A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management
Abstract
:1. Introduction
2. Traditional Approaches to Epilepsy Management
2.1. Challenges in Achieving Seizure Control with Traditional Therapies
2.2. The Need for Novel Treatment Approaches to Address Drug-Resistant Epilepsy
3. Responsive Neurostimulation
Potential Side Effects and Safety Considerations in RNS
4. Vagus Nerve Stimulation
4.1. Recent Advancements in VNS Technology
4.2. Ongoing Research and Clinical Trials in VNS for Various Epilepsy Syndromes
5. Deep Brain Stimulation
Clinical Evidence Illustrating the Efficacy and Safety of DBS
6. Closed-Loop Stimulation
6.1. Recent Studies and Trials Evaluating Closed-Loop Systems
6.2. Potential for Personalized Closed-Loop Approaches
7. Cannabidiol and Epilepsy
7.1. Clinical Trials and Evidence Supporting the Use of CBD
7.2. Concerns and Considerations Regarding the Use of CBD
7.3. Emerging Therapeutic Avenues
8. Ketogenic Diet and Epilepsy
Potential Mechanisms of Action and Variations of the Ketogenic Diet
9. Gene Therapies for Epilepsy
Safety and Efficacy of Gene Therapies
10. Optogenetics in Epilepsy Research
Future Possibilities of Optogenetics in Clinical Applications
11. Discussions
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacoby, A.; Snape, D.; Baker, G.A. Epilepsy and Social Identity: The Stigma of a Chronic Neurological Disorder. Lancet Neurol. 2005, 4, 171–178. [Google Scholar] [CrossRef]
- Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Prim. 2018, 4, 18024. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sinha, J.K.; Khan, T.; Devaraju, K.S.; Singh, P.; Vaibhav, K.; Gaur, P. Pharmacological and Therapeutic Approaches in the Treatment of Epilepsy. Biomedicines 2021, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE Official Report: A Practical Clinical Definition of Epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef]
- Reddy, D.S. Therapeutic and Clinical Foundations of Cannabidiol Therapy for Difficult-to-Treat Seizures in Children and Adults with Refractory Epilepsies. Exp. Neurol. 2023, 359, 114237. [Google Scholar] [CrossRef] [PubMed]
- Fattorusso, A.; Matricardi, S.; Mencaroni, E.; Dell’Isola, G.B.; Di Cara, G.; Striano, P.; Verrotti, A. The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front. Neurol. 2021, 12, 674483. [Google Scholar] [CrossRef]
- Gidal, B.; Klein, P.; Hirsch, L.J. Seizure Clusters, Rescue Treatments, Seizure Action Plans: Unmet Needs and Emerging Formulations. Epilepsy Behav. 2020, 112, 107391. [Google Scholar] [CrossRef]
- Anwar, H.; Khan, Q.U.; Nadeem, N.; Pervaiz, I.; Ali, M.; Cheema, F.F. Epileptic Seizures. Discoveries 2020, 8, e110. [Google Scholar] [CrossRef]
- Mishra, P.; Sinha, J.K.; Rajput, S.K. Efficacy of Cicuta Virosa Medicinal Preparations against Pentylenetetrazole-Induced Seizures. Epilepsy Behav. 2021, 115, 107653. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Löscher, W.; Rho, J.M. Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harb. Perspect. Med. 2016, 6, a022780. [Google Scholar] [CrossRef]
