High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terahertz Irradiation Systems
2.2. Experimental Materials
2.3. Primary Neuron Cultures and Irradiation Protocol
2.4. Golgi Staining and Irradiation Protocols
2.5. Hippocampal Slice Preparation
2.6. Electrophysiological Recordings and Irradiation Protocols
2.7. Parameter Extraction and Analysis Methods
2.8. Quantification and Statistical Analysis
3. Results
3.1. Time-Accumulated Irradiation with 0.138 THz Waves Does Not Cause Neuron Death
3.2. Irradiation of 0.138 THz Promotes Dynamic Neuronal Cytosolic Growth
3.3. Radiation of 0.138 THz Promotes the Dynamic Growth of Neuronal Protrusions
3.4. Radiation of 0.138 THz Improves Synaptic Transmission Efficiency in the Hippocampal CA1
3.5. Radiation of 0.138 THz Increases Dendritic Spine Density in Cortical Neurons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, X.; Zhou, H. Biological effects of terahertz waves. Acta Phys. Sin. 2021, 70, 240701. [Google Scholar] [CrossRef]
- Liu, G.; Chang, C.; Qiao, Z.; Wu, K.; Zhu, Z.; Gui, G.; Peng, W.; Tang, Y.; Li, J.; Fan, C. Myelin Sheath as a Dielectric Waveguide for Signal Propagation in the Mid-Infrared to Terahertz Spectral Range. Adv. Funct. Mater. 2019, 29, 1807862. [Google Scholar] [CrossRef]
- Borovkova, M.; Serebriakova, M.; Fedorov, V.; Sedykh, E.; Vaks, V.; Lichutin, A.; Salnikova, A.; Khodzitsky, M. Investigation of terahertz radiation influence on rat glial cells. Biomed. Opt. Express 2016, 81, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, Y.; Liang, S.; Liao, X.; Li, T.; Qiao, Z.; Chang, C.; Jia, H.; Chen, X. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. Nat. Commun. 2021, 12, 2730. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, S.; Boujnah, N.; Rehmani, M.H.; Davy, A. MAC protocols for terahertz communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 22236–22282. [Google Scholar] [CrossRef]
- Tzydynzhapov, G.; Gusikhin, P.; Muravev, V.; Dremin, A.; Nefyodov, Y.; Kukushkin, I. New real-time sub-terahertz security body scanner. J. Infrared Millim. 2020, 41, 623–641. [Google Scholar] [CrossRef]
- Chen, X.; Lindley-Hatcher, H.; Stantchev, R.; Wang, J.; Li, K.; Hernandez Serrano, A.; Taylor, Z.D.; Castro-Camus, E.; Pickwell-MacPherson, E. Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications. Chem. Phys. Rev. 2022, 3, 0011311. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Fedorov, V.I.; Nemova, E.F.; Pogodin, A.S. Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin. Opt. Spectrosc. 2009, 107, 5534. [Google Scholar] [CrossRef]
- Alexandrov, B.S.; Gelev, V.; Bishop, A.R.; Usheva, A.; Rasmussen, K.O. DNA Breathing Dynamics in the Presence of a Terahertz Field. Phys. Letta 2010, 374, 1214. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, L.; Peng, R. Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res. 2021, 8, 28. [Google Scholar] [CrossRef]
- Wu, K.; Qi, C.; Zhu, Z.; Wang, C.; Song, B.; Chang, C. Terahertz Wave Accelerates DNA Unwinding: A Molecular Dynamics Simulation Study. J. Phys. Chem. Lett. 2020, 11, 7002–7008. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.; Che, R.; Kong, L.; Zhang, M.; Zhang, X. Research progress of biological effects of cell membrane under infrared and terahertz irradiation. Acta Phys. Sin. 2021, 70, 248707. [Google Scholar] [CrossRef]
- Fischer, B.M.; Walther, M.; Uhd Jepsen, P. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 2002, 47, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Lundholm, I.V.; Rodilla, H.; Wahlgren, W.Y.; Duelli, A.; Bourenkov, G.; Vukusic, J.; Friedman, R.; Stake, J.; Schneider, T.; Katona, G. Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Struct. Dyn. 2015, 2, 054702. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yang, L.; Wang, S.; Guo, L.; Ma, J.; Tang, J.; Bo, W.; Wu, Z.; Zeng, B.; Gong, Y. Transient proton transfer of base pair hydrogen bonds induced by intense terahertz radiation. Phys. Chem. Chem. Phys. 2020, 22, 9316–9321. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.; Yang, H.J.; Choi, M.; Son, J.H. Effective demethylation of melanoma cells using terahertz radiation. Biomed. Opt. Express 2019, 10, 4931–4941. [Google Scholar] [CrossRef]
