Individual/Peak Gamma Frequency: What Do We Know?
Abstract
:1. Introduction
2. Literature Search
3. Methodological Aspects
4. Endogenous Determinants of Peak Gamma Frequency
4.1. Anatomical Features
4.2. Neurochemical Balance
4.3. Neuropsychiatric Disorders
4.4. Brain States
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Baltus et al., 2018 [4] | 26 healthy adults | EEG, tACS, auditory steady-state stimulation, gap detection task | Amplitude | IGF: 49 Hz, ~37–63. In IGF + 4 Hz stimulation group, IGF increased after tACS; in IGF-4 Hz group, IGF decreased after tACS |
Lozano-Montes et al., 2020 [34] | 29 Long Evans rats | In vivo LFP, optical stimulation, deep brain stimulation, behavioral tests | Power | IGF during quiet wakefulness: ~53 Hz, ~50–58 Hz; IGF during self-grooming: ~50 Hz, ~45–53 Hz |
Munglani et al. 1993 [78] | 7 healthy adults | EEG, isoflurane, auditory click stimulation, cognitive tests | Power | IGF awake: 32.8 Hz, 28–41 Hz. IGF anesthetized: 24.8 Hz, 21.5–30.6 Hz |
Andrade et al. 1996 [79] | 12 healthy adults | EEG, propofol, auditory click stimulation, cognitive assessment | Power | IGF: 37.6 Hz, 33.5–41.5 Hz. IGF in light sedation: 29.9 Hz, 23.5–35.5 Hz; IGF in deep sedation: 27.1 Hz, 20.5–35.5 Hz |
Xing et al., 2012 [80] | 2 monkeys | In vivo LFP, anesthesia, visual gratings | Amplitude | IGF in awake: 60 ± 9 Hz, ~55–64 Hz; IGF in anesthetized: 40 ± 8.8 Hz, ~35–42 Hz |
Saxena et al., 2013 [81] | 15 healthy adults | MEG, propofol, visual gratings | Amplitude | IGF: ~57 Hz. No difference in IGF between awake and sedated states |
Sumner et al., 2018 [82] | 20 healthy female adults | EEG, blood tests, visual gratings | Power | IGF depends on menstrual phase. For moving stimuli, IGF in luteal phase: 63.42 ± 5.3 Hz; IGF in follicular phase: 59.86 ± 7.19 Hz. For stationary stimuli, IGF in luteal phase: 58.16 ± 3.95 Hz; IGF in follicular phase 52.41 ± 3 Hz. No correlations between IGF and hormone levels |
Baltus et al., 2020 [83] | 16 healthy adults | EEG, tACS, auditory steady-state stimulation, gap detection task | Amplitude | IGF: ~35–60 Hz. Negative correlation of IGF with gap detection threshold (rho = −0.6). Positive correlation of IGF with change in performance after tACS in the experimental group (rho = 0.81), but not in the control group |
Rufener et al., 2022 [84] | 30 children with developmental dyslexia (DD) | EEG, tACS, auditory steady-state stimulation, language assessment | Power | Before tACS application, IGF in tACS group: 40.28 ± 6.22 Hz; IGF in controls: 41.07 ± 6.04 Hz. Immediate effects, ΔIGF in tACS group: 3.38 ± 1.89 Hz; ΔIGF in controls: 1.08 ± 1.85 Hz. Long-term effects, ΔIGF in tACS group: 3.91 ± 1.48 Hz; ΔIGF in controls: −1.58 ± 1.13 Hz |
Dawood et al., 2022 [85] | 49 healthy adults | EEG, tDCS, checkerboard visual stimulus | Power | No difference in IGF between pre- and post-tDCS |
Wilson et al., 2017 [87] | 35 healthy adults | MEG, MRI, tDCS, visual gratings | Amplitude | tDCS did not modulate IGF |
Lewine et al., 2019 [88] | 8 healthy adults | EEG, auditory stimulation, non-invasive vagal nerve stimulation | Power | Baseline IGF at Oz electrode: 44–49 Hz. IGF post-stimulation decreased by 3–4 Hz |
4.5. Age
5. Peak Gamma Activity in Response to Sensory Stimulation
5.1. Visual Processing
5.2. Auditory Processing
5.3. Somatosensory Processing
6. Peak Gamma Frequency in Motion and Cognitive Processes
6.1. Motor Activity
6.2. Cognitive Processes
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angelakis, E.; Stathopoulou, S.; Frymiare, J.L.; Green, D.L.; Lubar, J.F.; Kounios, J. EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 2007, 21, 110–129. [Google Scholar] [CrossRef] [PubMed]
- Bjekić, J.; Paunovic, D.; Živanović, M.; Stanković, M.; Griskova-Bulanova, I.; Filipović, S.R. Determining the Individual Theta Frequency for Associative Memory Targeted Personalized Transcranial Brain Stimulation. J. Pers. Med. 2022, 12, 1367. [Google Scholar] [CrossRef] [PubMed]
- Van Driel, J.; Sligte, I.G.; Linders, J.; Elport, D.; Cohen, M.X. Frequency Band-Specific Electrical Brain Stimulation Modulates Cognitive Control Processes. PLoS ONE 2015, 10, e0138984. [Google Scholar] [CrossRef] [PubMed]
- Baltus, A.; Wagner, S.; Wolters, C.H.; Herrmann, C.S. Optimized auditory transcranial alternating current stimulation improves individual auditory temporal resolution. Brain Stimul. 2018, 11, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Rufener, K.S.; Zaehle, T. Dysfunctional auditory gamma oscillations in developmental dyslexia: A potential target for a tACS-based intervention. In Non-Invasive Brain Stimulation (NIBS) in Neurodevelopmental Disorders; Kadosh, R.C., Zaehle, T., Krauel, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 221–232. [Google Scholar]
- Parciauskaite, V.; Pipinis, E.; Voicikas, A.; Bjekic, J.; Potapovas, M.; Jurkuvenas, V.; Griskova-Bulanova, I. Individual resonant frequencies at low-gamma range and cognitive processing speed. J. Pers. Med. 2021, 11, 453. [Google Scholar] [CrossRef]
- Griškova-Bulanova, I.; Živanović, M.; Voicikas, A.; Pipinis, E.; Jurkuvėnas, V.; Bjekič, J. Responses at Individual Gamma Frequencies Are Related to the Processing Speed but Not the Inhibitory Control. J. Pers. Med. 2022, 13, 26. [Google Scholar] [CrossRef]
- Mockevičius, A.; Yokota, Y.; Tarailis, P.; Hasegawa, H.; Naruse, Y.; Griškova-Bulanova, I. Extraction of Individual EEG Gamma Frequencies from the Responses to Click-Based Chirp-Modulated Sounds. Sensors 2023, 23, 2826. [Google Scholar] [CrossRef]
- Griskova-Bulanova, I.; Voicikas, A.; Dapsys, K.; Melynyte, S.; Andruskevicius, S.; Pipinis, E. Envelope Following Response to 440 Hz Carrier Chirp-Modulated Tones Show Clinically Relevant Changes in Schizophrenia. Brain Sci. 2021, 11, 22. [Google Scholar] [CrossRef]
- Mantini, D.; Perrucci, M.G.; Del Gratta, C.; Romani, G.L.; Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 2007, 104, 13170–13175. [Google Scholar] [CrossRef]
- Bauer, M.; Oostenveld, R.; Peeters, M.; Fries, P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J. Neurosci. 2006, 26, 490–501. [Google Scholar] [CrossRef]
- Edwards, E.; Soltani, M.; Deouell, L.Y.; Berger, M.S.; Knight, R.T. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J. Neurophysiol. 2005, 94, 4269–4280. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; George, N.; Tallon-Baudry, C.; Martinerie, J.; Hugueville, L.; Minotti, L.; Kahane, P.; Renault, B. The many faces of the gamma band response to complex visual stimuli. Neuroimage 2005, 25, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.; Tsivilis, D.; Montaldi, D.; Müller, M.M. Induced gamma band responses: An early marker of memory encoding and retrieval. Neuroreport 2004, 15, 1837–1841. [Google Scholar] [CrossRef] [PubMed]
- Grummett, T.S.; Fitzgibbon, S.P.; Lewis, T.W.; DeLosAngeles, D.; Whitham, E.M.; Pope, K.J.; Willoughby, J.O. Constitutive spectral EEG peaks in the gamma range: Suppressed by sleep, reduced by mental activity and resistant to sensory stimulation. Front. Hum. Neurosci. 2014, 8, 927. [Google Scholar] [CrossRef]
- Artieda, J.; Valencia, M.; Alegre, M.; Olaziregi, O.; Urrestarazu, E.; Iriarte, J. Potentials evoked by chirp-modulated tones: A new technique to evaluate oscillatory activity in the auditory pathway. Clin. Neurophysiol. 2004, 115, 699–709. [Google Scholar] [CrossRef]
