Emotional Bias among Individuals at Risk for Seasonal Affective Disorder—An EEG Study during Remission in Summer
Abstract
:1. Introduction
- Do people with high seasonality scores demonstrate an attentional and/or recognition bias towards negative valence compared to those with low seasonality scores during the remission phase in summer? We measured these behavioral correlates of emotional cognitive biases by means of reaction times during learning, and accuracy during recognition;
- In brain activity measured in summer, do people with high seasonality scores exhibit only differential effects during emotional attention, or is there an additional emotional effect during retrieval of memories? We measured frontal EEG alpha activity as a correlate for emotional processing and differentiated attention effects in an early (100–300 ms) time-window from memory effects in a late (400–800 ms) time-window during learning and recognition of emotional pictures. We expected that emotional attention bias at 100–300 ms should be measurable in both tasks, learning and recognition. In contrast, memory effects at 400–800 ms should emerge as significant differences between old and new stimuli in the recognition task.
2. Materials and Methods
2.1. Recruitment
2.2. Questionnaire
2.3. Picture Learning Condition
2.4. Recognition Task
2.5. EEG Recording and Analysis
- check gradient: maximal allowed voltage step 50 µV/ms;
- check difference: maximal allowed difference of values in intervals of 200 ms: 200 µV;
- lowest activity allowed in 100 ms intervals: 0.5 µV.
2.6. Statistics
3. Results
3.1. Sample
3.2. Behavioral Data
3.3. EEG Data
3.3.1. Learning Condition
3.3.2. Recognition Condition
4. Discussion
4.1. Behavioral Results: Emotional Biases Independent of Seasonality
4.2. Seasonality Effects in EEG Responses—Attention or Memory?
4.3. Emotional Bias in Summer for People with Elevated Seasonality Scores
4.4. Physiological Responses in EEG Alpha Power
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennion, K.A.; Ford, J.H.; Murray, B.D.; Kensinger, E.A. Oversimplification in the Study of Emotional Memory. J. Int. Neuropsychol. Soc. 2013, 19, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Markovic, J.; Anderson, A.K.; Todd, R.M. Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behav. Brain Res. 2014, 259, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Hamann, S. Cognitive and neural mechanisms of emotional memory. Trends Cogn. Sci. 2001, 5, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Garrison, K.E.; Schmeichel, B.J. Effects of emotional content on working memory capacity. Cogn. Emot. 2019, 33, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Doerksen, S.; Shimamura, A.P. Source Memory Enhancement for Emotional Words. Emotion 2001, 1, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Tomaszczyk, J.C.; Fernandes, M.A.; MacLeod, C.M. Personal relevance modulates the positivity bias in recall of emotional pictures in older adults. Psychon. Bull. Rev. 2008, 15, 191–196. [Google Scholar] [CrossRef]
- Vaish, A.; Grossmann, T.; Woodward, A. Not All Emotions are Created Equal: The Negativity Bias in Social-Emotional Development. Psychol. Bull. 2008, 134, 383–403. [Google Scholar] [CrossRef]
- Beevers, C.G. Cognitive vulnerability to depression: A dual process model. Clin. Psychol. Rev. 2005, 25, 975–1002. [Google Scholar] [CrossRef]
- Mathews, A.; MacLeod, C. Cognitive Vulnerability to Emotional Disorders. Annu. Rev. Clin. Psychol. 2005, 1, 167–195. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S.; Wisco, B.E.; Lyubomirsky, S. Rethinking Rumination. Perspect. Psychol. Sci. 2008, 3, 400–424. [Google Scholar] [CrossRef]