- Cheon, H.; Paik, J.H.; Choi, M.; Yang, H.J.; Son, J.H. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci. Rep. 2019, 9, 6413. [Google Scholar] [CrossRef]
- Mancini, T.; Mosetti, R.; Marcelli, A.; Petrarca, M.; Luqi, S.; D’Arco, A. Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status. Radiation 2022, 2, 100–123. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Olshevskaya, J.S.; Kozlov, A.S.; Petrov, A.K.; Zapara, T.A.; Ratushnyak, A.S. Influence of Terahertz (Submillimeter) Laser Radiation on Neurons In Vitro. J. High. Nerv. Act. 2009, 59, 353. [Google Scholar]
- Ol’shevskaya, Y.S.; Kozlov, A.S.; Petrov, A.K.; Zapara, T.A.; Ratushnyak, A.S. Cell Membrane Permeability Under the Influence of Terahertz (Submillimeter) Laser Radiation. Vestn. Novosib. State Univ. Ser. Phys. 2010, 5, 177–181. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Liu, Y.; Liu, H.; Ren, K.; Xue, Q.; Zhang, H.; Zhi, N.; Wang, W.; Wu, S. Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation In Vitro. iScience 2021, 24, 103485. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, M.; Wang, H.; Dong, J.; Zhao, L.; Peng, R. CaMKIIδ Promotes Synaptic Plasticity under Terahertz Wave Radiation by Activation of the NF-κB Pathway. J. Phys. Chem. Lett. 2022, 13, 5925–5931. [Google Scholar] [CrossRef]
- Tsurkan, M.V.; Smolyanskaya, O.A.; Bespalov, V.G.; Kipenko, A.V.; Lopatina, E.V.; Krylov, B.V. Changing growth of neurites of sensory ganglion by terahertz radiation. Proc. SPIE 2012, 8261, 82610. [Google Scholar]
- Sulatsky, M.I.; Duka, M.V.; Smolyanskaya, O.A. Stimulation of Neurite Growth under Broadband Pulsed THz Radiation. Phys. Wave Phenom. 2014, 22, 197. [Google Scholar] [CrossRef]
- Zhang, X.; He, M.; Zhao, J.; Chen, X.; Liu, L.; Lu, X.; Tian, T.; Chen, M.Q.; Wang, P. Effects of 0.1 THz radiation on excitability of hippocampal neurons in SD rats. Chin. J. Lasers 2020, 47, 207023. [Google Scholar] [CrossRef]
- Vernier, P.T.; Levine, Z.A.; Ho, M.C.; Xiao, S.; Semenov, I.; Pakhomov, A.G. Picosecond and Terahertz Perturbation of Interfacial Water and Electropermeabilization of Biological Membranes. J. Membr. Biol. 2015, 248, 837–847. [Google Scholar] [CrossRef]
- Siegel, P.H.; Pikov, V. Can Neurons Sense Millimeter Waves? In Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 5–10 September 2010. [Google Scholar] [CrossRef]
- Romanenko, S.; Siegel, P.H.; Wagenaar, D.A.; Pikov, V. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J. Neurophysiol. 2014, 112, 2423–2431. [Google Scholar] [CrossRef]
- Pikov, V.; Arakaki, X.; Harrington, M.; Fraser, S.E.; Siegel, P.H. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J. Neural Eng. 2010, 7, 045003. [Google Scholar] [CrossRef]
- Tamura, H.; Shiosaka, S.; Morikawa, S. Trophic modulation of gamma oscillations: The key role of processing protease for Neuregulin-1 and BDNF precursors. Neurochem. Int. 2017, 119, 2–10. [Google Scholar] [CrossRef]