- Zaehle, T.; Lenz, D.; Ohl, F.W.; Herrmann, C.S. Resonance phenomena in the human auditory cortex: Individual resonance frequencies of the cerebral cortex determine electrophysiological responses. Exp. Brain Res. 2010, 203, 629–635. [Google Scholar] [CrossRef]
- Dickinson, A.; Bruyns-Haylett, M.; Jones, M.; Milne, E. Increased peak gamma frequency in individuals with higher levels of autistic traits. Eur. J. Neurosci. 2015, 41, 1095–1101. [Google Scholar] [CrossRef]
- van Pelt, S.; Fries, P. Visual stimulus eccentricity affects human gamma peak frequency. Neuroimage 2013, 78, 439–447. [Google Scholar] [CrossRef]
- Duygun, R.; Bingöl, E.; Aktürk, T.; Yıldırım, E.; Güntekin, B. TH-225. Spontaneous EEG gamma oscillations in healthy children, healthy young and healthy elderly. Clin. Neurophysiol. 2022, 141, S156. [Google Scholar] [CrossRef]
- Güntekin, B.; Erdal, F.; Bölükbaş, B.; Hanoğlu, L.; Yener, G.; Duygun, R. Alterations of resting-state Gamma frequency characteristics in aging and Alzheimer’s disease. Cogn. Neurodyn. 2022, 1–16. [Google Scholar] [CrossRef]
- Robson, S.E.; Muthukumarawswamy, S.D.; John Evans, C.; Shaw, A.; Brealy, J.; Davis, B.; Mcnamara, G.; Perry, G.; Singh, K.D. Structural and neurochemical correlates of individual differences in gamma frequency oscillations in human visual cortex. J. Anat. 2015, 227, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Van Pelt, S.; Shumskaya, E.; Fries, P. Cortical volume and sex influence visual gamma. Neuroimage 2018, 178, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Wyss, C.; Tse, D.H.Y.; Kometer, M.; Dammers, J.; Achermann, R.; Shah, N.J.; Kawohl, W.; Neuner, I. GABA metabolism and its role in gamma-band oscillatory activity during auditory processing: An MRS and EEG study. Hum. Brain Mapp. 2017, 38, 3975–3987. [Google Scholar] [CrossRef]
- Liu, Y.T.; Chen, Y.C.; Kwan, S.Y.; Chou, C.C.; Yu, H.Y.; Yen, D.J.; Liao, K.K.; Chen, W.T.; Lin, Y.Y.; Chen, R.S.; et al. Aberrant sensory gating of the primary somatosensory cortex contributes to the motor circuit dysfunction in paroxysmal kinesigenic dyskinesia. Front. Neurol. 2018, 9, 831. [Google Scholar] [CrossRef] [PubMed]
- Proskovec, A.L.; Spooner, R.K.; Wiesman, A.I.; Wilson, T.W. Local Cortical Thickness Predicts Somatosensory Gamma Oscillations and Sensory Gating: A Multimodal Approach. Neuroimage 2020, 214, 116749. [Google Scholar] [CrossRef]
- Cheyne, D.; Bells, S.; Ferrari, P.; Gaetz, W.; Bostan, A.C. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage 2008, 42, 332–342. [Google Scholar] [CrossRef]
- Muthukumaraswamy, S.D. Functional properties of human primary motor cortex gamma oscillations. J. Neurophysiol. 2010, 104, 2873–2885. [Google Scholar] [CrossRef]
- Chen, C.M.A.; Stanford, A.D.; Mao, X.; Abi-Dargham, A.; Shungu, D.C.; Lisanby, S.H.; Schroeder, C.E.; Kegeles, L.S. GABA level, gamma oscillation, and working memory performance in schizophrenia. Neuroimage Clin. 2014, 4, 531–539. [Google Scholar] [CrossRef]
- Lally, N.; Mullins, P.G.; Roberts, M.V.; Price, D.; Gruber, T.; Haenschel, C. Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study. Neuroimage 2014, 85, 823–833. [Google Scholar] [CrossRef]
- Purcell, D.W.; John, S.M.; Schneider, B.A.; Picton, T.W. Human temporal auditory acuity as assessed by envelope following responses. J. Acoust. Soc. Am. 2004, 116, 3581–3593. [Google Scholar] [CrossRef]
- Jia, X.; Tanabe, S.; Kohn, A. Gamma and the Coordination of Spiking Activity in Early Visual Cortex. Neuron 2013, 77, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.; Singer, W.; Chen, N.H.; Neuenschwander, S. Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1. Cereb. Cortex 2010, 20, 1556–1573. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Montes, L.; Dimanico, M.; Mazloum, R.; Li, W.; Nair, J.; Kintscher, M.; Schneggenburger, R.; Harvey, M.; Rainer, G. Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors. Cell Rep. 2020, 33, 108359. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Bieri, K.W.; Trettel, S.G.; Colgin, L.L. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats. Hippocampus 2015, 25, 924–938. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ray, S. Effect of Stimulus Contrast and Visual Attention on Spike-Gamma Phase Relationship in Macaque Primary Visual Cortex. Front. Comput. Neurosci. 2018, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Insel, N.; Patron, L.A.; Hoang, L.T.; Nematollahi, S.; Schimanski, L.A.; Lipa, P.; Barnes, C.A. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: Implications for age-related behavioral slowing. J. Neurosci. 2012, 32, 16331–16344. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N.H.; Stanford, I.M.; Woodhall, G.L. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex. Neural Plast. 2008, 808564, 12. [Google Scholar] [CrossRef]
- Pálhalmi, J.; Paulsen, O.; Freund, T.F.; Hájos, N. Distinct properties of carbachol- and DHPG-induced network oscillations in hippocampal slices. Neuropharmacology 2004, 47, 381–389. [Google Scholar] [CrossRef]
- Tan, H.R.M.; Gross, J.; Uhlhaas, P.J. MEG sensor and source measures of visually induced gamma-band oscillations are highly reliable. Neuroimage 2016, 137, 34–44. [Google Scholar] [CrossRef]
- Baltus, A.; Herrmann, C.S. Auditory temporal resolution is linked to resonance frequency of the auditory cortex. Int. J. Psychophysiol. 2015, 98, 1–7. [Google Scholar] [CrossRef]
- van Pelt, S.; Boomsma, D.I.; Fries, P. Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced gamma-band synchronization. J. Neurosci. 2012, 32, 3388–3392. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Gregory, S.; Fusca, M.; Rees, G.; Schwarzkopf, D.S.; Barnes, G. Gamma Frequency and the Spatial Tuning of Primary Visual Cortex. PLoS ONE 2016, 11, e0157374. [Google Scholar] [CrossRef] [PubMed]
- Pinotsis, D.A.; Schwarzkopf, D.S.; Litvak, V.; Rees, G.; Barnes, G.; Friston, K.J. Dynamic causal modelling of lateral interactions in the visual cortex. Neuroimage 2013, 66, 563–576. [Google Scholar] [CrossRef]
- Schwarzkopf, D.S.; Robertson, D.J.; Song, C.; Barnes, G.R.; Rees, G. The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex. J. Neurosci. 2012, 32, 1507–1512. [Google Scholar] [CrossRef]
- Gaetz, W.; Roberts, T.P.L.; Singh, K.D.; Muthukumaraswamy, S.D. Functional and structural correlates of the aging brain: Relating visual cortex (V1) gamma band responses to age-related structural change. Hum. Brain Mapp. 2012, 33, 2035–2046. [Google Scholar] [CrossRef]
- Kienitz, R.; Cox, M.A.; Dougherty, K.; Saunders, R.C.; Schmiedt, J.T.; Leopold, D.A.; Maier, A.; Schmid, M.C. Theta, but Not Gamma Oscillations in Area V4 Depend on Input from Primary Visual Cortex. Curr. Biol. 2021, 31, 635–642.e3. [Google Scholar] [CrossRef]
- Perry, G.; Hamandi, K.; Brindley, L.M.; Muthukumaraswamy, S.D.; Singh, K.D. The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. Neuroimage 2013, 68, 83–92. [Google Scholar] [CrossRef]
- Muthukumaraswamy, S.D.; Singh, K.D.; Swettenham, J.B.; Jones, D.K. Visual gamma oscillations and evoked responses: Variability, repeatability and structural MRI correlates. Neuroimage 2010, 49, 3349–3357. [Google Scholar] [CrossRef]
