Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI Acquisition
2.3. Follow-Up Relapse Evaluation
2.4. Imaging Data Processing
2.5. Statistics
3. Results
3.1. Demographic and Clinical Characteristics
3.2. The DTI-ALPS of Three Groups
3.3. The DivALPS of the Three Groups
3.4. Poisson Regression Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattick, R.P.; Breen, C.; Kimber, J.; Davoli, M. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst. Rev. 2009, 2009, CD002209. [Google Scholar] [CrossRef] [PubMed]
- Grissinger, M. Keeping Patients Safe from Methadone Overdoses. Pharm. Ther. 2011, 36, 462–466. [Google Scholar]
- Strain, E.C. Assessment and treatment of comorbid psychiatric disorders in opioid-dependent patients. Clin. J. Pain 2002, 18, S14–S27. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, X.; Xu, Y.; Medland, N.; Deng, L.; Liu, Y.; Su, S.; Ling, L. The Decade-Long Chinese Methadone Maintenance Therapy Yields Large Population and Economic Benefits for Drug Users in Reducing Harm, HIV and HCV Disease Burden. Front. Public Health 2019, 7, 327. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, Z.; Liang, L.-J.; Lin, C.; Luo, S.; Cao, X.; Hsieh, J.; Rou, K. An intervention trial targeting methadone maintenance treatment providers to improve clients’ treatment retention in China. Drug Alcohol Depend. 2019, 194, 143–150. [Google Scholar] [CrossRef]
- Zhou, K.; Zhuang, G. Retention in methadone maintenance treatment in mainland China, 2004–2012: A literature review. Addict. Behav. 2014, 39, 22–29. [Google Scholar] [CrossRef]
- Gauthier, G.; Eibl, J.K.; Marsh, D.C. Improved treatment-retention for patients receiving methadone dosing within the clinic providing physician and other health services (onsite) versus dosing at community (offsite) pharmacies. Drug Alcohol Depend. 2018, 191, 1–5. [Google Scholar] [CrossRef]
- UNAIDS. 2015 China AIDS Response Progress Report; Ministry of Health of the People’s Republic of China: Beijing, China, 2015. [Google Scholar]
- Li, Q.; Liu, J.; Wang, W.; Wang, Y.; Li, W.; Chen, J.; Zhu, J.; Yan, X.; Li, Y.; Li, Z.; et al. Disrupted coupling of large-scale networks is associated with relapse behaviour in heroin-dependent men. J. Psychiatry Neurosci. 2018, 43, 48–57. [Google Scholar] [CrossRef]
- Li, W.; Li, Q.; Wang, D.; Xiao, W.; Liu, K.; Shi, L.; Zhu, J.; Li, Y.; Yan, X.; Chen, J.; et al. Dysfunctional Default Mode Network in Methadone Treated Patients Who Have a Higher Heroin Relapse Risk. Sci. Rep. 2015, 5, 15181. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Li, Q.; Ye, J.; Chen, J.; Liu, J.; Li, Z.; Li, Y.; Yan, X.; Wang, Y.; et al. Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity. Brain Behav. 2016, 6, e00436. [Google Scholar] [CrossRef]
- Wang, L.; Hu, F.; Li, W.; Li, Q.; Li, Y.; Zhu, J.; Wei, X.; Yang, J.; Guo, J.; Qin, Y.; et al. Relapse risk revealed by degree centrality and cluster analysis in heroin addicts undergoing methadone maintenance treatment. Psychol. Med. 2023, 53, 2216–2228. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Wang, M.; Zeppenfeld, D.M.; Venkataraman, A.; Plog, B.A.; Liao, Y.; Deane, R.; Nedergaard, M. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 2013, 33, 18190–18199. [Google Scholar] [CrossRef] [PubMed]
- Hablitz, L.M.; Nedergaard, M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J. Neurosci. 2021, 41, 7698–7711. [Google Scholar] [CrossRef]