- Delgado, V.B.; Chaves, M.L. Mood congruence phenomenon in acutely symptomatic mania bipolar I disorder patients with and without psychotic symptoms. Cogn. Neuropsychiatry 2013, 18, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Gollan, J.K.; Hoxha, D.; Hunnicutt-Ferguson, K.; Norris, C.J.; Rosebrock, L.; Sankin, L.; Cacioppo, J. Twice the negativity bias and half the positivity offset: Evaluative responses to emotional information in depression. J. Behav. Ther. Exp. Psychiatry 2016, 52, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.P.; Gotlib, I.H. Neural Substrates of Increased Memory Sensitivity for Negative Stimuli in Major Depression. Biol. Psychiatry 2008, 63, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; John, C.H. Attentional and Memory Bias in Persecutory Delusions and Depression. Psychopathology 2004, 37, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.M.; Turk-Browne, N.B. Interactions between attention and memory. Curr. Opin. Neurobiol. 2007, 17, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Paelecke-Habermann, Y.; Pohl, J.; Leplow, B. Attention and executive functions in remitted major depression patients. J. Affect. Disord. 2005, 89, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.G. Cognitive Psychology and Emotional Disorders, 2nd ed.; Wiley: Chichester, UK, 1997. [Google Scholar]
- Gotlib, I.H.; Krasnoperova, E.; Yue, D.N.; Joormann, J. Attentional Biases for Negative Interpersonal Stimuli in Clinical Depression. J. Abnorm. Psychol. 2004, 113, 127–135. [Google Scholar] [CrossRef]
- Surguladze, S.A.; Young, A.W.; Senior, C.; Brébion, G.; Travis, M.J.; Phillips, M.L. Recognition Accuracy and Response Bias to Happy and Sad Facial Expressions in Patients with Major Depression. Neuropsychology 2004, 18, 212–218. [Google Scholar] [CrossRef]
- Ruhe, H.G.; Mocking, R.J.T.; Figueroa, C.A.; Seeverens, P.W.J.; Ikani, N.; Tyborowska, A.; Browning, M.; Vrijsen, J.N.; Harmer, C.J.; Schene, A.H. Emotional biases and recurrence in major depressive disorder. Results of 2.5 years follow-up of drug-free cohort vulnerable for recurrence. Front. Psychiatry 2019, 10, 145. [Google Scholar] [CrossRef]
- Gotlib, I.H.; Joormann, J. Cognition and Depression: Current Status and Future Directions. Annu. Rev. Clin. Psychol. 2010, 6, 285–312. [Google Scholar] [CrossRef]
- Bylsma, L.M.; Morris, B.H.; Rottenberg, J. A meta-analysis of emotional reactivity in major depressive disorder. Clin. Psychol. Rev. 2008, 28, 676–691. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.J.; Wells, T.T.; Vanderlind, W.M.; Beevers, C.G. The role of controlled attention on recall in major depression. Cogn. Emot. 2014, 28, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, I.; Everaert, J.; Dainer-Best, J.; Loeys, T.; Beevers, C.G.; Koster, E.H.W. Specificity and overlap of attention and memory biases in depression. J. Affect. Disord. 2018, 225, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Everaert, J.; Tierens, M.; Uzieblo, K.; Koster, E. The indirect effect of attention bias on memory via interpretation bias: Evidence for the combined cognitive bias hypothesis in subclinical depression. Cogn. Emot. 2013, 27, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Rinck, M.; Becker, E.S. A Comparison of Attentional Biases and Memory Biases in Women with Social Phobia and Major Depression. J. Abnorm. Psychol. 2005, 114, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Sears, C.R.; Newman, K.R.; Ference, J.D.; Thomas, C.L. Attention to Emotional Images in Previously Depressed Individuals: An Eye-Tracking Study. Cogn. Ther. Res. 2011, 35, 517–528. [Google Scholar] [CrossRef]