- Shaw, A.; Brealy, J.; Richardson, H.; Muthukumaraswamy, S.D.; Edden, R.A.; John Evans, C.; Puts, N.A.J.; Singh, K.D.; Keedwell, P.A. Marked reductions in visual evoked responses but not γ-aminobutyric acid concentrations or γ-band measures in remitted depression. Biol. Psychiatry 2013, 73, 691–698. [Google Scholar] [CrossRef]
- Zaehle, T.; Herrmann, C.S. Neural synchrony and white matter variations in the human brain—Relation between evoked gamma frequency and corpus callosum morphology. Int. J. Psychophysiol. 2011, 79, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.; Vida, I.; Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 2007, 8, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 1996, 16, 6402–6413. [Google Scholar] [CrossRef] [PubMed]
- Brunel, N.; Wang, X.J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 2003, 90, 415–430. [Google Scholar] [CrossRef]
- Atallah, B.V.; Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 2009, 62, 566. [Google Scholar] [CrossRef] [PubMed]
- Edden, R.A.E.; Muthukumaraswamy, S.D.; Freeman, T.C.A.; Singh, K.D. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci. 2009, 29, 15721–15726. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy, S.D.; Edden, R.A.E.; Jones, D.K.; Swettenham, J.B.; Singh, K.D. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8356–8361. [Google Scholar] [CrossRef]
- Gaetz, W.; Edgar, J.C.; Wang, D.J.; Roberts, T.P.L. Relating MEG Measured Motor Cortical Oscillations to resting γ-Aminobutyric acid (GABA) Concentration. Neuroimage 2011, 55, 616. [Google Scholar] [CrossRef]
- Cousijn, H.; Haegens, S.; Wallis, G.; Near, J.; Stokes, M.G.; Harrison, P.J.; Nobre, A.C. Resting GABA and glutamate concentrations do not predict visual gamma frequency or amplitude. Proc. Natl. Acad. Sci. USA 2014, 111, 9301–9306. [Google Scholar] [CrossRef]
- Kujala, J.; Jung, J.; Bouvard, S.; Lecaignard, F.; Lothe, A.; Bouet, R.; Ciumas, C.; Ryvlin, P.; Jerbi, K. Gamma oscillations in V1 are correlated with GABAA receptor density: A multi-modal MEG and Flumazenil-PET study. Sci. Rep. 2015, 5, 16347. [Google Scholar] [CrossRef]
- Campbell, A.E.; Sumner, P.; Singh, K.D.; Muthukumaraswamy, S.D. Acute Effects of Alcohol on Stimulus-Induced Gamma Oscillations in Human Primary Visual and Motor Cortices. Neuropsychopharmacology 2014, 39, 2104. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.D.; Saxena, N.; Jackson, L.E.; Hall, J.E.; Singh, K.D.; Muthukumaraswamy, S.D. Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex. Eur. Neuropsychopharmacol. 2015, 25, 1136–1146. [Google Scholar] [CrossRef]
- Lozano-Soldevilla, D.; Ter Huurne, N.; Cools, R.; Jensen, O. GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance. Curr. Biol. 2014, 24, 2878–2887. [Google Scholar] [CrossRef] [PubMed]
- Magazzini, L.; Muthukumaraswamy, S.D.; Campbell, A.E.; Hamandi, K.; Lingford-Hughes, A.; Myers, J.F.M.; Nutt, D.J.; Sumner, P.; Wilson, S.J.; Singh, K.D. Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation. Hum. Brain Mapp. 2016, 37, 3882. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, B.; Lee, P.; Deth, R. Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct. Funct. 2014, 219, 2173–2180. [Google Scholar] [CrossRef] [PubMed]
- Kühn, J.; Haumesser, J.K.; Beck, M.H.; Altschüler, J.; Kühn, A.A.; Nikulin, V.V.; van Riesen, C. Differential effects of levodopa and apomorphine on neuronal population oscillations in the cortico-basal ganglia loop circuit in vivo in experimental parkinsonism. Exp. Neurol. 2017, 298, 122–133. [Google Scholar] [CrossRef]
- Craig, M.T.; McBain, C.J. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. J. Neurosci. 2015, 35, 3616–3624. [Google Scholar] [CrossRef]
- Lisman, J.E.; Coyle, J.T.; Green, R.W.; Javitt, D.C.; Benes, F.M.; Heckers, S.; Grace, A.A. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008, 31, 234–242. [Google Scholar] [CrossRef]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, J.; Zhou, P.; Li, J.; Gao, H.; Xia, Y.; Wang, Q. Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 2012, 97, 1–13. [Google Scholar] [CrossRef]
- Dickinson, A.; Smith, R.; Bruyns-Haylett, M.; Jones, M.; Milne, E. Superior orientation discrimination and increased peak gamma frequency in autism spectrum conditions. J. Abnorm. Psychol. 2016, 125, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.; Brindley, L.M.; Muthukumaraswamy, S.D.; Singh, K.D.; Hamandi, K. Evidence for increased visual gamma responses in photosensitive epilepsy. Epilepsy Res. 2014, 108, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Hepschke, J.L.; Seymour, R.A.; He, W.; Etchell, A.; Sowman, P.F.; Fraser, C.L. Cortical oscillatory dysrhythmias in visual snow syndrome: A magnetoencephalography study. Brain Commun. 2021, 4, fcab296. [Google Scholar] [CrossRef] [PubMed]
- Brealy, J.A.; Shaw, A.; Richardson, H.; Singh, K.D.; Muthukumaraswamy, S.D.; Keedwell, P.A. Increased visual gamma power in schizoaffective bipolar disorder. Psychol. Med. 2015, 45, 783–794. [Google Scholar] [CrossRef]
- Arnfred, S.M.; Raballo, A.; Morup, M.; Parnas, J. Self-disorder and brain processing of proprioception in schizophrenia spectrum patients: A re-analysis. Psychopathology 2015, 48, 60–64. [Google Scholar] [CrossRef]
- Arrondo, G.; Alegre, M.; Sepulcre, J.; Iriarte, J.; Artieda, J.; Villoslada, P. Abnormalities in brain synchronization are correlated with cognitive impairment in multiple sclerosis. Mult. Scler. J. 2009, 15, 509–516. [Google Scholar] [CrossRef]
- Munglani, R.; Andrade, J.; Sapsford, D.J.; Baddeley, A.; Jones, J.G. A measure of consciousness and memory during isoflurane administration: The coherent frequency. Br. J. Anaesth. 1993, 71, 633–641. [Google Scholar] [CrossRef]
- Andrade, J.; Sapsford, D.J.; Jeevaratnum, D.; Pickworth, A.J.; Jones, J.G. The coherent frequency in the electroencephalogram as an objective measure of cognitive function during propofol sedation. Anesth. Analg. 1996, 83, 1279–1284. [Google Scholar] [CrossRef]
- Xing, D.; Shen, Y.; Burns, S.; Yeh, C.I.; Shapley, R.; Li, W. Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. J. Neurosci. 2012, 32, 13873–13880. [Google Scholar] [CrossRef]
- Saxena, N.; Muthukumaraswamy, S.D.; Diukova, A.; Singh, K.; Hall, J. Enhanced Stimulus-Induced Gamma Activity in Humans during Propofol-Induced Sedation. PLoS ONE 2013, 8, 57685. [Google Scholar] [CrossRef]
- Sumner, R.L.; McMillan, R.L.; Shaw, A.D.; Singh, K.D.; Sundram, F.; Muthukumaraswamy, S.D. Peak visual gamma frequency is modified across the healthy menstrual cycle. Hum. Brain Mapp. 2018, 39, 3187–3202. [Google Scholar] [CrossRef] [PubMed]
- Baltus, A.; Vosskuhl, J.; Boetzel, C.; Herrmann, C.S. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people. Eur. J. Neurosci. 2020, 51, 1328–1338. [Google Scholar] [CrossRef] [PubMed]
- Rufener, K.; Zaehle, T.; Krauel, K. Combined multi-session transcranial alternating current stimulation (tACS) and language skills training improves individual gamma band activity and literacy skills in developmental dyslexia. PsyArXiv 2022, 1–38. [Google Scholar] [CrossRef]
- Bin Dawood, A.; Dickinson, A.; Aytemur, A.; Milne, E.; Jones, M. No effects of transcranial direct current stimulation on visual evoked potential and peak gamma frequency. Cogn. Process. 2022, 23, 235–254. [Google Scholar] [CrossRef]
- Spooner, R.K.; Heinrichs-Graham, E.; McDermott, T.J.; Mills, M.S.; Coolidge, N.M.; Wilson, T.W. Visual Gamma Oscillations and Basal Alpha Levels are Modulated by Anodal Occipital tDCS: Evidence from MEG. Brain Stimul. 2017, 10, e35. [Google Scholar] [CrossRef]