- Zbesko, J.C.; Nguyen, T.-V.V.; Yang, T.; Frye, J.B.; Hussain, O.; Hayes, M.; Chung, A.; Day, W.A.; Stepanovic, K.; Krumberger, M.; et al. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol. Dis. 2018, 112, 63–78. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, K.; Zhang, H.; Sha, J.; Yang, H.; Zhao, H.; Chen, N.; Li, K. Recovery of glymphatic system function in patients with temporal lobe epilepsy after surgery. Eur. Radiol. 2023, 33, 6116–6123. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, L.; Huang, M.; Zeng, H.; Satyanarayanan, S.K.; Shi, Z.; Chen, D.; Lu, J.-H.; Pei, Z.; Yao, X.; et al. Experimental alcoholism primes structural and functional impairment of the glymphatic pathway. Brain Behav. Immun. 2020, 85, 106–119. [Google Scholar] [CrossRef]
- Chen, W.; Huang, P.; Zeng, H.; Lin, J.; Shi, Z.; Yao, X. Cocaine-induced structural and functional impairments of the glymphatic pathway in mice. Brain Behav. Immun. 2020, 88, 97–104. [Google Scholar] [CrossRef]
- Chaves, C.; Remião, F.; Cisternino, S.; Declèves, X. Opioids and the Blood-Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain. Curr. Neuropharmacol. 2017, 15, 1156–1173. [Google Scholar] [CrossRef]
- Hutchinson, M.R.; Northcutt, A.L.; Hiranita, T.; Wang, X.; Lewis, S.S.; Thomas, J.; van Steeg, K.; Kopajtic, T.A.; Loram, L.C.; Sfregola, C.; et al. Opioid Activation of Toll-Like Receptor 4 Contributes to Drug Reinforcement. J. Neurosci. 2012, 32, 11187–11200. [Google Scholar] [CrossRef]
- Ferrari, A.; Coccia, C.P.R.; Bertolini, A.; Sternieri, E. Methadone–metabolism, pharmacokinetics and interactions. Pharmacol. Res. 2004, 50, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, H.; Lee, H.; Ozturk, B.; Chen, X.; Koundal, S.; Vaska, P.; Tannenbaum, A.; Volkow, N.D. Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging. Neuroscience 2020, 474, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Demiral, Ş.B.; Tomasi, D.; Sarlls, J.; Lee, H.; Wiers, C.E.; Zehra, A.; Srivastava, T.; Ke, K.; Shokri-Kojori, E.; Freeman, C.R.; et al. Apparent diffusion coefficient changes in human brain during sleep-Does it inform on the existence of a glymphatic system? Neuroimage 2019, 185, 263–273. [Google Scholar] [CrossRef]
- Örzsik, B.; Palombo, M.; Asllani, I.; Dijk, D.-J.; Harrison, N.A.; Cercignani, M. Higher order diffusion imaging as a putative index of human sleep-related microstructural changes and glymphatic clearance. NeuroImage 2023, 274, 120124. [Google Scholar] [CrossRef]
- Taoka, T.; Masutani, Y.; Kawai, H.; Nakane, T.; Matsuoka, K.; Yasuno, F.; Kishimoto, T.; Naganawa, S. Evaluation of glymphatic system activity with the diffusion MR technique: Diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn. J. Radiol. 2017, 35, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Taoka, T.; Ito, R.; Nakamichi, R.; Kamagata, K.; Sakai, M.; Kawai, H.; Nakane, T.; Abe, T.; Ichikawa, K.; Kikuta, J.; et al. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn. J. Radiol. 2022, 40, 147–158. [Google Scholar] [CrossRef]
- Shen, T.; Yue, Y.; Ba, F.; He, T.; Tang, X.; Hu, X.; Pu, J.; Huang, C.; Lv, W.; Zhang, B.; et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson’s disease. NPJ Park. Dis. 2022, 8, 174. [Google Scholar] [CrossRef]
- Qin, Y.; Li, X.; Qiao, Y.; Zou, H.; Qian, Y.; Li, X.; Zhu, Y.; Huo, W.; Wang, L.; Zhang, M. DTI-ALPS: An MR biomarker for motor dysfunction in patients with subacute ischemic stroke. Front. Neurosci. 2023, 17, 1132393. [Google Scholar] [CrossRef]
