | 2.00 (1.00, 3.00) | <0.001 *** |
CBS | 6.00 (3.00, 9.00) | 6.00 (4.00, 9.00) | 6.00 (2.00, 9.00) | 0.135 |
Thrombus location | 0.023 * | |||
ICA | 54 (29.67) | 33 (33.33) | 21 (25.30) | |
Segment M1 | 68 (37.36) | 34 (34.34) | 34 (40.96) | |
Segment M2 | 39 (21.43) | 25 (25.25) | 14 (16.87) | |
A1 | 8 (4.40) | 5 (5.05) | 3 (3.61) | |
Tandem occlusion | 13 (7.14) | 2 (2.02) | 11 (13.25) | |
Laboratory parameters, median (IQR) | ||||
Glucose, mmol/L | 7.50 (6.20, 9.63) | 7.50 (6.30, 9.30) | 7.50 (6.10, 9.80) | 0.725 |
Creatinine, umol/L | 76.00 (64.75, 88.25) | 74.00 (64.00, 86.00) | 78.00 (65.00, 100.00) | 0.312 |
Urea, mmol/L | 5.64 (4.23, 7.24) | 5.49 (4.26, 6.72) | 5.98 (4.07,7.86) | 0.171 |
Uric acid, mmol/L | 324.00 (252.00, 409.25) | 310.00 (246.00,381.00) | 339.00 (263.00, 426.00) | 0.101 |
Sodium, mmol/L | 140.10 (138.18, 142.00) | 140.50 (138.50, 142.40) | 139.70 (137.90, 141.70) | 0.214 |
Potassium, mmol/L | 4.00 (3.70,4.30) | 4.00 (3.70,4.20) | 4.00 (3.70, 4.40) | 0.400 |
D-dimer | 282.50 (140.50, 662.00) | 198.00 (81.00, 373.00) | 572.00 (248.00, 1414.00) | <0.001 *** |
Fibrinogen, g/L | 3.05 (2.65, 3.64) | 3.06 (2.66, 3.52) | 3.01 (2.65, 3.72) | 0.484 |
INR | 0.98 (0.92, 1.05) | 0.97 (0.91, 1.05) | 0.98 (0.94, 1.05) | 0.093 |
RBC | 4.40 (3.92, 4.85) | 4.44 (3.96, 4.88) | 4.39 (3.85, 4.83) | 0.383 |
WBC | 8.04 (6.35,10.21) | 7.82 (6.34, 8.99) | 8.28 (6.36, 10.91) | 0.288 |
BNP, median (IQR) | 212.31 (59.87, 477.26) | 91.65 (26.91, 203.99) | 353.28 (203.99, 689.63) | <0.001 *** |
Time, min; median (IQR) | ||||
Onset to imaging | 251.00 (138.25, 449.75) | 272.50 (144.00, 564.00) | 205.00 (130.00, 346.00) | 0.037 * |
Imaging to puncture | 76.50 (56.75, 106.00) | 79.00 (56.00, 107.00) | 74.00 (57.00, 106.00) | 0.632 |
Puncture to recanalization | 81.00 (52.00, 135.75) | 73.00 (50.00, 125.00) | 87.00 (54.00, 147.00) | 0.219 |
Recanalization, n (%) | 155 (85.16) | 91 (91.92) | 64 (77.11) | 0.006 ** |
Classification, n (%) | <0.001 *** | |||
CE stroke | 77 (42.31) | 29 (29.29) | 48 (57.83) | |
LAA stroke | 105 (57.69) | 70 (70.71) | 35 (42.17) |
Characteristics | LAA Stroke (n = 105) | CE Stroke (n = 77) | p Value |
---|---|---|---|
Age, y; median (IQR) | 76.00 (63.75, 83.25) | 81.00 (71.50, 86.00) | <0.001 *** |
Female, n (%) | 38 (36.19) | 41 (53.25) | 0.032 * |
NIHSS, median (IQR) | 12.50 (7.00, 17.00) | 15.00 (10.00, 20.00) | <0.001 *** |
IV-Tpa, n (%) | 21 (20.00) | 22 (28.57) | 0.243 |
SBP, median (IQR) | 145.00 (132.75,159.25) | 147.00 (136.00,162.50) | 0.031 * |
DBP, median (IQR) | 80.00 (71.00, 88.00) | 80.00 (71.50, 93.50) | 0.320 |