- Wilson, T.W.; McDermott, T.J.; Mills, M.S.; Coolidge, N.M.; Heinrichs-Graham, E. TDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG. Cereb. Cortex 2017, 28, 1597–1609. [Google Scholar] [CrossRef]
- Lewine, J.D.; Paulson, K.; Bangera, N.; Simon, B.J. Exploration of the Impact of Brief Noninvasive Vagal Nerve Stimulation on EEG and Event-Related Potentials. Neuromodulation 2019, 22, 564–572. [Google Scholar] [CrossRef]
- Kahlbrock, N.; Butz, M.; May, E.S.; Brenner, M.; Kircheis, G.; Häussinger, D.; Schnitzler, A. Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. Neuroimage 2012, 61, 216–227. [Google Scholar] [CrossRef]
- Murty, D.V.P.S.; Manikandan, K.; Kumar, W.S.; Ramesh, R.G.; Purokayastha, S.; Javali, M.; Rao, N.P.; Ray, S. Gamma oscillations weaken with age in healthy elderly in human EEG. Neuroimage 2020, 215, 116826. [Google Scholar] [CrossRef]
- Orekhova, E.V.; Butorina, A.V.; Sysoeva, O.V.; Prokofyev, A.O.; Nikolaeva, A.Y.; Stroganova, T.A. Frequency of gamma oscillations in humans is modulated by velocity of visual motion. J. Neurophysiol. 2015, 114, 244–255. [Google Scholar] [CrossRef]
- Orekhova, E.V.; Sysoeva, O.V.; Schneiderman, J.F.; Lundström, S.; Galuta, I.A.; Goiaeva, D.E.; Prokofyev, A.O.; Riaz, B.; Keeler, C.; Hadjikhani, N.; et al. Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex. Sci. Rep. 2018, 8, 8451. [Google Scholar] [CrossRef]
- Wiesman, A.I.; Wilson, T.W. The impact of age and sex on the oscillatory dynamics of visuospatial processing. Neuroimage 2019, 185, 513–520. [Google Scholar] [CrossRef]
- Stroganova, T.A.; Butorina, A.V.; Sysoeva, O.V.; Prokofyev, A.O.; Nikolaeva, A.Y.; Tsetlin, M.M.; Orekhova, E.V. Altered modulation of gamma oscillation frequency by speed of visual motion in children with autism spectrum disorders. J. Neurodev. Disord. 2015, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, C.; Picton, T.W.; Paus, T. Age-Related Changes in Transient and Oscillatory Brain Responses to Auditory Stimulation in Healthy Adults 19–45 Years Old. Cereb. Cortex 2007, 17, 1454–1467. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, C.; Picton, T.W.; Paus, T. Age-related changes in transient and oscillatory brain responses to auditory stimulation during early adolescence. Dev. Sci. 2009, 12, 220–235. [Google Scholar] [CrossRef]
- Hadjipapas, A.; Lowet, E.; Roberts, M.J.; Peter, A.; De Weerd, P. Parametric variation of gamma frequency and power with luminance contrast: A comparative study of human MEG and monkey LFP and spike responses. Neuroimage 2015, 112, 327–340. [Google Scholar] [CrossRef]
- Krishnakumaran, R.; Raees, M.; Ray, S. Shape analysis of gamma rhythm supports a superlinear inhibitory regime in an inhibitionstabilized network. PLoS Comput. Biol. 2022, 18, e1009886. [Google Scholar] [CrossRef] [PubMed]
- Perry, G. The effects of cross-orientation masking on the visual gamma response in humans. Eur. J. Neurosci. 2015, 41, 1484–1495. [Google Scholar] [CrossRef]
- Ray, S.; Maunsell, J.H.R. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 2010, 67, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Lowet, E.; Brunet, N.M.; TerWal, M.; Tiesinga, P.; Fries, P.; DeWeerd, P. Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching. Neuron 2013, 78, 523–536. [Google Scholar] [CrossRef]
- Swettenham, J.B.; Muthukumaraswamy, S.D.; Singh, K.D. Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. J. Neurophysiol. 2009, 102, 1241–1253. [Google Scholar] [CrossRef]
- Murty, D.V.P.S.; Shirhatti, V.; Ravishankar, P.; Ray, S. Large Visual Stimuli Induce Two Distinct Gamma Oscillations in Primate Visual Cortex. J. Neurosci. 2018, 38, 2730–2744. [Google Scholar] [CrossRef]
- Shirhatti, V.; Ravishankar, P.; Ray, S. Gamma oscillations in primate primary visual cortex are severely attenuated by small stimulus discontinuities. PLoS Biol. 2022, 20, e3001666. [Google Scholar] [CrossRef]
- Gieselmann, M.A.; Thiele, A. Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1. Eur. J. Neurosci. 2008, 28, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Stauch, B.J.; Peter, A.; Schuler, H.; Fries, P. Stimulus-specific plasticity in human visual gamma-band activity and functional connectivity. ELife 2021, 10, e68240. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.; Stauch, B.J.; Shapcott, K.; Kouroupaki, K.; Schmiedt, J.T.; Klein, L.; Klon-Lipok, J.; Dowdall, J.R.; Schölvinck, M.L.; Vinck, M.; et al. Stimulus-specific plasticity of macaque V1 spike rates and gamma. Cell Rep. 2021, 37, 110086. [Google Scholar] [CrossRef] [PubMed]
- Brunet, N.; Bosman, C.A.; Roberts, M.; Oostenveld, R.; Womelsdorf, T.; De Weerd, P.; Fries, P. Visual cortical gamma-band activity during free viewing of natural images. Cereb. Cortex 2015, 25, 918–926. [Google Scholar] [CrossRef] [PubMed]
- da Silva, K.S.; Luvizutto, G.J.; Bruno, A.C.M.; de Oliveira, S.F.; Costa, S.C.; da Silva, G.M.; Andrade, M.J.C.; Pereira, J.M.; Andrade, A.O.; de Souza, L.A.P.S. Gamma-Band Frequency Analysis and Motor Development in Music-Trained Children: A Cross-Sectional Study. J. Mot. Behav. 2021, 54, 203–211. [Google Scholar] [CrossRef]
- Spooner, R.K.; Wiesman, A.I.; Mills, M.S.; O’Neill, J.; Robertson, K.R.; Fox, H.S.; Swindells, S.; Wilson, T.W. Aberrant oscillatory dynamics during somatosensory processing in HIV-infected adults. Neuroimage 2018, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Chan, P.Y.S.; Niddam, D.M.; Tsai, S.Y.; Hsu, S.C.; Liu, C.Y. Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex. Sci. Rep. 2016, 6, 20437. [Google Scholar] [CrossRef]
- Ball, T.; Demandt, E.; Mutschler, I.; Neitzel, E.; Mehring, C.; Vogt, K.; Aertsen, A.; Schulze-Bonhage, A. Movement related activity in the high gamma range of the human EEG. Neuroimage 2008, 41, 302–310. [Google Scholar] [CrossRef]
- Cheyne, D.; Ferrari, P. MEG studies of motor cortex gamma oscillations: Evidence for a gamma “fingerprint” in the brain? Front. Hum. Neurosci. 2013, 7, 575. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs-Graham, E.; Hoburg, J.M.; Wilson, T.W. The peak frequency of motor-related gamma oscillations is modulated by response competition. Neuroimage 2018, 165, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kucewicz, M.T.; Berry, B.M.; Kremen, V.; Brinkmann, B.H.; Sperling, M.R.; Jobst, B.C.; Gross, R.E.; Lega, B.; Sheth, S.A.; Stein, J.M.; et al. Dissecting gamma frequency activity during human memory processing. Brain 2017, 140, 1337–1350. [Google Scholar] [CrossRef]
- Bosman, C.A.; Schoffelen, J.M.; Brunet, N.; Oostenveld, R.; Bastos, A.M.; Womelsdorf, T.; Rubehn, B.; Stieglitz, T.; De Weerd, P.; Fries, P. Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas. Neuron 2012, 75, 875–888. [Google Scholar] [CrossRef]
- Magazzini, L.; Singh, K.D. Spatial attention modulates visual gamma oscillations across the human ventral stream. Neuroimage 2018, 166, 219–229. [Google Scholar] [CrossRef]
- Kennedy, J.S.; Singh, K.D.; Muthukumaraswamy, S.D. An MEG investigation of the neural mechanisms subserving complex visuomotor coordination. Int. J. Psychophysiol. 2011, 79, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Fesi, J.D.; Mendola, J.D. Individual peak gamma frequency predicts switch rate in perceptual rivalry. Hum. Brain Mapp. 2015, 36, 566. [Google Scholar] [CrossRef]