- Baker, G.A.; Jacoby, A.; Buck, D.; Stalgis, C.; Monnet, D. Quality of Life of People with Epilepsy: A European Study. Epilepsia 1997, 38, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Baftiu, A.; Lima, M.H.; Svendsen, K.; Larsson, P.G.; Johannessen, S.I.; Landmark, C.J. Safety Aspects of Antiepileptic Drugs-a Population-Based Study of Adverse Effects Relative to Changes in Utilisation. Eur. J. Clin. Pharmacol. 2019, 75, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Asconapé, J.J. Some Common Issues in the Use of Antiepileptic Drugs. Semin Neurol. 2002, 22, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Walia, K.S.; Khan, E.A.; Ko, D.H.; Raza, S.S.; Khan, Y.N. Side Effects of Antiepileptics—A Review. Pain Pract. 2004, 4, 194–203. [Google Scholar] [CrossRef]
- Stevelink, R.; Koeleman, B.P.C.; Sander, J.W.; Jansen, F.E.; Braun, K.P.J. Refractory Juvenile Myoclonic Epilepsy: A Meta-Analysis of Prevalence and Risk Factors. Eur. J. Neurol. 2019, 26, 856–864. [Google Scholar] [CrossRef]
- Schmidt, D.; Löscher, W. Drug Resistance in Epilepsy: Putative Neurobiologic and Clinical Mechanisms. Epilepsia 2005, 46, 858–877. [Google Scholar] [CrossRef] [PubMed]
- Nickels, K.C.; Zaccariello, M.J.; Hamiwka, L.D.; Wirrell, E.C. Cognitive and Neurodevelopmental Comorbidities in Paediatric Epilepsy. Nat. Rev. Neurol. 2016, 12, 465–476. [Google Scholar] [CrossRef]
- Okiah, L.; Olowo, S.; Iramiot, S.J.; Nekaka, R.; Ssenyonga, L.V.N. Lived Experiences of Caregivers of Persons with Epilepsy Attending an Epilepsy Clinic at a Tertiary Hospital, Eastern Uganda: A Phenomenological Approach. PLoS ONE 2023, 18, e0274373. [Google Scholar] [CrossRef]
- Camfield, P.R.; Camfield, C.S. What Happens to Children with Epilepsy When They Become Adults? Some Facts and Opinions. Pediatr. Neurol. 2014, 51, 17–23. [Google Scholar] [CrossRef]
- Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The Consequences of Refractory Epilepsy and Its Treatment. Epilepsy Behav. 2014, 37, 59–70. [Google Scholar] [CrossRef]
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult Epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef] [PubMed]
- Johannessen Landmark, C.; Johannessen, S.I.; Tomson, T. Host Factors Affecting Antiepileptic Drug Delivery-Pharmacokinetic Variability. Adv. Drug Deliv. Rev. 2012, 64, 896–910. [Google Scholar] [CrossRef] [PubMed]
- Urzì Brancati, V.; Pinto Vraca, T.; Minutoli, L.; Pallio, G. Polymorphisms Affecting the Response to Novel Antiepileptic Drugs. Int. J. Mol. Sci. 2023, 24, 2535. [Google Scholar] [CrossRef] [PubMed]
- Patsalos, P.N.; Perucca, E. Clinically Important Drug Interactions in Epilepsy: General Features and Interactions between Antiepileptic Drugs. Lancet Neurol. 2003, 2, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-S.; Lai, M.-C.; Huang, H.-Y.I.; Wu, S.-N.; Huang, C.-W. Immunity, Ion Channels and Epilepsy. Int. J. Mol. Sci. 2022, 23, 6446. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Löscher, W. The Neurobiology of Antiepileptic Drugs. Nat. Rev. Neurosci. 2004, 5, 553–564. [Google Scholar] [CrossRef]
- Kobayashi, K.; Endoh, F.; Ohmori, I.; Akiyama, T. Action of Antiepileptic Drugs on Neurons. Brain Dev. 2020, 42, 2–5. [Google Scholar] [CrossRef]
- Liu, J.; Xu, R.; Liu, Z.; You, Y.; Meng, F. Factors Influencing Medication Adherence after Epilepsy Surgery. Epileptic Disord. 2015, 17, 47–51. [Google Scholar] [CrossRef]
- Faught, E. Adherence to Antiepilepsy Drug Therapy. Epilepsy Behav. 2012, 25, 297–302. [Google Scholar] [CrossRef]
- Wahab, A. Difficulties in Treatment and Management of Epilepsy and Challenges in New Drug Development. Pharmaceuticals 2010, 3, 2090–2110. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Schmidt, D. Experimental and Clinical Evidence for Loss of Effect (Tolerance) during Prolonged Treatment with Antiepileptic Drugs. Epilepsia 2006, 47, 1253–1284. [Google Scholar] [CrossRef]