Risk factors, n (%) | |||
AF | 6 (5.71) | 69 (89.61) | <0.001 *** |
Hypertension | 78 (74.29) | 62 (80.52) | 0.419 |
Diabetes mellitus | 51 (48.57) | 22 (28.60) | 0.010 * |
Hyperlipidemia | 49 (46.67) | 34 (44.20) | 0.853 |
Smoking | 38 (36.19) | 15 (19.48) | 0.022 * |
Previous stroke | 47 (44.76) | 35 (45.50) | 1.000 |
CHD | 40 (38.10) | 39 (50.60) | 0.124 |
Imaging examinations, median (IQR)/n (%) | |||
IC volume, mL | 22.55 (8.99, 57.65) | 39.52 (14.56, 80.77) | <0.001 *** |
IP volume, mL | 82.94 (42.92, 128.05) | 92.73 (53.66, 158.19) | 0.014 * |
MMR | 3.04 (1.76, 6.25) | 2.29 (1.41, 4.55) | 0.013 * |
FIV, mL | 39.44 (11.05, 101.97) | 39.44 (11.05,101.97) | 0.004 ** |
ASPECTS | 8.00 (6.00, 9.00) | 8.00 (5.00, 9.00) | 0.582 |
CBS | 6.00 (3.00, 9.00) | 6.00 (2.50, 9.00) | 0.127 |
4D CTA-CS scores | 3.00 (2.00, 4.00) | 2.00 (1.00, 3.00) | <0.001 *** |
Thrombus location | |||
ICA | 32 (30.48) | 22 (28.57) | 0.074 |
Segment M1 | 35 (33.33) | 33 (42.86) | |
Segment M2 | 20 (19.05) | 19 (24.68) | |
A1 | 7 (6.77) | 1 (1.30) | |
Tandem occlusion | 11 (10.48) | 2 (2.60) | |
Laboratory parameters, median (IQR) | |||
Glucose, mmol/L | 7.50 (6.20, 9.63) | 7.20 (6.15, 8.25) | 0.026 * |
Creatinine, umol/L | 76.00 (64.75, 88.25) | 76.00 (66.00, 88.00) | 0.878 |
Urea, mmol/L | 5.64 (4.23, 7.24) | 5.64 (4.28, 7.18) | 0.820 |
Uric acid, mmol/L | 324.00 (252.00, 409.25) | 324.00 (252.00, 409.25) | 0.061 |
Sodium, mmol/L | 140.10 (138.18,142.00) | 140.00 (138.30, 141.15) | 0.351 |
Potassium, mmol/L | 4.00 (3.70, 4.30) | 4.00 (3.70, 4.30) | 0.551 |
D-dimer | 282.50 (140.50, 662.00) | 456.00 (206.50, 914.00) | 0.002 ** |
Fibrinogen, g/L | 3.05 (2.65, 3.64) | 3.01 (2.63, 3.54) | 0.415 |
INR | 0.98 (0.92, 1.05) | 0.99 (0.95, 1.10) | 0.007 ** |
RBC | 4.40 (3.92,4.85) | 4.30 (3.92, 4.78) | 0.287 |
WBC | 8.04 (6.35, 10.21) | 7.62 (5.91, 9.64) | 0.029 * |
BNP | 212.31 (59.87, 477.26) | 466.38 (252.33, 738.68) | <0.001 *** |
Time, min; median (IQR) | |||
Onset to imaging | 251.00 (138.25, 449.75) | 191.00 (117.50, 294.00) | <0.001 *** |
Imaging to puncture | 76.50 (56.75, 106.00) | 73.00 (55.50, 105.00) | 0.386 |
Puncture to recanalization | 81.00 (52.00, 135.75) | 67.00 (47.50, 100.50) | 0.004 ** |
Recanalization, n (%) | 91 (86.67) | 64 (83.12) | 0.649 |
mRS score, median (IQR) | 2.00 (0.00, 4.00) | 4.00 (2.00, 5.00) | <0.001 *** |
Clinical outcome, n (%) | |||
Good outcome (mRS ≤ 2) | 70 (66.70) | 29 (37.70) | <0.001 *** |
Poor outcome (mRS > 2) | 35 (33.30) | 48 (62.30) |
Variables | Unadjusted OR | p Value | Adjusted OR | p Value | Adjusted OR | p Value |
---|---|---|---|---|---|---|