- Fitzgibbon, S.P.; Pope, K.J.; MacKenzie, L.; Clark, C.R.; Willoughby, J.O. Cognitive tasks augment gamma EEG power. Clin. Neurophysiol. 2004, 115, 1802–1809. [Google Scholar] [CrossRef]
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Robson et al., 2015 [22] | 34 healthy adults | MEG, MRS, visual gratings | Power | IGF: 52.5 ± 4.4 Hz, ~45–65 Hz. No correlation of IGF with V1 surface area and thickness |
van Pelt et al., 2018 [23] | 158 healthy adults | MEG, MRI, visual gratings | Amplitude | IGF: 56.2 ± 5.4 Hz, 41.5–72.9 Hz. Positive correlation of IGF with occipital thickness (13.4 Hz per mm increase). Negative correlation of IGF with occipital surface area (−0.044 Hz per cm2 increase) and pericalcarine volume (−1.88 Hz per cm3 increase) |
Proskovec et al., 2020 [26] | 94 healthy adults | MEG, MRI, electrical stimulation of the right median nerve | Power | IGF: ~30–100 Hz. Negative correlation of IGF with S1 thickness: 27.25 Hz decrease per 1 mm increase |
Gregory et al., 2016 [44] | 10 healthy adults | MEG, fMRI, visual gratings | Power | IGF: 41.15–70.41 Hz. Positive correlation of IGF with V1 surface area (rho = 0.38) |
Pinotsis et al., 2013 [45] | Simulated data | Dynamic causal modeling | Power | IGF: ~45–60 Hz. Positive correlation of IGF with V1 columnar width (r = 0.27) |
Schwartzkopf et al., 2012 [46] | 16 healthy adults | MEG, MRI, visual gratings | Power | IGF: 44.6–57 Hz. Positive correlation of IGF with V1 (Rs = 0.63) and V2 (Rs = 0.54) surface area. No correlation of IGF with V1 thickness |
Gaetz et al., 2012 [47] | 46 healthy adults, 13 healthy children | MEG, MRI, visual gratings | Amplitude | IGF: ~35–70 Hz. Positive correlation of IGF with pericalcarine thickness (r2 = 0.059), cuneus thickness (r2 = 0.115) and cuneus volume (r2 = 0.13) |
Kienitz et al., 2021 [48] | 2 macaque monkeys | In vivo LFP, V1 lesions, visual illusory stimuli | Power | After V1 lesion, IGF decreased by 5.73 ± 0.86 Hz in V4 in one monkey |
Perry et al., 2013 [49] | 12 healthy adults | MEG, MRI, visual gratings | Amplitude | IGF: ~40–70 Hz. No correlation of IGF with V1 surface area, thickness or volume |
Muthukumaraswamy et al., 2010 [50] | 30 healthy adults | MEG, MRI, visual gratings | Power | IGF: 51.4 ± 6.6 Hz, 42–64.5 Hz. Positive correlation of IGF with pericalcarine cortical thickness (R = 0.392) |
Shaw et al., 2013 [51] | 37 healthy adults: 19 remitted depression (RD), 18 never depressed (ND) | MEG, MRS, visual gratings | Power | IGF in RD: 57.64 Hz, IGF in ND: 55.83 Hz, non-significant difference. No correlation of IGF with pericalcarine surface area, positive correlation of IGF with pericalcarine thickness (r = 0.32) |
Zaehle et al., 2011 [52] | 17 healthy adults | EEG, MRI, visual gratings | Amplitude | IGF: ~20–50 Hz. Positive correlation of IGF with corpus callosum white matter density (r = 0.44–0.65) |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Robson et al., 2015 [22] | 34 healthy adults | MEG, MRS, visual gratings | Power | IGF: 52.5 ± 4.4 Hz, ~45–65 Hz. No correlation of IGF with V1 surface area and thickness. Positive correlation of IGF with V1 GABA (R = 0.34), but insignificant after including age as a covariate |
Wyss et al., 2017 [24] | 15 healthy adults | EEG, MRS, auditory stimulation | Power | IGF: ~30–160 Hz. No correlation of IGF with GABA and glutamate |
Chen et al., 2014 [29] | 12 adults with schizophrenia; 12 healthy adults | EEG, MRS, working memory assessment | Amplitude | IGF: ~30–50 Hz. Positive correlation of IGF with DLPFC GABA (r = 0.58) |
Lally et al., 2014 [30] | 14 healthy adults | EEG, MRI, categorization task | Power | Negative correlation of IGF with glutamate concentration in the occipital cortex (r = −0.54) |
Morgan et al., 2008 [38] | Wistar rats | In vitro LFP, arachidonylcyclopropylamide (ACPA) and LY320135 | Power | In hippocampal entorhinal cortex slices, IGF pre-injection: 40.7 ± 2.4 Hz; IGF after CB1R agonist (ACPA) injection decreased to 35.6 ± 1.8 Hz, but returned to 41.2 ± 1.8 Hz after CB1R antagonist (LY320135) injection |
Pálhalmi et al., 2004 [39] | Wistar rats | In vitro LFP, carbachol and (RS)-3,5-dihydroxyphenylglycine (DHPG) | Power | IGF post-carbachol: 31.5 ± 0.7 Hz; IGF post-DHPG: 41.2 ± 0.6 Hz. Positive correlation of IGF with DHPG dosage |
Shaw et al., 2013 [51] | 37 healthy adults: 19 remitted depression (RD), 18 never depressed (ND) | MEG, MRS, visual gratings | Power | IGF in RD: 57.64 Hz, IGF in ND: 55.83 Hz, non-significant difference. No correlation of IGF with occipital GABA |
Edden et al., 2009 [57] | 13 healthy adults | MEG, MRS, visual gratings | Amplitude | IGF: 50.9 ± 1.3 Hz, 43.5–58.0 Hz. Positive correlation of IGF with V1 GABA concentration (r = 0.67) |
Muthukumaraswamy et al., 2009 [58] | 12 healthy adults | MEG, MRS, fMRI, visual gratings | Amplitude | IGF: 40–66 Hz. Positive correlation of IGF with V1 GABA concentration (R = 0.68) |
Gaetz et al., 2011 [59] | 9 healthy adults | MEG, MRI, MRS, visual stimuli and motor responses | Amplitude | IGF: ~70–80 Hz. Positive correlation of IGF with M1 GABA concentration: R2 = 0.46 (3.9 Hz increase per 0.1 GABA increase) |
Cousijn et al., 2014 [60] | 50 healthy adults | MEG, MRS, visual gratings | Power | IGF: ~40–75 Hz. No correlation of IGF with occipital GABA and glutamate |
Kujala et al., 2015 [61] | 13 healthy adults | MEG, PET, MRI, working memory assessment | Amplitude | IGF: ~40–100 Hz. Positive correlation of IGF with GABAA receptor density in V1 (rho = 0.74) |
Campbell et al., 2014 [62] | 16 healthy adults | MEG, alcohol, visual gratings, finger movement task | Amplitude | IGF pre-alcohol: ~55 Hz; IGF post-alcohol: ~50 Hz. Drug and time interaction for visual IGF, where IGF decreased after alcohol administration |
Shaw et al., 2015 [63] | 20 healthy adults | MEG, MRI, visual gratings, ketamine | Amplitude | For high contrast gratings, IGF pre-ketamine: ~51 Hz; IGF post-ketamine: ~49 Hz |
Lozano-Soldevilla et al., 2014 [64] | 32 healthy adults | MEG, lorazepam, working memory assessment | Power | IGF pre-lorazepam: >75 Hz; IGF post-lorazepam: <75 Hz |
Magazzini et al., 2018 [65] | 15 healthy adults | MEG, tiagabine, visual gratings | Power | IGF after placebo: ~53 Hz; IGF after tiagabine: ~50 Hz |
Kocsis et al., 2014 [66] | Rats | In vivo LFP, D4 receptor agonist A-412997 (Tocris) injections | Power | IGF pre-injection: 51 ± 1 Hz; IGF post-injection: 46 ± 2 Hz |
Kühn et al., 2017 [67] | 42 Wistar rats | In vivo LFP, levodopa or apomorphine injections, behavioral testing | Power | IGF decreased with apomorphine dosage from ~65 Hz to ~60 Hz in Parkinson’s disease animal model and controls; IGF increased with levodopa dosage from ~60 Hz to ~65 Hz, only in controls |
Craig and McBrain 2015 [68] | Nkx2–1-cre:RCE and Htr3a-GFP mice. | In vitro LFP, kainate | Power | Kainate evoked gamma in hippocampal slices. IGF in CA3 region: 52 ± 1.2 Hz, ~40–65 Hz; IGF in CA1 region: 63 ± 0.87 Hz, ~40–80 Hz |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Rufener et al., 2021 [5] | 32 children with developmental dyslexia (DD), 26 healthy children | EEG, auditory steady-state stimulation, phonological awareness task | Power | IGF in DD: 40.63 ± 5.76 Hz; IGF in controls: 45.69 ± 5.85 Hz |
Griskova-Bulanova et al., 2020 [9] | 18 adults with schizophrenia (SZ), 18 healthy adults | EEG, auditory steady-state stimulation | Phase-locking | IGF in SZ: 44 ± 7 Hz; IGF in controls: 49 ± 8 Hz |