- Roiser, J.P.; Elliott, R.; Sahakian, B.J. Cognitive Mechanisms of Treatment in Depression. Neuropsychopharmacology 2012, 37, 117–136. [Google Scholar] [CrossRef]
- Hertel, P.T.; Rude, S.S. Depressive Deficits in Memory. J. Exp. Psychol. Gen. 1991, 120, 301–309. [Google Scholar] [CrossRef]
- Iorio, C.; Pacitti, F.; Rossi, A.; Iorio, P.; Pompili, A. Declarative Memory Impairment and Emotional Bias in Recurrent Depression with a Seasonal Pattern: The Interplay between Emotion and Cognition in Seasonal Affective Disorder. Brain Sci. 2022, 12, 1352. [Google Scholar] [CrossRef]
- Rosenthal, N.E.; Sack, D.A.; Gillin, J.C.; Lewy, A.J.; Goodwin, F.K.; Davenport, Y.; Mueller, P.S.; Newsome, D.A.; Wehr, T.A. Seasonal Affective Disorder: A Description of the Syndrome and Preliminary Findings With Light Therapy. Arch. Gen. Psychiatry 1984, 41, 72–80. [Google Scholar] [CrossRef]
- Gagné, A.; Bouchard, G.; Tremblay, P.; Sasseville, A.; Hébert, M. When a season means depression. Med. Sci. 2010, 26, 79–82. [Google Scholar] [CrossRef]
- Harmer, C.J.; Charles, M.; McTavish, S.; Favaron, E.; Cowen, P.J. Negative ion treatment increases positive emotional processing in seasonal affective disorder. Psychol. Med. 2012, 42, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.G.; Hjordt, L.V.; Stenbæk, D.S.; Andersen, E.; Back, S.K.; Lansner, J.; Hageman, I.; Dam, H.; Nielsen, A.P.; Knudsen, G.M.; et al. Development and psychometric validation of the verbal affective memory test. Memory 2016, 24, 1208–1223. [Google Scholar] [CrossRef] [PubMed]
- Hjordt, L.V.; Stenbæk, D.S.; Ozenne, B.; Mc Mahon, B.; Hageman, I.; Hasselbalch, S.G.; Knudsen, G.M. Season-independent cognitive deficits in seasonal affective disorder and their relation to depressive symptoms. Psychiatry Res. 2017, 257, 219–226. [Google Scholar] [CrossRef]
- Wittekind, C.E.; Terfehr, K.; Otte, C.; Jelinek, L.; Hinkelmann, K.; Moritz, S. Mood-congruent memory in depression—The influence of personal relevance and emotional context. Psychiatry Res. 2014, 215, 606–613. [Google Scholar] [CrossRef]
- Windmann, S.; Kutas, M. Electrophysiological Correlates of Emotion-Induced Recognition Bias. J. Cogn. Neurosci. 2001, 13, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Moritz, S.; Gläscher, J.; Brassen, S. Investigation of mood-congruent false and true memory recognition in depression. Depress. Anxiety 2005, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Theódórsdóttir, D.; Höller, Y. EEG-Correlates of Emotional Memory and Seasonal Symptoms. Appl. Sci. 2023, 13, 9361. [Google Scholar] [CrossRef]
- Lam, R.W.; Tam, E.M.; Yatham, L.N.; Shiah, I.; Zis, A.P. Seasonal depression: The dual vulnerability hypothesis revisited. J. Affect. Disord. 2001, 63, 123–132. [Google Scholar] [CrossRef]
- Young, M.A.; Watel, L.G.; Lahmeyer, H.W.; Eastman, C.I. The temporal onset of individual symptoms in winter depression: Differentiating underlying mechanisms. J. Affect. Disord. 1991, 22, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Blehar, M.C.; Lewy, A.J. Seasonal mood disorders: Consensus and controversy. Psychopharmacol. Bull. 1990, 26, 465–494. [Google Scholar]
- Dalgleish, T.; Spinks, H.; Golden, A.; du Toit, P. Processing of Emotional Information in Seasonal Depression Across Different Cognitive Measures. J. Abnorm. Psychol. 2004, 113, 116–126. [Google Scholar] [CrossRef]