(95% CI) | (95% CI) * | (95% CI) † | ||||
All patients (n = 182) | ||||||
Onset to imaging | 1.001 (1.000–1.001) | 0.214 | 1.001(1.000–1.002) | 0.085 | 1.001 (1.000–1.002) | 0.030 |
NIHSS | 1.043 (0.966–1.126) | 0.287 | 1.021 (0.945–1.103) | 0.603 | 1.002 (0.920–1.091) | 0.964 |
Classification | 0.804 (0.312–2.077) | 0.653 | 0.502 (0.182–1.390) | 0.185 | 0.261 (0.038–1.775) | 0.170 |
BNP | 1.003 (1.001–1.005) | <0.001 | 1.003 (1.001–1.005) | 0.001 | 1.004 (1.002–1.006) | 0.001 |
IC volume | 0.999 (0.990–1.008) | 0.841 | 0.999 (0.989–1.009) | 0.843 | 0.999 (0.988–1.010) | 0.874 |
MMR | 0.965 (0.891–1.045) | 0.377 | 0.948 (0.872–1.031) | 0.214 | 0.932 (0.853–1.019) | 0.120 |
D-Dimer | 1.000 (1.000–1.000) | 0.885 | 1.000 (1.000–1.000) | 0.883 | 1.000 (1.000–1.000) | 0.608 |
4D CTA-CS | 0.323 (0.202–0.518) | <0.001 | 0.281 (0.170–0.466) | <0.001 | 0.244 (0.138–0.432) | <0.001 |
Recanalization | 0.366 (0.116–1.160) | 0.088 | 0.401 (0.122–1.315) | 0.132 | 0.364 (0.094–1.407) | 0.143 |
CE stroke patients (n = 77) | ||||||
NIHSS | 1.066 (0.959–1.185) | 0.234 | 1.069 (0.948–1.206) | 0.274 | 1.078 (0.925–1.258) | 0.337 |
4D CTA-CS | 0.503 (0.280–0.904) | 0.022 | 0.513 (0.280–0.939) | 0.030 | 0.395 (0.179–0.873) | 0.022 |
IC volume | 1.008 (0.992–1.024) | 0.345 | 1.008 (0.992–1.025) | 0.336 | 1.013 (0.991–1.035) | 0.249 |
MMR | 0.969 (0.841–1.117) | 0.667 | 0.959 (0.828–1.111) | 0.576 | 0.902 (0.748–1.088) | 0.280 |
Glucose | 1.187 (0.878–1.603) | 0.265 | 1.161 (0.854–1.577) | 0.341 | 1.124 (0.718–1.761) | 0.608 |
D-Dimer | 1.000 (1.000–1.000) | 0.212 | 1.000 (1.000–1.000) | 0.154 | 1.000 (0.999–0.999) | 0.027 |
BNP | 1.004 (1.001–1.007) | 0.006 | 1.004 (1.001–1.008) | 0.005 | 1.007 (1.003–1.012) | 0.003 |
LAA stroke (n = 105) | ||||||
NIHSS | 1.019 (0.902–1.150) | 0.766 | 1.018 (0.899–1.152) | 0.781 | 1.026 (0.870–1.198) | 0.746 |
Recanalization | 0.268 (0.045–1.579) | 0.268 | 0.529 (0.075–3.753) | 0.296 | 0.168 (0.014–2.058) | 0.163 |
IV-Tpa | 6.981 (1.131–43.061) | 0.036 | 5.662 (0.822–39.008) | 0.146 | 12.894 (0.818–203.274) | 0.069 |
4D CTA-CS | 0.222 (0.103–0.476) | <0.001 | 0.209 (0.090–0.488) | <0.001 | 0.122 (0.035–0.425) | 0.001 |
MMR | 0.945 (0.839–1.064) | 0.351 | 0.947 (0.837–1.071) | 0.283 | 0.923 (0.772–1.104) | 0.382 |
D-Dimer | 1.000 (1.000–1.000) | 0.96 | 1.000 (1.000–1.000) | 0.765 | 1.000 (1.000–1.000) | 0.435 |
BNP | 1.003 (1.001–1.006) | 0.008 | 1.003 (0.999–1.006) | 0.13 | 1.002 (0.997–1.006) | 0.421 |
Predictors | BNP | 4D CTA-CS | Combination of BNP and 4D CTA-CS |
---|---|---|---|
All | |||
AUC (95% CI) | 0.792 (0.726–0.849) | 0.818 (0.754–0.871) | 0.870 (0.812–0.915) |