- Guo, Z.; Li, C.; Li, X.; Wang, Y.; Mattson, M.P.; Lu, C. The developmental regulation of glutamate receptor-mediated calcium signaling in primary cultured rat hippocampal neurons. Neuroreport 2013, 24, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Goshi, N.; Kim, H.; Girardi, G.; Gardner, A.; Seker, E. Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures. Cells 2023, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lin, Z.; Wang, K.; Liu, X.; Zhou, W.; Meng, L.; Huang, J.; Yuan, K.; Niu, L.; Zheng, H. Transcranial Low-Intensity Pulsed Ultrasound Modulates Structural and Functional Synaptic Plasticity in Rat Hippocampus. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2019, 66, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Huang, K.; Ji, Z.; Wang, Y.; Liu, Y.; Xiao, L.; Xiao, P.; Zheng, Q.; Wang, H. Unveiling Hg-bonding protein within black deposit formed on Golgi-Cos-stained brain neuron. Neurosci. Lett. 2021, 724, 135537. [Google Scholar] [CrossRef]
- Guo, F.; Zhao, J.; Zhao, D.; Wang, J.; Wang, X.; Feng, Z.; Vreugdenhil, M.; Lu, C. Dopamine D4 receptor activation restores CA1 LTP in hippocampal slices from aged mice. Aging Cell 2017, 16, 1323–1333. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Wang, Y.; Wang, M.; Ge, C.; Liu, Z.; Xie, X.-E.; Chen, Z.; Song, J.; Lu, C. The physiological modulation by intracellular kinases of hippocampal γ-oscillation In Vitro. Am. J. Physiol.-Cell Physiol. 2020, 318, C879–C888. [Google Scholar] [CrossRef]
- Ma, S.; Gong, S.; Zhang, W.; Lu, C.; Li, X.; Li, Y. Neuronal growth and development promoted by low-intensity roadband terahertz radiation. Acta Phys. Sin. 2022, 71, 208701. [Google Scholar] [CrossRef]
- Samsonov, A.; Popov, S.V. The effect of a 94 GHz electromagnetic field on neuronal microtubules. Bioelectromagnetics 2013, 34, 133–144. [Google Scholar] [CrossRef]
- Lui, J.; Hansen, D.V.; Kriegstein, A.R. Development and evolution of the human neocortex. Cell 2011, 146, 18–36. [Google Scholar] [CrossRef]
- Bashir, S.; Uzair, M.; Abualait, T.; Arshad, M.; Khallaf, R.A.; Niaz, A.; Thani, Z.; Yoo, W.K.; Túnez, I.; Demirtas-Tatlidede, A.; et al. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer’s disease (Review). Mol. Med. Rep. 2022, 25, 1–17. [Google Scholar] [CrossRef]
- Araya, R.; Vogels, T.P.; Yuste, R. Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proc. Natl. Acad. Sci. USA 2014, 111, E2895–E2904. [Google Scholar] [CrossRef]
- Soares, C.; Lee, K.F.H.; Béïque, J.C. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics. Cell Rep. 2017, 21, 11293–11303. [Google Scholar] [CrossRef]
- Rochefort, N.L.; Konnerth, A. Dendritic spines: From structure to In Vivo function. EMBO Rep. 2012, 13, 699–708. [Google Scholar] [CrossRef]
- Xiang, Z.; Tang, C.; Chang, C.; Liu, G. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics. Sci. Bull. 2019, 65, 308–317. [Google Scholar] [CrossRef]
- Cherkasova, O.P.; Serdyukov, D.S.; Nemova, E.F.; Ratushnyak, A.S.; Kucheryavenko, A.S.; Dolganova, I.N.; Xu, G.; Skorobogatiy, M.; Reshetov, I.V.; Timashev, P.S.; et al. Cellular effects of terahertz waves. J. Biomed. Opt. 2021, 26, 090902. [Google Scholar] [CrossRef]
- Deghoyan, A.; Heqimyan, A.; Nikoghosyan, A.; Dadasyan, E.; Ayrapetyan, S. Cell bathing medium as a target for non thermal effect of millimeter waves. Electromagn. Biol. Med. 2012, 31, 132–142. [Google Scholar] [CrossRef]
- Cha, C. CRMP2 and CRMP4 Regulate the Axonal Development of Hippocampal Neurons. Ph.D. Thesis, University of Jinan, Jinan, China, 2016. [Google Scholar]
- Jonas, P.; Racca, C.; Sakmann, B.; Seeburg, P.H.; Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994, 12, 1281–1289. [Google Scholar] [CrossRef]
- Kater, S.B.; Mills, L.R. Regulation of growth cone behavior by calcium. J. Neurosci. 1991, 11, 891–899. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Zhu, Z.; Sun, L.; Fan, C. Terahertz Wave Enhances Permeability of the Voltage-Gated Calcium Channel. J. Am. Chem. Soc. 2021, 143, 4311–4318. [Google Scholar] [CrossRef]
- Moser, M.B.; Trommald, M.; Andersen, P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl. Acad. Sci. USA 1994, 91, 12673–12675. [Google Scholar] [CrossRef]