Dickinson et al., 2015 [18] | 33 healthy adults | EEG, visual gratings, Autism Spectrum Quotient (AQ) | Power | IGF: 59.37 ± 15.66 Hz, 30.27–89.66 Hz. Positive correlation of IGF with AQ score (r = 0.58) |
Güntekin et al., 2022 [21] | 60 healthy young (HY) adults, 60 healthy elderly (HE), 59 Alzheimer’s patients (AD) | rsEEG | Power | IGF: ~30–43 Hz. IGF in AD: ~33 ± 3 Hz; IGF in HE: ~35 ± 2 Hz; IGF in HY: ~37 ± 1 Hz |
Chen et al., 2014 [29] | 12 adults with schizophrenia; 12 healthy adults | EEG, MRS, working memory assessment | Amplitude | IGF: ~30–50 Hz. Positive correlation of IGF with prefrontal GABA (r = 0.58) |
Dickinson et al., 2016 [72] | 28 adults with autism (ASD), 39 healthy adults | EEG, visual gratings | Power | IGF in ASD: 62.19 ± 10.04 Hz; IGF in controls: 51.61 ± 10.75 Hz |
Perry et al., 2014 [73] | 12 adults with photosensitive epilepsy, 9 with non-photosensitive epilepsy; 12 healthy adults | MEG, visual gratings | Amplitude | No differences between groups |
Hepschke et al., 2021 [74] | 18 adults with visual snow syndrome (VSS), 16 healthy adults | MEG, MRI, visual gratings | Power | No difference in IGF between groups. IGF in VSS: 53.17 Hz; IGF in controls: 52.63 Hz |
Brealy et al., 2015 [75] | 15 adults with schizoaffective bipolar disorder (SABP), 22 healthy adults | MEG, visual gratings | Amplitude | IGF in SABP: ~45 Hz transient, ~40 Hz sustained; IGF in controls: ~50 Hz transient, ~45 Hz sustained; no significant difference |
Arnfred et al., 2015 [76] | 16 adults with schizophrenia spectrum (SZS) | EEG, proprioceptive stimulation, SZS symptoms examination | Amplitude | IGF: ~25–38 Hz. Negative correlation of IGF with SZS symptom scores (r = −0.76) |
Arrondo et al., 2009 [77] | 27 adults with multiple sclerosis (MS), 22 healthy adults | EEG, auditory steady-state stimulation, cognitive assessment | Amplitude | IGF in cognitively impaired MS: 39.79 Hz; IGF in cognitively unimpaired MS: 43.85 Hz; IGF in controls: 43.84 Hz |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Duygun et al., 2022 [20] | 60 healthy young (HY) adults, 60 healthy elderly (HE) and 26 healthy children (HC) | rsEEG | Power | IGF in HC: ~34 Hz; IGF in HY: ~37 Hz; IGF in HE: ~35 Hz |
Güntekin et al. [21] | 60 healthy young (HY) adults, 60 healthy elderly (HE) and 59 Alzheimer’s patients (AD) | rsEEG | Power | IGF: ~30–43 Hz. IGF in AD: ~33 ± 3 Hz; IGF in HE: ~35 ± 2 Hz; IGF in HY: ~37 ± 1 Hz |
Robson et al., 2015 [22] | 34 healthy adults | MEG, MRS, visual gratings | Power | IGF: 52.5 ± 4.4 Hz, ~45–65 Hz. Negative correlation of IGF (r = −0.69) with age (Mage = 33.7 ± 11.9) |
van Pelt et al., 2018 [23] | 158 healthy adults | MEG, MRI, visual gratings | Amplitude | IGF: 56.2 ± 5.4 Hz, 41.5–72.9 Hz. Negative correlation of IGF with age (−0.52Hz per year; F age: 23.2 ± 3.9, Mage: 24.3 ± 5.4) |
Wyss et al., 2017 [24] | 15 healthy adults | EEG, MRS, auditory stimulation | Power | IGF: ~30–160 Hz. No correlation of IGF with age (19–31 years) |
Proskovec et al., 2020 [26] | 94 healthy adults | MEG, MRI, electrical stimulation of the right median nerve | Power | No correlation of IGF with age (22–72 years) |
Purcell et al., 2004 [31] | 38 healthy adults | EEG, auditory steady-state stimulation, gap detection task | Amplitude | IGF in young (18–43 years): 41 ± 5 Hz; IGF in old (60–78 years): 37 ± 4 Hz |
Insel et al., 2012 [37] | 12 rats | In vivo LFP, decision-making task | Power | IGF: 50–60Hz. IGF in younger rats: 56.4 Hz; IGF in older rats: 53.5 Hz |
Schwartzkopf et al., 2012 [46] | 16 healthy adults | MEG, MRI, visual gratings | Power | IGF: 44.6–57 Hz. No correlation of IGF with age (19–34 years) |
Gaetz et al., 2012 [47] | 46 healthy adults, 13 healthy children | MEG, MRI, visual gratings | Amplitude | IGF: ~35–70 Hz. Negative correlation of IGF with age (8.7–45.3 years): r2 = 0.46 |
Muthukumaraswamy et al., 2010 [50] | 30 healthy adults | MEG, MRI, visual gratings | Power | IGF: 51.4 ± 6.6 Hz, 42–64.5 Hz. Negative correlation of IGF (r = −0.47) with age (19–44 years) |
Shaw et al., 2013 [51] | 37 healthy adults: 19 remitted depression (RD), 18 never depressed (ND) | MEG, MRS, visual gratings | Power | IGF in RD: 57.64 Hz, IGF in ND: 55.83 Hz, non-significant difference. No correlation of IGF with age (19–35 years) |
Gaetz et al., 2011 [59] | 9 healthy adults | MEG, MRI, MRS, visual stimuli and motor responses | Amplitude | IGF: ~70–80 Hz. Negative correlation of IGF with age (22.7–42.7 years): R2 = 0.40; 4.8 Hz decrease per 10 years |
Kahlbrock et al., 2012 [89] | 26 adults with liver cirrhosis, 8 healthy adults | MEG, MRI, selective attention task with visual and auditory stimulation | Power | IGF: ~35–65 Hz. IGF in low age (≤59 years) group: 52 Hz; IGF in high age (>59 years) group: 46 Hz |
Murty et al., 2020 [90] | 236 healthy elderly, 47 younger adults | EEG, visual gratings | Power | Negative correlation of IGF with age (50–88 years): β = −0.08 for fast gamma; β = −0.16 for slow gamma |
Orekhova et al., 2015 [91] | 27 healthy children | EEG, MEG, visual gratings | Power | IGF: 50–97.5 Hz. Negative correlation of IGF with age (8–15 years): rho = −0.58–0.8 |
Orekhova et al., 2018 [92] | 27 healthy adults, 50 healthy children | MEG, visual gratings | Power | Negative correlation of IGF with age: −1.71 Hz/year for children, −0.64 Hz/year for adults |
Wiesman and Wilson 2019 [93] | 77 healthy adults | MEG, MRI, visual grid stimuli | Amplitude | IGF: ~48–70 Hz. Negative correlation of IGF (r = −0.29) with age (22–72 years) |
Stroganova et al., 2015 [94] | 21 children with autism (ASD), 26 healthy children | MEG, visual gratings | Power | IGF: 57.5–92.3 Hz. Negative correlation of IGF with age (7–15 years), rho = −0.6. Positive correlation of IGF modulation with age in healthy group (r = 0.45), but not ASD group |
Poulsen et al., 2007 [95] | 33 healthy adults | EEG, auditory steady-state stimulation | Amplitude | IGF: 41 ± 4.7 Hz, 32–52 Hz. Positive correlation of IGF with age (19–45 years): 38 Hz at 19 years, 46 Hz at 45 years |
Poulsen et al., 2009 [96] | 65 healthy children, 23 healthy adults | EEG, auditory steady-state stimulation | Amplitude | IGF at 10 years: 35.3 ± 5.76 Hz, 25–52 Hz; IGF at 11.5 years: 36.5 ± 5.55 Hz, 27–55 Hz; IGF in adults (19–45 years): 41.2 ± 4.7 Hz |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
van Pelt and Fries 2013 [19] | 14 healthy adults | MEG, visual gratings | Power | Negative correlation of IGF with stimulus eccentricity: −0.91 Hz per 1-degree increase for moving stimulus, −0.95 Hz per 1-degree increase for stationary stimulus. Negative correlation of IGF with stimulus size: −0.69 Hz per 1-degree increase in diameter |
van Pelt et al., 2018 [23] | 158 healthy adults | MEG, MRI, visual gratings | Amplitude | IGF: 56.2 ± 5.4 Hz, 41.5–72.9 Hz. IGF depends on stimulus contrast. IGF for high contrast: 56.3Hz; IGF for low contrast: 52.4 Hz (0.078 Hz per 1% increase in stimulus contrast). IGF for high velocity: 56.2 Hz; IGF for low velocity: 52.4 Hz; IGF for stationary: 50 Hz (7.2 Hz per 1 deg/s increase in velocity) |
Jia et al., 2013 [32] | 7 macaque monkeys | In vivo LFP, visual gratings | Power, phase-locking | IGF for small stimuli: 43 Hz; IGF for large stimuli: 37 Hz. IGF for small gratings: 47 Hz; IGF for large gratings: 38 Hz |