- Kamagata, K.; Andica, C.; Takabayashi, K.; Saito, Y.; Taoka, T.; Nozaki, H.; Kikuta, J.; Fujita, S.; Hagiwara, A.; Kamiya, K.; et al. Association of MRI Indices of Glymphatic System With Amyloid Deposition and Cognition in Mild Cognitive Impairment and Alzheimer Disease. Neurology 2022, 99, e2648–e2660. [Google Scholar] [CrossRef]
- Yang, G.; Deng, N.; Liu, Y.; Gu, Y.; Yao, X. Evaluation of Glymphatic System Using Diffusion MR Technique in T2DM Cases. Front. Hum. Neurosci. 2020, 14, 300. [Google Scholar] [CrossRef]
- Wei, X.; Wang, L.; Wang, X.; Li, J.; Li, H.; Jia, W. A Study of 6-Year Retention in Methadone Maintenance Treatment Among Opioid-Dependent Patients in Xi’an. J. Addict. Med. 2013, 7, 342. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.J.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Q.; Wen, X.; Cai, W.; Li, G.; Tian, J.; Zhang, Y.E.; Liu, J.; Yuan, K.; Zhao, J.; et al. Granger causality reveals a dominant role of memory circuit in chronic opioid dependence. Addict. Biol. 2017, 22, 1068–1080. [Google Scholar] [CrossRef]
- Tsou, T.-S. Robust Poisson regression. J. Stat. Plan. Inference 2006, 136, 3173–3186. [Google Scholar] [CrossRef]
- Chen, W.; Qian, L.; Shi, J.; Franklin, M. Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification. BMC Med. Res. Methodol. 2018, 18, 63. [Google Scholar] [CrossRef]
- Chen, W.; Shi, J.; Qian, L.; Azen, S.P. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: A simulation study. BMC Med. Res. Methodol. 2014, 14, 82. [Google Scholar] [CrossRef]
- Li, L.; Ding, G.; Zhang, L.; Davoodi-Bojd, E.; Chopp, M.; Li, Q.; Zhang, Z.G.; Jiang, Q. Aging-Related Alterations of Glymphatic Transport in Rat: In vivo Magnetic Resonance Imaging and Kinetic Study. Front. Aging Neurosci. 2022, 14, 841798. [Google Scholar] [CrossRef]
- Nedergaard, M.; Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science 2020, 370, 50–56. [Google Scholar] [CrossRef]
- Hutchinson, M.R.; Zhang, Y.; Shridhar, M.; Evans, J.H.; Buchanan, M.M.; Zhao, T.X.; Slivka, P.F.; Coats, B.D.; Rezvani, N.; Wieseler, J.; et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 2010, 24, 83–95. [Google Scholar] [CrossRef]
- Cui, Y.; Liao, X.-X.; Liu, W.; Guo, R.-X.; Wu, Z.-Z.; Zhao, C.-M.; Chen, P.-X.; Feng, J.-Q. A novel role of minocycline: Attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav. Immun. 2008, 22, 114–123. [Google Scholar] [CrossRef]
- Dauphinee, S.M.; Karsan, A. Lipopolysaccharide signaling in endothelial cells. Lab. Investig. 2006, 86, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Galea, I. The blood–brain barrier in systemic infection and inflammation. Cell Mol. Immunol. 2021, 18, 2489–2501. [Google Scholar] [CrossRef] [PubMed]
- Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015, 212, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Najafipour, H.; Beik, A. The Impact of Opium Consumption on Blood Glucose, Serum Lipids and Blood Pressure, and Related Mechanisms. Front. Physiol. 2016, 7, 436. [Google Scholar] [CrossRef] [PubMed]
- Zogopoulos, P.; Theocharis, S.; Kotakidis, N.; Patsouris, E.; Agapitos, E. Drug Abuse and Perivascular Changes of the Brain. J. Clin. Exp. Pathol. 2016, 6, 281. [Google Scholar] [CrossRef]
- John, S.; Samuel, S.; Lakhan, S.E. Tumefactive perivascular spaces mimicking cerebral edema in a patient with diabetic hyperglycemic hyperosmolar syndrome: A case report. J. Med. Case Rep. 2013, 7, 51. [Google Scholar] [CrossRef]