- Kennedy, G.M.; Lhatoo, S.D. CNS Adverse Events Associated with Antiepileptic Drugs. CNS Drugs 2008, 22, 739–760. [Google Scholar] [CrossRef] [PubMed]
- Elger, C.E.; Schmidt, D. Modern Management of Epilepsy: A Practical Approach. Epilepsy Behav. 2008, 12, 501–539. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.; Francis-Auton, E.; Nikpour, A.; Herkes, G.; Bleasel, A.; Rapport, F. Enhancing Quality of Life among Epilepsy Surgery Patients: Interlinking Multiple Social and Relational Determinants. Epilepsy Behav. 2020, 102, 106721. [Google Scholar] [CrossRef]
- Sinha, N.; Johnson, G.W.; Davis, K.A.; Englot, D.J. Integrating Network Neuroscience Into Epilepsy Care: Progress, Barriers, and Next Steps. Epilepsy Curr. 2022, 22, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.S.; Numis, A.L.; Lee, M.B.; Chang, E.F.; Sullivan, J.E.; Auguste, K.I.; Rao, V.R. Responsive Neurostimulation for Treatment of Pediatric Drug-Resistant Epilepsy. Epilepsy Behav. Case Rep. 2018, 10, 21–24. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Snyder, M.P.; Meador, K.J. Precision Medicine in Women with Epilepsy: The Challenge, Systematic Review, and Future Direction. Epilepsy Behav. 2021, 118, 107928. [Google Scholar] [CrossRef]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted Drug Delivery Strategies for Precision Medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- Perucca, E.; Perucca, P.; White, H.S.; Wirrell, E.C. Drug Resistance in Epilepsy. Lancet Neurol. 2023, 22, 723–734. [Google Scholar] [CrossRef]
- Madireddy, S.; Madireddy, S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci. 2023, 13, 784. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Sander, J.W. Effects of the COVID-19 Pandemic on Medication Adherence: In the Case of Antiseizure Medications, A Scoping Review. Seizure 2021, 93, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Burdette, D.E.; Swartz, B.E. Responsive Neurostimulation. In Neurostimulation for Epilepsy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 97–132. ISBN 978-0-323-91702-5. [Google Scholar]
- Kusyk, D.M.; Meinert, J.; Stabingas, K.C.; Yin, Y.; Whiting, A.C. Systematic Review and Meta-Analysis of Responsive Neurostimulation in Epilepsy. World Neurosurg. 2022, 167, e70–e78. [Google Scholar] [CrossRef]
- Vessell, M.; Willett, A.; Chapman, B.; Bina, R.; Ball, T.; Mutchnick, I.; Neimat, J.S. Evidence for Thalamic Responsive Neurostimulation in Treatment of Adult and Pediatric Epilepsy. Ster. Funct. Neurosurg. 2023, 101, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, C.; Motamedi, G.K. Diagnosis and Surgical Treatment of Drug-Resistant Epilepsy. Brain Sci. 2018, 8, 49. [Google Scholar] [CrossRef]
- Edwards, C.A.; Kouzani, A.; Lee, K.H.; Ross, E.K. Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin. Proc. 2017, 92, 1427–1444. [Google Scholar] [CrossRef]
- Xue, T.; Chen, S.; Bai, Y.; Han, C.; Yang, A.; Zhang, J. Neuromodulation in Drug-Resistant Epilepsy: A Review of Current Knowledge. Acta Neurol. Scand. 2022, 146, 786–797. [Google Scholar] [CrossRef]
- Razavi, B.; Rao, V.R.; Lin, C.; Bujarski, K.A.; Patra, S.E.; Burdette, D.E.; Geller, E.B.; Brown, M.-G.M.; Johnson, E.A.; Drees, C.; et al. Real-World Experience with Direct Brain-Responsive Neurostimulation for Focal Onset Seizures. Epilepsia 2020, 61, 1749–1757. [Google Scholar] [CrossRef]