- Dalgleish, T.; Spinks, H.; Yiend, J.; Kuyken, W. Autobiographical Memory Style in Seasonal Affective Disorder and Its Relationship to Future Symptom Remission. J. Abnorm. Psychol. 2001, 110, 335–340. [Google Scholar] [CrossRef]
- Michalon, M.; Eskes, G.A.; Mate-Kole, C.C. Effects of light therapy on neuropsychological function and mood in seasonal affective disorder. J. Psychiatry Neurosci. 1997, 22, 19–28. [Google Scholar]
- Spinks, H.; Dalgleish, T. Attentional processing and levels of symptomatology in Seasonal Affective Disorder (SAD): A preliminary longitudinal study. J. Affect. Disord. 2001, 62, 229–232. [Google Scholar] [CrossRef]
- Borgsted, C.; Ozenne, B.; Mc Mahon, B.; Madsen, M.K.; Hjordt, L.V.; Hageman, I.; Baaré, W.F.C.; Knudsen, G.M.; Fisher, P.M. Amygdala response to emotional faces in seasonal affective disorder. J. Affect. Disord. 2018, 229, 288–295. [Google Scholar] [CrossRef]
- Volf, N.V.; Passynkova, N.R. EEG mapping in seasonal affective disorder. J. Affect. Disord. 2002, 72, 61–69. [Google Scholar] [CrossRef]
- Passynkova, N.R.; Volf, N.V. Seasonal affective disorder: Spatial organization of EEG power and coherence in the depressive state and in light-induced and summer remission. Psychiatry Res. 2001, 108, 169–185. [Google Scholar] [CrossRef]
- Brenner, C.A.; Rumak, S.P.; Burns, A.M.N.; Kieffaber, P.D. The role of encoding and attention in facial emotion memory: An EEG investigation. Int. J. Psychophysiol. 2014, 93, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Simons, R.F.; Detenber, B.H.; Cuthbert, B.N.; Schwartz, D.D.; Reiss, J.E. Attention to Television: Alpha Power and Its Relationship to Image Motion and Emotional Content. Media Psychol. 2003, 5, 283–301. [Google Scholar] [CrossRef]
- Crawford, H.J.; Clarke, S.W.; Kitner-Triolo, M. Self-generated happy and sad emotions in low and highly hypnotizable persons during waking and hypnosis: Laterality and regional EEG activity differences. Int. J. Psychophysiol. 1996, 24, 239–266. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, H.; Liu, X.; Lu, S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technol. Health Care 2018, 26, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.M.; Lang, A.H.; Laine, M.; Kuusisto, M.; Pörn, B. Event-related. EEG desynchronization and synchronization during an auditory memory task. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Stancák, A.; Neuper, C. Event-related synchronization (ERS) in the alpha band—An electrophysiological correlate of cortical idling: A review. Int. J. Psychophysiol. 1996, 24, 39–46. [Google Scholar] [CrossRef]
- Aftanas, L.; Varlamov, A.; Pavlov, S.; Makhnev, V.; Reva, N. Event-Related Synchronization and Desynchronization During Affective Processing: Emergence of Valence-Related Time-Dependent Hemispheric Asymmetries in Theta and Upper Alpha Band. Int. J. Neurosci. 2001, 110, 197–219. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Dong, X.; Mu, N.; Liu, T.; Chen, D.; Deng, L.; Wang, C.; Zhao, L. Positive Classification Advantage: Tracing the Time Course Based on Brain Oscillation. Front. Hum. Neurosci. 2018, 11, 659. [Google Scholar] [CrossRef]
- de Aguiar Neto, F.S.; Rosa, J.L.G. Depression biomarkers using non-invasive EEG: A review. Neurosci. Biobehav. Rev. 2019, 105, 83–93. [Google Scholar] [CrossRef]
- Höller, Y.; Jónsdóttir, S.T.; Hannesdóttir, A.H.; Ólafsson, R.P. EEG-responses to mood induction interact with seasonality and age. Front. Psychiatry 2022, 13, 950328. [Google Scholar] [CrossRef]
- Höller, Y.; Urbschat, M.M.; Kristófersson, G.K.; Ólafsson, R.P. Predictability of Seasonal Mood Fluctuations Based on Self-Report Questionnaires and EEG Biomarkers in a Non-clinical Sample. Front. Psychiatry 2022, 13, 870079. [Google Scholar] [CrossRef]