Lima et al., 2010 [33] | 4 rhesus monkeys | In vivo LFP, visual gratings and plaids | Power | IGF increased from 58 to 68 Hz with stimulus luminance or contrast increase. IGF for central regions: 60 Hz (gratings) and 73 Hz (plaids); IGF for peripheral regions: 47 Hz (gratings) and 58 Hz (plaids) |
Das and Ray 2018 [36] | 2 rhesus monkeys | In vivo LFP, visual attention task | Power | IGF increased with stimulus contrast. IGF for low contrast: 40 Hz; IGF for medium contrast: 44–48 Hz; IGF for high contrast: 56 Hz |
Gregory et al., 2016 [44] | 10 healthy adults | MEG, fMRI, visual gratings | Power | IGF: 41.15–70.41 Hz. IGF depends on stimulus eccentricity, but not size. IGF for central stimuli: 54.73 ± 6.87 Hz (small size) and 55.4 ± 8.27 Hz (large size); IGF for peripheral stimuli: 59.89 ± 6.05 Hz (small size), 60.19 ± 6.68 Hz (large size) |
Perry et al., 2013 [49] | 12 healthy adults | MEG, MRI, visual gratings | Amplitude | IGF: ~40–70 Hz. No difference in IGF across different stimulus sizes |
Perry et al., 2014 [73] | 12 adults with photosensitive epilepsy, 9 with non-photosensitive epilepsy; 12 healthy adults | MEG, visual gratings | Amplitude | IGF for low stimulus contrast: ~47 Hz; IGF for high stimulus contrast: ~57 Hz |
Kahlbrock et al., 2012 [89] | 26 adults with liver cirrhosis, 8 healthy adults | MEG, MRI, selective attention task with visual and auditory stimulation | Power | IGF: ~35–65 Hz. IGF in high critical flicker frequency (CFF) group: 51 Hz; IGF in low CFF group: 45.9 Hz |
Orekhova et al., 2015 [91] | 27 healthy children | EEG, MEG, visual gratings | Power | IGF: 50–97.5 Hz. IGF for slow velocity: 50–67.5 Hz; IGF for medium velocity: 77.5–82.5 Hz; IGF for high velocity: 95–97.5 Hz |
Orekhova et al., 2018 [92] | 27 healthy adults, 50 healthy children | MEG, visual gratings | Power | IGF increased from low to high stimulus velocity by 15.3 Hz for children (66.1 ± 6.1 Hz to 82.2 ± 10.8 Hz), by 14.6 Hz for adults (55.7 ± 5.7 Hz to 70 ± 8.5 Hz) |
Stroganova et al., 2015 [94] | 21 children with autism (ASD), 26 healthy children | MEG, visual gratings | Power | IGF: 57.5–92.3 Hz. Reduced IGF modulation due to stimulus velocity for ASD group vs. healthy. IGF for low velocity: ~65 Hz; IGF for high velocity: ~85 Hz |
Hadjipapas et al., 2015 [97] | 9 healthy adult humans, 2 rhesus monkeys | MEG, in vivo LFP, visual gratings | Power | IGF increased by ~19 Hz (from ~26 Hz to ~45 Hz) in monkeys, by ~8 Hz (from ~38 Hz to ~46 Hz) in humans after increasing stimulus contrast |
Krishnakumaran et al., 2022 [98] | 2 macaque monkeys | In vivo LFP, visual gratings | Power | IGF increased due to stimulus contrast. IGF for low contrast: ~35 Hz; IGF for high contrast: ~50 Hz. IGF decreased due to stimulus size. IGF for small stimulus: ~50 Hz; IGF for big stimulus: ~45 Hz. |
Perry et al., 2015 [99] | 12 healthy adults | MEG, visual gratings and plaids | Amplitude | IGF for low stimulus contrast: 49 Hz; IGF for high stimulus contrast: 60 Hz. IGF for plaid stimuli: ~60 Hz; IGF for gratings: ~45–50 Hz |
Ray and Maunsell 2010 [100] | 2 rhesus monkeys | In vivo LFP, visual gratings | Power | IGF increased by 6.8 Hz with double increase in stimulus contrast. IGF for 25% contrast: 37–38 Hz; IGF for 100% contrast: 52–53 Hz |
Roberts et al., 2013 [101] | 2 macaque monkeys | In vivo LFP, visual gratings | Power, phase-locking | IGF for low stimulus contrast: ~20 Hz; IGF for high stimulus contrast: ~45 Hz |
Swettenham et al., 2009 [102] | 15 healthy adults | MEG, visual gratings | Power | IGF for stationary stimuli: 43.5 ± 9 Hz, 27–55.5 Hz; IGF for moving stimuli: 51 ± 7.7 Hz, 40–60 Hz |
Murty et al., 2018 [103] | 2 bonnet monkeys, 19 healthy adult humans | In vivo LFP, EEG, visual gratings | Power | In monkeys, IGF depends on stimulus orientation. IGF for 90° orientation: 58 ± 0 Hz (monkey 1) and 55.65 ± 0.21 Hz (monkey 2); IGF for 45° orientation: 51.27 ± 0.36 Hz (monkey 1) and 52.29 ± 0.48 Hz (monkey 2). IGF increased with higher stimulus contrast in monkeys (by 3.3–9.6 Hz), but not in humans |
Shirhatti et al., 2022 [104] | 2 bonnet monkeys | In vivo LFP, visual gratings | Power | IGF increased due to annular cut, orientation and phase discontinuities in grated stimuli |
Gieselmann and Thiele 2008 [105] | 2 macaque monkeys | In vivo LFP, visual gratings | Power | IGF decreased by 2.95 Hz (monkey 1) or 1.58 Hz (monkey 2) for every degree increment in stimulus size |
Stauch et al., 2021 [106] | 30 healthy adults | MEG, visual gratings | Power | In a sequence of the same repeated stimulus, IGF did not change in the first 10 repetitions, but with further repetitions increased gradually by 0.05Hz/repetition or 6 Hz increase over 120 repetitions |
Peter et al., 2021 [107] | 4/2 monkeys | In vivo LFP, visual gratings, natural images | Power | IGF was specific to stimulus. IGF decreased for early trials (~45 Hz), but increased for later trials (~47 Hz) |
Brunet et al., 2015 [108] | 2 macaque monkeys | In vivo LFP, natural images | Power | IGF before saccade: 50–80 Hz; IGF immediately after saccade: 30–40 Hz |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Purcell et al., 2004 [31] | 38 healthy adults | EEG, auditory steady-state stimulation, gap detection task | Amplitude | IGF in young (18–43): 41 ± 5 Hz; IGF in old (60–78): 37 ± 4 Hz. Positive correlation of IGF with frequency modulation detection (r = 0.72), negative correlation with gap detection latency (r = −0.43) |
Baltus and Herrmann 2015 [41] | 35 healthy adults | EEG, auditory steady-state stimulation, gap detection task | Amplitude | IGF: 46.5 ± 6.38 Hz. Negative correlation of IGF with gap detection threshold (r = −0.46) |
Baltus et al., 2020 [83] | 16 healthy adults | EEG, tACS, auditory steady-state stimulation, gap detection task | Amplitude | IGF: ~35–60 Hz. Negative correlation of IGF with gap detection threshold (rho = −0.6). Positive correlation of IGF with change in performance after tACS in the experimental group (rho = 0.81), but not in the control group |
da Silva et al., 2021 [109] | 31 healthy children: 16 with musical training, 15 without musical training | EEG, motor and music-related tasks | Power | Over F3-F4 channels, IGF in musically trained: 35 Hz; IGF in musically untrained: 33 Hz |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Liu et al., 2018 [25] | 19 adults with paroxysmal kinesigenic dyskinesia (PKD), 18 healthy adults | MEG, genetic analysis, electric stimulation of the wrist | Power | IGF in PKD: ~40 Hz, ~30–50 Hz; IGF in controls: ~60 Hz, ~45–90 Hz. Lower IGF in PRRT2 gene-related PKD (~35 Hz) vs. non-PRRT2 PKD (~44 Hz) |
Spooner et al., 2018 [110] | 43 HIV-infected, 28 healthy adults | MEG, electrical stimulation of the right median nerve | Power | IGF: ~30–90 Hz. Higher IGF for second stimulus vs. first stimulus in a sequence, stronger effect in HIV group |
Cheng et al., 2016 [111] | 22 healthy adults | MEG, somatosensory and auditory Go–Nogo tasks | Power | IGF: ~73 Hz, 40–89 Hz. Negative correlation of IGF with the ratio of responses to the second stimulus vs. the first stimulus (r = −0.57) in P35m component of somatosensory-evoked magnetic fields |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Liu et al., 2018 [25] | 19 adults with paroxysmal kinesigenic dyskinesia (PKD), 18 healthy adults | MEG, genetic analysis, electric stimulation of the wrist | Power | IGF in PKD: ~40 Hz, ~30–50 Hz; IGF in controls: ~60 Hz, ~45–90 Hz. Lower IGF in PRRT2 gene-related PKD (~35 Hz) vs. non-PRRT2 PKD (~44 Hz) |