- Rincon, N.; Barr, D.; Velez-Ruiz, N. Neuromodulation in Drug Resistant Epilepsy. Aging Dis. 2021, 12, 1070–1080. [Google Scholar] [CrossRef]
- Heck, C.N.; King-Stephens, D.; Massey, A.D.; Nair, D.R.; Jobst, B.C.; Barkley, G.L.; Salanova, V.; Cole, A.J.; Smith, M.C.; Gwinn, R.P.; et al. Two-Year Seizure Reduction in Adults with Medically Intractable Partial Onset Epilepsy Treated with Responsive Neurostimulation: Final Results of the RNS System Pivotal Trial. Epilepsia 2014, 55, 432–441. [Google Scholar] [CrossRef]
- Bergey, G.K.; Morrell, M.J.; Mizrahi, E.M.; Goldman, A.; King-Stephens, D.; Nair, D.; Srinivasan, S.; Jobst, B.; Gross, R.E.; Shields, D.C.; et al. Long-Term Treatment with Responsive Brain Stimulation in Adults with Refractory Partial Seizures. Neurology 2015, 84, 810–817. [Google Scholar] [CrossRef]
- Jehi, L. Responsive Neurostimulation: The Hope and the Challenges. Epilepsy Curr. 2014, 14, 270–271. [Google Scholar] [CrossRef]
- Csernyus, B.; Szabó, Á.; Fiáth, R.; Zátonyi, A.; Lázár, C.; Pongrácz, A.; Fekete, Z. A Multimodal, Implantable Sensor Array and Measurement System to Investigate the Suppression of Focal Epileptic Seizure Using Hypothermia. J. Neural. Eng. 2021, 18, 0460c3. [Google Scholar] [CrossRef]
- Wu, H.; Adler, S.; Azagury, D.E.; Bohon, C.; Safer, D.L.; Barbosa, D.A.N.; Bhati, M.T.; Williams, N.R.; Dunn, L.B.; Tass, P.A.; et al. Brain-Responsive Neurostimulation for Loss of Control Eating: Early Feasibility Study. Neurosurgery 2020, 87, 1277–1288. [Google Scholar] [CrossRef]
- Alcala-Zermeno, J.L.; Starnes, K.; Gregg, N.M.; Worrell, G.; Lundstrom, B.N. Responsive Neurostimulation with Low-Frequency Stimulation. Epilepsia 2023, 64, e16–e22. [Google Scholar] [CrossRef] [PubMed]
- Jarosiewicz, B.; Morrell, M. The RNS System: Brain-Responsive Neurostimulation for the Treatment of Epilepsy. Expert Rev. Med. Devices 2021, 18, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Ngadimon, I.W.; Aledo-Serrano, A.; Arulsamy, A.; Mohan, D.; Khoo, C.S.; Cheong, W.L.; Shaikh, M.F. An Interplay Between Post-Traumatic Epilepsy and Associated Cognitive Decline: A Systematic Review. Front. Neurol. 2022, 13, 827571. [Google Scholar] [CrossRef] [PubMed]
- Kerezoudis, P.; Gyftopoulos, A.; Alexander, A.Y.; Keith Starnes, D.; Nickels, K.C.; Worrell, G.A.; Wirrell, E.C.; Lundstrom, B.N.; Van Gompel, J.J.; Miller, K.J. Safety and Efficacy of Responsive Neurostimulation in the Pediatric Population: Evidence from Institutional Review and Patient-Level Meta-Analysis. Epilepsy Behav. 2022, 129, 108646. [Google Scholar] [CrossRef]
- Panov, F.; Ganaha, S.; Haskell, J.; Fields, M.; La Vega-Talbott, M.; Wolf, S.; McGoldrick, P.; Marcuse, L.; Ghatan, S. Safety of Responsive Neurostimulation in Pediatric Patients with Medically Refractory Epilepsy. J. Neurosurg. Pediatr. 2020, 26, 525–532. [Google Scholar] [CrossRef]
- Gooneratne, I.K.; Green, A.L.; Dugan, P.; Sen, A.; Franzini, A.; Aziz, T.; Cheeran, B. Comparing Neurostimulation Technologies in Refractory Focal-Onset Epilepsy. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1174–1182. [Google Scholar] [CrossRef]