- Mesallam, D.; El-Sheikh, A.; AbdEl-Fatah, S.; Abedelsalam, N. Effects of Brown Heroin and Tramadol Dependency on Reproductive Axis in Adult Male Albino Rats. Ain Shams J. Forensic Med. Clin. Toxicol. 2018, 31, 62–76. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Wang, J.; Gong, X.; Chen, Z.; Zhang, X.; Cai, J.; Chen, S.; Fang, L.; Sun, J.; et al. Glymphatic clearance function in patients with cerebral small vessel disease. NeuroImage 2021, 238, 118257. [Google Scholar] [CrossRef]
- Kosten, T.R.; George, T.P. The Neurobiology of Opioid Dependence: Implications for Treatment. Sci. Pract. Perspect. 2002, 1, 13–20. [Google Scholar] [CrossRef]
- Milella, M.S.; D’Ottavio, G.; De Pirro, S.; Barra, M.; Caprioli, D.; Badiani, A. Heroin and its metabolites: Relevance to heroin use disorder. Transl. Psychiatry 2023, 13, 120. [Google Scholar] [CrossRef]
- Brown, R.; Kraus, C.; Fleming, M.; Reddy, S. Methadone: Applied pharmacology and use as adjunctive treatment in chronic pain. Postgrad. Med. J. 2004, 80, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Sant, K.; Camilleri, A.; Dimech, A. Beyond the stigma of methadone maintenance treatment: Neurocognitive recovery in individuals with opiate use disorders. Malta Med. J. 2020, 32, 63–76. [Google Scholar]
- Rass, O.; Kleykamp, B.A.; Vandrey, R.G.; Bigelow, G.E.; Leoutsakos, J.-M.; Stitzer, M.L.; Strain, E.; Copersino, M.L.; Mintzer, M.Z. Cognitive performance in methadone maintenance patients: Effects of time relative to dosing and maintenance dose level. Exp. Clin. Psychopharmacol. 2014, 22, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Kafami, L.; Etesami, I.; Felfeli, M.; Enayati, N.; Ghiaghi, R.; Aminian, A.; Dehpour, A. Methadone diminishes neuroinflammation and disease severity in EAE through modulating T cell function. J. Neuroimmunol. 2013, 255, 39–44. [Google Scholar] [CrossRef]
- Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 2018, 21, 1380–1391. [Google Scholar] [CrossRef]
- Lv, Y.; Jing, M.; Li, P.; Zhao, T.; Pang, C.; Lu, G.; Wang, Z.; Wu, N.; Hu, G.; Song, R.; et al. Aquaporin-4 deletion attenuates opioid-induced addictive behaviours associated with dopamine levels in nucleus accumbens. Neuropharmacology 2022, 208, 108986. [Google Scholar] [CrossRef]
- Chan, Y.-Y.; Yang, S.-N.; Lin, J.-C.; Chang, J.-L.; Lin, J.-G.; Lo, W.-Y. Inflammatory response in heroin addicts undergoing methadone maintenance treatment. Psychiatry Res. 2015, 226, 230–234. [Google Scholar] [CrossRef]
- Pelletier, D.E.; Andrew, T.A. Common Findings and Predictive Measures of Opioid Overdoses. Acad. Forensic Pathol. 2017, 7, 91–98. [Google Scholar] [CrossRef]
- Darabad, B.R.; Vatandust, J.; Khoshknab, M.M.P.; Poorrafsanjani, M.H. Survey of the Effect of Opioid Abuse on the Extent of Coronary Artery Diseases. Glob. J. Health Sci. 2014, 6, 83–91. [Google Scholar] [CrossRef]
- Ayanga, D.; Shorter, D.; Kosten, T.R. Update on pharmacotherapy for treatment of opioid use disorder. Expert Opin. Pharmacother. 2016, 17, 2307–2318. [Google Scholar] [CrossRef]
- Chow, S.L.; Sasson, C.; Benjamin, I.J.; Califf, R.M.; Compton, W.M.; Oliva, E.M.; Robson, C.; Sanchez, E.J.; on behalf of the American Heart Association. Opioid Use and Its Relationship to Cardiovascular Disease and Brain Health: A Presidential Advisory From the American Heart Association. Circulation 2021, 144, e218–e232. [Google Scholar] [CrossRef] [PubMed]
- Chormai, P.; Pu, Y.; Hu, H.; Fisher, S.E.; Francks, C.; Kong, X.-Z. Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. Neuroimage 2022, 262, 119534. [Google Scholar] [CrossRef]