Cheyne et al., 2008 [27] | 9 healthy adults | MEG, finger, bicep, foot movements | Power | IGF: 66–85 Hz. IGF for index finger abduction: 75.3 Hz; IGF for foot dorsiflexion: 67.4 Hz; IGF for bicep contraction: 73.9 Hz |
Muthukumaraswamy 2010 [28] | 19 healthy adults | MEG, movements of index finger, first dorsal interosseous muscle contractions | Power | IGF: 78.2 Hz, 73.5–81 Hz. In a sequence of repetitive movements, higher IGF for initial finger movements compared to later movements |
Zheng et al., 2015 [35] | 8 Long Evans rats | In vivo LFP, running task | Power | IGF ~30–100 Hz. In the hippocampus, IGF for 3 cm/s running speed: ~60–80 Hz; IGF for 96 cm/s running speed: ~80–100 Hz in the hippocampus |
Heinrichs-Graham et al., 2018 [114] | 42 healthy adults | MEG, MRI, response inhibition task | Power | IGF: ~60–90 Hz. IGF for incongruent condition: ~75 Hz; IGF for congruent condition: ~70 Hz |
Author and Year | Sample | Methods | IGF Measure | Relevant Findings |
---|---|---|---|---|
Rufener et al., 2021 [5] | 32 children with developmental dyslexia (DD), 26 healthy children | EEG, auditory steady-state stimulation, phonological awareness task | Power | IGF in DD: 40.63 ± 5.76 Hz; IGF in controls: 45.69 ± 5.85 Hz. Positive correlation of IGF with phonological awareness (r = 0.33) and writing skills (r = 0.37) |
Parciauskaite et al., 2021 [6] | 37 healthy adults | EEG, auditory steady-state stimulation, cognitive tasks | Power, phase-locking | IGF 35–53 Hz, mostly 41–42 Hz. No correlation of IGF with complex cognitive task performance |
Griškova-Bulanova et al., 2022 [7] | 70 healthy adults | EEG, auditory steady-state stimulation, cognitive inhibition task | Power, phase-locking | IGF: 40 Hz (phase-locking) and 42 Hz (power), 32–59 Hz. No correlation of IGF with any behavioral measures of cognitive performance |
Chen et al., 2014 [29] | 12 adults with schizophrenia; 12 healthy adults | EEG, MRS, working memory assessment | Amplitude | IGF: ~30–50 Hz. Positive correlation of IGF with working memory performance (r = 0.59) |
Lima et al., 2010 [33] | 4 rhesus monkeys | In vivo LFP, visual gratings and plaids | Power | IGF during attention to foreground: ~70 Hz; IGF during attention to background: ~75 Hz |
Das and Ray 2018 [36] | 2 rhesus monkeys | In vivo LFP, visual attention task | Power | IGF increased by ~2 Hz for low contrast stimuli due to spatial attention |
Insel et al., 2012 [37] | 12 rats | In vivo LFP, decision-making task | Power | IGF: 50–60Hz. Negative correlation of IGF with median decision time (r = −0.58); non-significant when controlling for age |
Arrondo et al., 2009 [77] | 27 adults with multiple sclerosis (MS), 22 healthy adults | EEG, auditory steady-state stimulation, cognitive assessment | Amplitude | IGF in cognitively impaired MS: 39.79 Hz; IGF in cognitively unimpaired MS: 43.85 Hz; IGF in controls: 43.84 Hz. Positive correlation of IGF with verbal memory, attention, executive functions and verbal fluency (r = 0.44–0.59) |
Munglani et al. 1993 [78] | 7 healthy adults | EEG, isoflurane, auditory click stimulation, cognitive tests | Power | IGF: 32.8 Hz, 28–41 Hz. Positive correlation of IGF with performance in within-list recognition and category recognition tasks |
Andrade et al. 1996 [79] | 12 healthy adults | EEG, propofol, auditory click stimulation, cognitive assessment | Power | IGF: 37.6 Hz, 33.5–41.5 Hz. Positive correlation of IGF with within-list recognition task performance (r = 0.47) |
Bosman et al., 2012 [116] | 2 monkeys | In vivo LFP, visual gratings | Power, phase-locking | IGF increased by 2–3 Hz when attending relevant vs. irrelevant stimuli |
Magazzini et al., 2018 [117] | 20 healthy adults | MEG, visual gratings | Power | IGF ~42–65 Hz. No difference in IGF between attend stimulus condition (51.3 Hz) and ignore stimulus condition (50.5 Hz) |
Kennedy et al., 2011 [118] | 15 healthy adults | MEG, eye-tracking, manual and visual tracking task | Power | IGF: 68.6 Hz, 63–74.5 Hz. No difference in IGF between fixate (at central crosshair) and pursue (target stimulus) conditions |
Fesi and Mendola 2015 [119] | 12 healthy adults | MEG, perceptual rivalry task | Power | IGF: 62.58 Hz (left hemisphere), 57.77 Hz (right hemisphere), ~30–90 Hz. Negative correlation of IGF in V1 with perceptual rivalry switch rate (r = 0.62 to −0.76) |
Human Studies | ||||
---|---|---|---|---|
IGF Estimation Modality | Number of Studies | Stimuli and Tasks Used for IGF Estimation | IGF Range | Factors Related to IGF |
Resting-state | 2 | - | 30–43 Hz | Neuropsychiatric disorders: 1 Age: 2 |
Visual | 39 | Visual gratings: 37 Visual checkerboard stimulus: 1 Visual plaids: 1 Visual grid stimulus: 1 | 35–100 Hz | Anatomical: 7 Neurochemical: 7 Neuropsychiatric disorders: 2 Brain states: 1 Age: 8 Visual processing: 15 |
Auditory | 17 | Auditory steady-state stimulation: 14 Auditory stimulation with changing intensity: 2 Auditory sensory-gating stimulation: 1 Auditory oddball stimulation: 1 | 28–63 Hz * | Neuropsychiatric disorders: 4 Brain states: 4 Age: 4 Auditory processing: 4 Cognitive processing: 5 |
Somatosensory | 5 | Electrical stimulation of the wrist: 3 Somatosensory Go–Nogo task: 1 Proprioceptive stimulation: 1 | 25–90 Hz | Anatomical: 1 Neuropsychiatric disorders: 1 Somatosensory processing: 3 |
Motor | 6 | Finger/palm muscle contractions: 3 Arm movements: 1 Foot movements: 1 Block movement task: 1 Button press: 1 Manual tracking task: 1 | 63–85 Hz | Neurochemical: 1 Age: 1 Motor activity: 2 Cognitive processing: 1 |
Cognitive | 8 | Working memory tasks: 3 Categorization task: 1 Perceptual rivalry task: 1 Response inhibition task: 1 Selective attention task: 1 Musical performance tasks: 1 | 40–100 Hz | Neurochemical: 4 Age: 1 Visual processing: 1 Cognitive processing: 4 |
In Vivo Animal Studies | ||||
IGF Estimation Modality | Number of Studies | Stimuli and Tasks Used for IGF Estimation | IGF Range | Factors Related to IGF |
Visual | 11 | Visual gratings: 10 Natural images: 2 Visual plaids: 1 Visual illusory stimuli: 1 | 30–80 Hz | Anatomical: 1 Brain states: 1 Visual processing: 9 Cognitive processing: 1 |
Motor | 3 | Free movement: 2 Motor tasks: 1 | 30–100 Hz | Neurochemical: 2 Motor activity: 1 |
Cognitive | 3 | Decision-making tasks: 1 Visual attention task: 1 Surface food test: 1 Novel object recognition test: 1 | 40–60 Hz | Brain states: 1 Age: 1 Visual processing: 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mockevičius, A.; Šveistytė, K.; Griškova-Bulanova, I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sci. 2023, 13, 792. https://doi.org/10.3390/brainsci13050792
Mockevičius A, Šveistytė K, Griškova-Bulanova I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sciences. 2023; 13(5):792. https://doi.org/10.3390/brainsci13050792
Chicago/Turabian StyleMockevičius, Aurimas, Kristina Šveistytė, and Inga Griškova-Bulanova. 2023. "Individual/Peak Gamma Frequency: What Do We Know?" Brain Sciences 13, no. 5: 792. https://doi.org/10.3390/brainsci13050792
APA StyleMockevičius, A., Šveistytė, K., & Griškova-Bulanova, I. (2023). Individual/Peak Gamma Frequency: What Do We Know? Brain Sciences, 13(5), 792. https://doi.org/10.3390/brainsci13050792