- Ma, B.B.; Rao, V.R. Responsive Neurostimulation: Candidates and Considerations. Epilepsy Behav. 2018, 88, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Piper, R.J.; Richardson, R.M.; Worrell, G.; Carmichael, D.W.; Baldeweg, T.; Litt, B.; Denison, T.; Tisdall, M.M. Towards Network-Guided Neuromodulation for Epilepsy. Brain 2022, 145, 3347–3362. [Google Scholar] [CrossRef]
- Fisher, R.S. Therapeutic Devices for Epilepsy. Ann. Neurol. 2012, 71, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.-S.; Schupper, A.J.; Fields, M.C.; Marcuse, L.V.; La Vega-Talbott, M.; Panov, F.; Ghatan, S. Centromedian Thalamic Responsive Neurostimulation for Lennox-Gastaut Epilepsy and Autism. Ann. Clin. Transl. Neurol. 2020, 7, 2035–2040. [Google Scholar] [CrossRef]
- Parihar, J.; Agrawal, M.; Samala, R.; Chandra, P.S.; Tripathi, M. Role of Neuromodulation for Treatment of Drug-Resistant Epilepsy. Neurol. India 2020, 68, S249–S258. [Google Scholar] [CrossRef] [PubMed]
- Stacey, W.C.; Litt, B. Technology Insight: Neuroengineering and Epilepsy-Designing Devices for Seizure Control. Nat. Clin. Pract. Neurol. 2008, 4, 190–201. [Google Scholar] [CrossRef]
- Henry, T.R. Therapeutic Mechanisms of Vagus Nerve Stimulation. Neurology 2002, 59, S3–S14. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front. Neurosci. 2021, 15, 650971. [Google Scholar] [CrossRef]
- Butt, M.F.; Albusoda, A.; Farmer, A.D.; Aziz, Q. The Anatomical Basis for Transcutaneous Auricular Vagus Nerve Stimulation. J. Anat. 2020, 236, 588–611. [Google Scholar] [CrossRef]
- Lee, J.; Raycraft, L.; Johnson, A.W. The Dynamic Regulation of Appetitive Behavior through Lateral Hypothalamic Orexin and Melanin Concentrating Hormone Expressing Cells. Physiol. Behav. 2021, 229, 113234. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural Regulation of Endocrine and Autonomic Stress Responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shi, W.; Fan, J.; Wang, X.; Song, Y.; Lian, Y.; Shan, W.; Wang, Q. Transcutaneous Auricular Vagus Nerve Stimulation (Ta-VNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial. Neurotherapeutics 2023, 20, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Orosz, I.; McCormick, D.; Zamponi, N.; Varadkar, S.; Feucht, M.; Parain, D.; Griens, R.; Vallée, L.; Boon, P.; Rittey, C.; et al. Vagus Nerve Stimulation for Drug-Resistant Epilepsy: A European Long-Term Study up to 24 Months in 347 Children. Epilepsia 2014, 55, 1576–1584. [Google Scholar] [CrossRef]
- Beekwilder, J.P.; Beems, T. Overview of the Clinical Applications of Vagus Nerve Stimulation. J. Clin. Neurophysiol. 2010, 27, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.-J.; Shan, W.; Wu, J.-P.; Wang, Q. Research Progress of Vagus Nerve Stimulation in the Treatment of Epilepsy. CNS Neurosci. Ther. 2019, 25, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Dibué-Adjei, M.; Fischer, I.; Steiger, H.-J.; Kamp, M.A. Efficacy of Adjunctive Vagus Nerve Stimulation in Patients with Dravet Syndrome: A Meta-Analysis of 68 Patients. Seizure 2017, 50, 147–152. [Google Scholar] [CrossRef]
- Elliott, R.E.; Morsi, A.; Kalhorn, S.P.; Marcus, J.; Sellin, J.; Kang, M.; Silverberg, A.; Rivera, E.; Geller, E.; Carlson, C.; et al. Vagus Nerve Stimulation in 436 Consecutive Patients with Treatment-Resistant Epilepsy: Long-Term Outcomes and Predictors of Response. Epilepsy Behav. 2011, 20, 57–63. [Google Scholar] [CrossRef]
- Fahoum, F.; Boffini, M.; Kann, L.; Faini, S.; Gordon, C.; Tzadok, M.; El Tahry, R. VNS Parameters for Clinical Response in Epilepsy. Brain Stimul. 2022, 15, 814–821. [Google Scholar] [CrossRef]