p value | <0.001 | <0.001 | <0.001 |
Sensitivity, Specificity (%) | (79.52, 68.69) | (69.88, 91.92) | (79.52, 85.86) |
PPV, NPV (%) | (68.04, 80.00) | (87.88, 78.45) | (82.50, 83.33) |
DeLong test p value compared with BNP | - | 0.556 | 0.012 * |
DeLong test p value compared with 4D CTA-CS | 0.556 | - | 0.003 * |
CE | |||
AUC (95% CI) | 0.751 (0.639–0.842) | 0.799 (0.692–0.882) | 0.863 (0.765–0.931) |
p value | <0.001 | <0.001 | <0.001 |
Sensitivity, Specificity (%) | (62.50, 79.31) | (75.00, 82.76) | (83.33, 82.76) |
PPV, NPV (%) | (83.33, 56.10) | (87.80, 66.67) | (88.89, 75.00) |
DeLong test p value compared with BNP | - | 0.507 | 0.026 * |
DeLong test p value compared with 4D CTA-CS | 0.507 | - | 0.031 * |
LAA | |||
AUC (95% CI) | 0.792 (0.702–0.865) | 0.793 (0.703–0.866) | 0.837 (0.752–0.902) |
p value | <0.001 | <0.001 | <0.001 |
Sensitivity, Specificity (%) | (82.86, 70.00) | (62.86, 95.71) | (74.29, 87.14) |
PPV, NPV (%) | (58.00, 89.09) | (88.00, 83.75) | (74.29, 87.14) |
DeLong test p value compared with BNP | - | 0.986 | 0.421 |
DeLong test p value compared with 4D CTA-CS | 0.986 | - | 0.020 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Lu, Y.; Qi, P.; Wang, Y.; Hu, H.; Jiang, Y.; Chen, M.; Chen, J. Collateral Circulation and BNP in Predicting Outcome of Acute Ischemic Stroke Patients with Atherosclerotic versus Cardioembolic Cerebral Large-Vessel Occlusion Who Underwent Endovascular Treatment. Brain Sci. 2023, 13, 539. https://doi.org/10.3390/brainsci13040539
Cao R, Lu Y, Qi P, Wang Y, Hu H, Jiang Y, Chen M, Chen J. Collateral Circulation and BNP in Predicting Outcome of Acute Ischemic Stroke Patients with Atherosclerotic versus Cardioembolic Cerebral Large-Vessel Occlusion Who Underwent Endovascular Treatment. Brain Sciences. 2023; 13(4):539. https://doi.org/10.3390/brainsci13040539
Chicago/Turabian StyleCao, Ruoyao, Yao Lu, Peng Qi, Yanyan Wang, Hailong Hu, Yun Jiang, Min Chen, and Juan Chen. 2023. "Collateral Circulation and BNP in Predicting Outcome of Acute Ischemic Stroke Patients with Atherosclerotic versus Cardioembolic Cerebral Large-Vessel Occlusion Who Underwent Endovascular Treatment" Brain Sciences 13, no. 4: 539. https://doi.org/10.3390/brainsci13040539
APA StyleCao, R., Lu, Y., Qi, P., Wang, Y., Hu, H., Jiang, Y., Chen, M., & Chen, J. (2023). Collateral Circulation and BNP in Predicting Outcome of Acute Ischemic Stroke Patients with Atherosclerotic versus Cardioembolic Cerebral Large-Vessel Occlusion Who Underwent Endovascular Treatment. Brain Sciences, 13(4), 539. https://doi.org/10.3390/brainsci13040539