- Wang, K.; Lu, J.M.; Xing, Z.H.; Zhao, Q.R.; Hu, L.Q.; Xue, L.; Zhang, J.; Mei, Y.A. Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice. Sci. Rep. 2017, 7, 44521. [Google Scholar] [CrossRef] [PubMed]
- Tufail, Y.; Matyushov, A.; Baldwin, N.; Tauchmann, M.L.; Georges, J.; Yoshihiro, A.; Tillery, S.I.H.; Tyler, W.J. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010, 66, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Penzes, P.; Cahill, M.E.; Jones, K.A.; VanLeeuwen, J.E.; Woolfrey, K.M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 2011, 14, 285–293. [Google Scholar] [CrossRef]
- Mufson, E.J.; Mahady, L.; Waters, D.; Counts, S.E.; Perez, S.E.; DeKosky, S.T.; Ginsberg, S.; Ikonomovic, M.; Scheff, S.; Binder, L. Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience 2015, 309, 51–67. [Google Scholar] [CrossRef]
- Wang, B.; Dudko, O.K. A theory of synaptic transmission. Elife 2020, 10, e73585. [Google Scholar] [CrossRef]
- Statman, A.; Kaufman, M.; Minerbi, A.; Ziv, N.E.; Brenner, N. Synaptic size dynamics as an effectively stochastic process. PLoS Comput. Biol. 2014, 10, e1003846. [Google Scholar] [CrossRef]
- Wagner, T.; Valero-Cabre, A.; Pascual-Leone, A. Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 2007, 9, 527–565. [Google Scholar] [CrossRef]
- Ye, J.; Tang, S.; Meng, L.; Li, X.; Wen, X.; Chen, S.; Niu, L.; Li, X.; Qiu, W.; Hu, H.; et al. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Lett. 2018, 18, 4148–4155. [Google Scholar] [CrossRef]
- Anggono, V.; Huganir, R.L. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr. Opin. Neurobiol. 2012, 22, 461–469. [Google Scholar] [CrossRef]
- Hu, E.Y.; Bouteiller, J.M.; Huang, M.; Song, D.; Berger, T. A Comparison between Direct and Indirect Measurements of Neurotransmitter Vesicle Release Dynamics: A Computational Study. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1155–1158. [Google Scholar] [CrossRef]
- Bouteiller, J.M.; Baudry, M.; Allam, S.L.; Greget, R.J.; Bischoff, S.; Berger, T.W. Modeling glutamatergic synapses: Insights into mechanisms regulating synaptic efficacy. J. Integr. Neurosci. 2008, 7, 185–197. [Google Scholar] [CrossRef]
- Abrahamsson, T.; Chou, C.; Li, S.; Mancino, A.; Costa, P.R.; Brock, J.A.; Nuro, E.; Buchanan, K.A.; Elgar, D.; Blackman, A.V.; et al. Differential Regulation of Evoked and Spontaneous Release by Presynaptic NMDA Receptors. Neuron 2017, 94, 839–855. [Google Scholar] [CrossRef]
Experimental Type | Reagent Name | Manufacturer | Item NO. |
---|---|---|---|
Neuron culture | Dulbecco’s Modified Eagle Medium | Gibco (New York, NY, USA) | 11965092 |
Neurobasal | Gibco | 21103049 | |
B-27 | Gibco | 17504044 | |
Fetal Bovine Serum | Gibco | 10099141C | |
Trypsin 0.25% | Gibco | 15050057 | |
Poly-L-lysine | Sigma (WA, USA) | P4832 | |
HBSS | Beynotime (Shangai, China) | C0218 | |
HEPES | Beynotime | ST090 | |
Golgi staining | Fixative | Servicebio (Wuhan, China) | G1101 |
OCT Embedding medium | Sakura (Torrance, CA, USA) | 4583 | |
Golgi-cox staining solution kit | Servicebio | G1069 | |
Glycerin gelatin | Servicebio | G1402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Li, Z.; Gong, S.; Lu, C.; Li, X.; Li, Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sci. 2023, 13, 686. https://doi.org/10.3390/brainsci13040686
Ma S, Li Z, Gong S, Lu C, Li X, Li Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sciences. 2023; 13(4):686. https://doi.org/10.3390/brainsci13040686
Chicago/Turabian StyleMa, Shaoqing, Zhiwei Li, Shixiang Gong, Chengbiao Lu, Xiaoli Li, and Yingwei Li. 2023. "High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission" Brain Sciences 13, no. 4: 686. https://doi.org/10.3390/brainsci13040686
APA StyleMa, S., Li, Z., Gong, S., Lu, C., Li, X., & Li, Y. (2023). High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sciences, 13(4), 686. https://doi.org/10.3390/brainsci13040686