- Fisher, B.; DesMarteau, J.A.; Koontz, E.H.; Wilks, S.J.; Melamed, S.E. Responsive Vagus Nerve Stimulation for Drug Resistant Epilepsy: A Review of New Features and Practical Guidance for Advanced Practice Providers. Front. Neurol. 2020, 11, 610379. [Google Scholar] [CrossRef]
- Tzadok, M.; Harush, A.; Nissenkorn, A.; Zauberman, Y.; Feldman, Z.; Ben-Zeev, B. Clinical Outcomes of Closed-Loop Vagal Nerve Stimulation in Patients with Refractory Epilepsy. Seizure 2019, 71, 140–144. [Google Scholar] [CrossRef]
- Mertens, A.; Raedt, R.; Gadeyne, S.; Carrette, E.; Boon, P.; Vonck, K. Recent Advances in Devices for Vagus Nerve Stimulation. Expert Rev. Med. Devices 2018, 15, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Canal-Alonso, Á.; Casado-Vara, R.; Castellano, O.; Herrera-Santos, J.; Gonçalves, J.; Màrquez-Sànchez, S.; Gonçalves, J.M.; Corchado, J.M. An Affordable Implantable Vagus Nerve Stimulator System for Use in Animal Research. Philos. Trans. A Math. Phys. Eng. Sci. 2022, 380, 20210010. [Google Scholar] [CrossRef]
- Afra, P.; Adamolekun, B.; Aydemir, S.; Watson, G.D.R. Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy. Front. Med. Technol. 2021, 3, 696543. [Google Scholar] [CrossRef] [PubMed]
- Ji, T.; Yang, Z.; Liu, Q.; Liao, J.; Yin, F.; Chen, Y.; Zou, L.; Li, B.; Gao, Y.; Shu, X.; et al. Vagus Nerve Stimulation for Pediatric Patients with Intractable Epilepsy between 3 and 6 Years of Age: Study Protocol for a Double-Blind, Randomized Control Trial. Trials 2019, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Arhan, E.; Serdaroglu, A.; Kurt, G.; Bilir, E.; Durdağ, E.; Erdem, A.; Aksakal, F.N.; Ozcelik, A.; Baykaner, K. The Efficacy of Vagal Nerve Stimulation in Children with Pharmacoresistant Epilepsy: Practical Experience at a Turkish Tertiary Referral Center. Eur. J. Paediatr. Neurol. 2010, 14, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A. Lennox-Gastaut Syndrome: A Comprehensive Review. Neurol. Sci. 2018, 39, 403–414. [Google Scholar] [CrossRef]
- Cross, J.H.; Auvin, S.; Falip, M.; Striano, P.; Arzimanoglou, A. Expert Opinion on the Management of Lennox-Gastaut Syndrome: Treatment Algorithms and Practical Considerations. Front. Neurol. 2017, 8, 505. [Google Scholar] [CrossRef]
- Workewych, A.M.; Arski, O.N.; Mithani, K.; Ibrahim, G.M. Biomarkers of Seizure Response to Vagus Nerve Stimulation: A Scoping Review. Epilepsia 2020, 61, 2069–2085. [Google Scholar] [CrossRef]
- Gaul, C.; Diener, H.-C.; Silver, N.; Magis, D.; Reuter, U.; Andersson, A.; Liebler, E.J.; Straube, A.; PREVA Study Group. Non-Invasive Vagus Nerve Stimulation for PREVention and Acute Treatment of Chronic Cluster Headache (PREVA): A Randomised Controlled Study. Cephalalgia 2016, 36, 534–546. [Google Scholar] [CrossRef]
- Yue, Y.; Zou, L.; Li, H.; Xia, Y.; Ren, Z.; Yang, F.; Kong, D.; Re, G.; Luo, H.; Zhang, Z.; et al. Therapeutic Effect of Implanted and Non-Invasive Vagus Nerve Stimulation on Heroin-Induced Anxiety. Biochem. Biophys. Res. Commun. 2023, 652, 46–54. [Google Scholar] [CrossRef]
- Abouelleil, M.; Deshpande, N.; Ali, R. Emerging Trends in Neuromodulation for Treatment of Drug-Resistant Epilepsy. Front. Pain Res. 2022, 3, 839463. [Google Scholar] [CrossRef]