- Park, Y.; Jung, W.; Kim, S.; Jeon, H.; Lee, S. Frontal Alpha Asymmetry Correlates with Suicidal Behavior in Major Depressive Disorder. Clin. Psychopharmacol. Neurosci. 2019, 17, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.M.C.; Sun, D.; Wong, N.M.L.; Shao, R.; Men, W.; Ge, J.; So, K.; Gao, J.; Chan, C.C.H. A Pontine Region is a Neural Correlate of the Human Affective Processing Network. EBioMedicine 2015, 2, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Henriques, J.; Davidson, R. Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. J. Abnorm. Psychol. 1990, 99, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Kasper, S.; Kamo, T. Seasonality in major depressed inpatients. J. Affect. Disord. 1990, 19, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Young, M.A.; Blodgett, C.; Reardon, A. Measuring seasonality: Psychometric properties of the Seasonal Pattern Assessment Questionnaire and the Inventory for Seasonal Variation. Psychiatry Res. 2003, 117, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, N.E. Seasonal Pattern Assessment Questionnaire (SPAQ). [Database record]. APA PsycTests 1987. [Google Scholar] [CrossRef]
- Magnusson, A. Validation of the Seasonal Pattern Assessment Questionnaire (SPAQ). J. Affect. Disord. 1996, 40, 121–129. [Google Scholar] [CrossRef]
- Kasper, S.; Wehr, T.A.; Bartko, J.J.; Gaist, P.A.; Rosenthal, N.E. Epidemiological Findings of Seasonal Changes in Mood and Behavior: A Telephone Survey of Montgomery County, Maryland. Arch. Gen. Psychiatry 1989, 46, 823–833. [Google Scholar] [CrossRef]
- Kurdi, B.; Lozano, S.; Banaji, M.R. Introducing the Open Affective Standardized Image Set (OASIS). Behav. Res. 2017, 49, 457–470. [Google Scholar] [CrossRef]
- R Core Team R: A language and environment for statistical computing. R Found. Stat. Comput. 2022. Available online: https://www.R-project.org/ (accessed on 12 December 2023).
- Bathke, A.C.; Friedrich, S.; Pauly, M.; Konietschke, F.; Staffen, W.; Strobl, N.; Höller, Y. Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions. Multivar. Behav. Res. 2018, 53, 348–359. [Google Scholar] [CrossRef]
- Friedrich, S.; Konietschke, F.; Pauly, M. Analysis of Multivariate Data and Repeated Measures Designs with the R Package MANOVA.RM. R J. 2018, 11. Available online: https://cran.r-project.org/web/packages/MANOVA.RM/index.html (accessed on 12 December 2023).
- Brooks, A.M.; Ottley, K.M.; Arbuthnott, K.D.; Sevigny, P. Nature-related mood effects: Season and type of nature contact. J. Environ. Psychol. 2017, 54, 91–102. [Google Scholar] [CrossRef]
- Watier, N.; Dubois, M. The Effects of a Brief Mindfulness Exercise on Executive Attention and Recognition Memory. Mindfulness 2016, 7, 745–753. [Google Scholar] [CrossRef]
- Dietrich, D.E.; Emrich, H.M.; Waller, C.; Wieringa, B.M.; Johannes, S.; Münte, T.F. Emotion/cognition-coupling in word recognition memory of depressive patients: An event-related potential study. Psychiatry Res. 2000, 96, 15–29. [Google Scholar] [CrossRef]