- Zhang, C.; Sha, J.; Cai, L.; Xia, Y.; Li, D.; Zhao, H.; Meng, C.; Xu, K. Evaluation of the Glymphatic System Using the DTI-ALPS Index in Patients with Spontaneous Intracerebral Haemorrhage. Oxidative Med. Cell. Longev. 2022, 2022, e2694316. [Google Scholar] [CrossRef] [PubMed]
- Lubben, N.; Ensink, E.; Coetzee, G.A.; Labrie, V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun. 2021, 3, fcab211. [Google Scholar] [CrossRef] [PubMed]
- Lohela, T.J.; Lilius, T.O.; Nedergaard, M. The glymphatic system: Implications for drugs for central nervous system diseases. Nat. Rev. Drug Discov. 2022, 21, 763–779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, R.; Ye, Y.; Wang, S.; Jiaerken, Y.; Hong, H.; Li, K.; Zeng, Q.; Luo, X.; Xu, X.; et al. The Influence of Demographics and Vascular Risk Factors on Glymphatic Function Measured by Diffusion Along Perivascular Space. Front. Aging Neurosci. 2021, 13, 693787. [Google Scholar] [CrossRef]
Characteristic | HC | HD | MMT | T (N1) | P (N1) | F (N2) | P (N2) | T (N2) | P (N2) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N1 = 48 | N2 = 33 | N2 = 20 | N1 = 51 | N2 = 33 | MMT-HC | MMT-HC | 3 Groups | 3 Groups | MMT-HD | MMT-HD | |
Age (years) | 35.42 ± 7.96 | 31.39 ± 6.18 | 31.50 ± 7.84 | 35.76 ± 8.12 | 30.91 ± 5.34 | 0.22 | 0.83 | 0.07 | 0.93 | - | - |
Education (years) | 10.1 ± 1.84 | 10.36 ± 1.85 | 10.80 ± 2.76 | 9.67 ± 1.89 | 10.12 ± 1.98 | −1.17 | 0.27 | 0.63 | 0.54 | - | - |
Nicotine (no. cigarette/day) | 16.77 ± 9.67 | 16.21 ± 9.93 | 17.25 ± 4.99 | 19.10 ± 8.71 | 19.00 ± 9.27 | 1.26 | 0.21 | 0.85 | 0.43 | - | - |
Duration of nicotine use (years) | 16.75 ± 7.03 | 13.64 ± 5.97 | 14.03 ± 5.89 | 18.24 ± 8.53 | 14.12 ± 5.77 | 0.95 | 0.35 | 0.93 | 0.41 | - | - |
Dosage of heroin use (g/day) | - | - | 0.58 ± 0.30 | 0.41 ± 0.36 | 0.45 ± 0.40 | - | - | - | - | −1.31 | 0.20 |
Duration of heroin use (months) | - | - | 41.25 ± 25.68 | 85.57 ± 78.07 | 58.80 ± 39.30 | - | - | - | - | 1.69 | 0.15 |
Dosage of methadone use (mg/d) | - | - | - | 42.51 ± 15.56 | 42.24 ± 15.59 | - | - | - | - | - | - |
Duration of MMT (months) | - | - | - | 21.03 ± 15.74 | 20.68 ± 14.80 | - | - | - | - | - | - |
BDI score | 4.46 ± 5.63 | 4.67 ± 5.34 | 8.10 ± 9.71 | 9.53 ± 8.38 | 10.88 ± 8.86 | 3.56 | 0.001 * | 5.08 | 0.008 * | −0.27 | 0.79 |
HAMA score | 7.10 ± 8.88 | 6.46 ± 6.16 | 10.40 ± 8.18 | 9.37 ± 8.59 | 10.70 ± 9.27 | 1.29 | 0.2 | 2.76 | 0.07 | 0.55 | 0.58 |
Craving score | - | - | 1.06 ± 1.51 | 0.14 ± 0.99 | 0.19 ± 1.18 | - | - | - | - | −2.10 | 0.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Qin, Y.; Li, X.; Li, X.; Liu, Y.; Li, W.; Wang, Y. Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment. Brain Sci. 2023, 13, 1292. https://doi.org/10.3390/brainsci13091292
Wang L, Qin Y, Li X, Li X, Liu Y, Li W, Wang Y. Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment. Brain Sciences. 2023; 13(9):1292. https://doi.org/10.3390/brainsci13091292
Chicago/Turabian StyleWang, Lei, Yue Qin, Xiaoshi Li, Xin Li, Yuwei Liu, Wei Li, and Yarong Wang. 2023. "Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment" Brain Sciences 13, no. 9: 1292. https://doi.org/10.3390/brainsci13091292
APA StyleWang, L., Qin, Y., Li, X., Li, X., Liu, Y., Li, W., & Wang, Y. (2023). Glymphatic-System Function Is Associated with Addiction and Relapse in Heroin Dependents Undergoing Methadone Maintenance Treatment. Brain Sciences, 13(9), 1292. https://doi.org/10.3390/brainsci13091292