- Freunberger, R.; Klimesch, W.; Griesmayr, B.; Sauseng, P.; Gruber, W. Alpha phase coupling reflects object recognition. NeuroImage 2008, 42, 928–935. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Olofsson, J.K.; Nordin, S.; Sequeira, H.; Polich, J. Affective picture processing: An integrative review of ERP findings. Biol. Psychol. 2008, 77, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Pozzoli, U. Arousal effect on emotional face comprehension: Frequency band changes in different time intervals. Physiol. Behav. 2009, 97, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.I.; Koshkarov, V.I.; Pokrovskaja, V.L.; Lotova, N.V.; Mordvintsev, Y. Event-Related Desynchronization (ERD) Patterns to Emotion-Related Feedback Stimuli. Int. J. Neurosci. 1996, 87, 151–173. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.I.; Varlamov, A.A.; Pavlov, S.V.; Makhnev, V.P.; Reva, N.V. Affective picture processing: Event-related synchronization within individually defined human theta band is modulated by valence dimension. Neurosci. Lett. 2001, 303, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Peckham, A.D.; McHugh, R.K.; Otto, M.W. A meta-analysis of the magnitude of biased attention in depression. Depress. Anxiety 2013, 30, 407. [Google Scholar] [CrossRef]
- MacLeod, C.; Mathews, A.; Tata, P. Attentional Bias in Emotional Disorders. J. Abnorm. Psychol. 1986, 95, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, S.; Wang, G.; Feng, L.; Fu, B.; Zhong, N. Alleviated negative rather than positive attentional bias in patients with depression in remission: An eye-tracking study. J. Int. Med. Res. 2016, 44, 1072–1086. [Google Scholar] [CrossRef] [PubMed]
- Tyng, C.M.; Amin, H.U.; Saad, M.N.M.; Malik, A.S. The Influences of Emotion on Learning and Memory. Front. Psychol. 2017, 8, 1454. [Google Scholar] [CrossRef]
- Davidson, R.J. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 1992, 20, 125–151. [Google Scholar] [CrossRef]
- Kostyunina, M.B.; Kulikov, M.A. Frequency characteristics of EEG spectra in the emotions. Neurosci. Behav. Physiol. 1996, 26, 340–343. [Google Scholar] [CrossRef]
- Wu, X.; Jia, H.; Wang, E. The neurophysiological mechanism of valence-space congruency effect: Evidence from spatial Stroop task and event-related EEG features. Cogn. Neurodynamics 2023, 17, 855–867. [Google Scholar] [CrossRef]
- Bonnefond, M.; Jensen, O. Alpha Oscillations Serve to Protect Working Memory Maintenance against Anticipated Distracters. Curr. Biol. 2012, 22, 1969–1974. [Google Scholar] [CrossRef]
- Klimesch, W.; Fellinger, R.; Freunberger, R. Alpha Oscillations and Early Stages of Visual Encoding. Front. Psychol. 2011, 2, 118. [Google Scholar] [CrossRef]
- Meirovitch, Y.; Harris, H.; Dayan, E.; Arieli, A.; Flash, T. Alpha and Beta Band Event-Related Desynchronization Reflects Kinematic Regularities. J. Neurosci. 2015, 35, 1627–1637. [Google Scholar] [CrossRef]
- Silas, J.; Tipple, A.; Jones, A. Event-related alpha desynchronization in touch—Comparing attention and perception. Neurosci. Lett. 2019, 705, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Schaaff, K.; Schultz, T. Towards emotion recognition from electroencephalographic signals. In Proceedings of the 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, The Netherlands, 10–12 September 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Davidson, R.J. Cerebral asymmetry, emotion, and affective style. In Cerebral Asymmetry, Emotion, and Affective Style; The MIT Press: Cambridge, MA, USA, 1995; pp. 361–387. [Google Scholar]
- Debener, S.; Beauducel, A.; Nessler, D.; Brocke, B.; Heilemann, H.; Kayser, J. Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients. Neuropsychobiology 2000, 41, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Jesulola, E.; Sharpley, C.F.; Bitsika, V.; Agnew, L.L.; Wilson, P. Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: Research findings and issues. Behav. Brain Res. 2015, 292, 56–67. [Google Scholar] [CrossRef]
- Höller, Y.; Gudjónsdottir, B.E.; Valgeirsdóttir, S.K.; Heimisson, G.T. The effect of age and chronotype on seasonality, sleep problems, and mood. Psychiatry Res. 2021, 297, 113722. [Google Scholar] [CrossRef]
Factor or Interaction | F | df | p | res.p 1 |
---|---|---|---|---|
seasonality | 1.20 | 1, 163.15 | 0.274 | 0.304 |
valence | 1.07 | 1.99, Inf | 0.343 | 0.359 |
hemisphere | 1.73 | 1, Inf | 0.188 | 0.198 |
seasonality × valence | 1.78 | 1.99, Inf | 0.169 | 0.185 |
seasonality × hemisphere | 1.48 | 1, Inf | 0.224 | 0.217 |
valence × hemisphere | 1.53 | 1.98, Inf | 0.218 | 0.222 |
seasonality × valence × hemisphere | 0.21 | 1.98, Inf | 0.806 | 0.791 |
Factor or Interaction | F | df | p | res.p 1 |
---|---|---|---|---|
seasonality | 0.55 | 1, 150.71 | 0.458 | 0.477 |
valence | 15.76 | 1.96, Inf | <0.001 | <0.001 |
hemisphere | 1.03 | 1, Inf | 0.309 | 0.336 |
time-window | 460.01 | 1, Inf | <0.001 | <0.001 |
condition | 0.30 | 1, Inf | 0.585 | 0.589 |
seasonality × valence | 3.64 | 1.96, Inf | 0.027 | 0.022 |
seasonality × hemisphere | 0.18 | 1, Inf | 0.671 | 0.672 |
seasonality × time-window | 3.50 | 1, Inf | 0.061 | 0.082 |
seasonality × condition | 0.95 | 1, Inf | 0.329 | 0.349 |
valence × hemisphere | 0.51 | 1.98, Inf | 0.596 | 0.576 |
valence × time-window | 5.42 | 1.94, Inf | 0.005 | 0.002 |
valence × condition | 6.93 | 1.89, Inf | 0.001 | <0.001 |
hemisphere × time-window | 0.22 | 1, Inf | 0.638 | 0.612 |
hemisphere × condition | 0.33 | 1, Inf | 0.566 | 0.564 |
time-window × condition | 1.25 | 1, Inf | 0.264 | 0.277 |
seasonality × valence × hemisphere | 0.35 | 1.98, Inf | 0.706 | 0.721 |
seasonality × valence × time-window | 3.84 | 1.94, Inf | 0.023 | 0.023 |
seasonality × valence × condition | 0.13 | 1.89, Inf | 0.865 | 0.878 |
seasonality × hemisphere × time-window | 0.03 | 1, Inf | 0.862 | 0.884 |
seasonality × hemisphere × condition | 0.10 | 1, Inf | 0.749 | 0.758 |
seasonality × time-window × condition | 0.25 | 1, Inf | 0.620 | 0.621 |
valence × hemisphere × time-window | 2.81 | 1.97, Inf | 0.061 | 0.070 |
valence × hemisphere × condition | 0.18 | 1.9, Inf | 0.828 | 0.823 |
valence × time-window × condition | 1.04 | 1.93, Inf | 0.350 | 0.363 |
hemisphere × time-window × condition | 0.12 | 1, Inf | 0.726 | 0.720 |
seasonality × valence × hemisphere × time-window | 0.09 | 1.97, Inf | 0.914 | 0.912 |
seasonality × valence × hemisphere × condition | 0.44 | 1.9, Inf | 0.635 | 0.661 |
seasonality × valence × time-window × condition | 0.42 | 1.93, Inf | 0.652 | 0.648 |
seasonality × hemisphere × time-window × condition | 0.04 | 1, Inf | 0.842 | 0.824 |
valence × hemisphere × time-window × condition | 0.23 | 1.97, Inf | 0.789 | 0.796 |
seasonality × valence × hemisphere × time-window × condition | 0.12 | 1.97, Inf | 0.882 | 0.883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theódórsdóttir, D.; Höller, Y. Emotional Bias among Individuals at Risk for Seasonal Affective Disorder—An EEG Study during Remission in Summer. Brain Sci. 2024, 14, 2. https://doi.org/10.3390/brainsci14010002
Theódórsdóttir D, Höller Y. Emotional Bias among Individuals at Risk for Seasonal Affective Disorder—An EEG Study during Remission in Summer. Brain Sciences. 2024; 14(1):2. https://doi.org/10.3390/brainsci14010002
Chicago/Turabian StyleTheódórsdóttir, Dagný, and Yvonne Höller. 2024. "Emotional Bias among Individuals at Risk for Seasonal Affective Disorder—An EEG Study during Remission in Summer" Brain Sciences 14, no. 1: 2. https://doi.org/10.3390/brainsci14010002
APA StyleTheódórsdóttir, D., & Höller, Y. (2024). Emotional Bias among Individuals at Risk for Seasonal Affective Disorder—An EEG Study during Remission in Summer. Brain Sciences, 14(1), 2. https://doi.org/10.3390/brainsci14010002