- Winter, Y.; Sandner, K.; Glaser, M.; Ciolac, D.; Sauer, V.; Ziebart, A.; Karakoyun, A.; Chiosa, V.; Saryyeva, A.; Krauss, J.; et al. Synergistic Effects of Vagus Nerve Stimulation and Antiseizure Medication. J. Neurol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Cukiert, A.; Cukiert, C.M.; Burattini, J.A.; Guimaraes, R.B. Combined Neuromodulation (Vagus Nerve Stimulation and Deep Brain Stimulation) in Patients With Refractory Generalized Epilepsy: An Observational Study. Neuromodulation 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Mo, J.; Zhang, C.; Zhang, J.; Hu, W.; Zhang, K. Brain-Clinical Signatures for Vagus Nerve Stimulation Response. CNS Neurosci. Ther. 2023, 29, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Brauer, P.R.; Lamarre, E.D.; Gau, V.L.; Lorenz, R.R.; Wu, S.S.; Bryson, P.C. Laryngology Outcomes Following Implantable Vagus Nerve Stimulation. JAMA Otolaryngol. Head Neck Surg. 2023, 149, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Paul Amar, A.; Levy, M.L.; Liu, C.Y.; Apuzzo, M.L.J. Vagus Nerve Stimulation. In Neuromodulation; Elsevier: Amsterdam, The Netherlands, 2009; pp. 625–637. ISBN 978-0-12-374248-3. [Google Scholar]
- González, H.F.J.; Yengo-Kahn, A.; Englot, D.J. Vagus Nerve Stimulation for the Treatment of Epilepsy. Neurosurg. Clin. N. Am. 2019, 30, 219–230. [Google Scholar] [CrossRef]
- Parhizgar, F.; Nugent, K.; Raj, R. Obstructive Sleep Apnea and Respiratory Complications Associated with Vagus Nerve Stimulators. J. Clin. Sleep Med. 2011, 7, 401–407. [Google Scholar] [CrossRef]
- Abdullahi, A.; Etoom, M.; Badaru, U.M.; Elibol, N.; Abuelsamen, A.A.; Alawneh, A.; Zakari, U.U.; Saeys, W.; Truijen, S. Vagus Nerve Stimulation for the Treatment of Epilepsy: Things to Note on the Protocols, the Effects and the Mechanisms of Action. Int. J. Neurosci. 2022. ahead of print. [Google Scholar] [CrossRef]
- Malow, B.A.; Edwards, J.; Marzec, M.; Sagher, O.; Fromes, G. Effects of Vagus Nerve Stimulation on Respiration during Sleep: A Pilot Study. Neurology 2000, 55, 1450–1454. [Google Scholar] [CrossRef]
- Davis, P.; Gaitanis, J. Neuromodulation for the Treatment of Epilepsy: A Review of Current Approaches and Future Directions. Clin. Ther. 2020, 42, 1140–1154. [Google Scholar] [CrossRef]
- Li, M.C.H.; Cook, M.J. Deep Brain Stimulation for Drug-Resistant Epilepsy. Epilepsia 2018, 59, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Robison, R.A.; Taghva, A.; Liu, C.Y.; Apuzzo, M.L.J. Surgery of the Mind, Mood, and Conscious State: An Idea in Evolution. World Neurosurg. 2013, 80, S2–S26. [Google Scholar] [CrossRef] [PubMed]
- Chandrabhatla, A.S.; Pomeraniec, I.J.; Horgan, T.M.; Wat, E.K.; Ksendzovsky, A. Landscape and Future Directions of Machine Learning Applications in Closed-Loop Brain Stimulation. NPJ Digit. Med. 2023, 6, 79. [Google Scholar] [CrossRef]
- Ramirez-Zamora, A.; Giordano, J.; Boyden, E.S.; Gradinaru, V.; Gunduz, A.; Starr, P.A.; Sheth, S.A.; McIntyre, C.C.; Fox, M.D.; Vitek, J.; et al. Proceedings of the Sixth Deep Brain Stimulation Think Tank Modulation of Brain Networks and Application of Advanced Neuroimaging, Neurophysiology, and Optogenetics. Front. Neurosci. 2019, 13, 936. [Google Scholar] [CrossRef]
- Arnts, H.; Coolen, S.E.; Fernandes, F.W.; Schuurman, R.; Krauss, J.K.; Groenewegen, H.J.; van den Munckhof, P. The Intralaminar Thalamus: A Review of Its Role as a Target in Functional Neurosurgery. Brain Commun. 2023, 5, fcad003. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.R.; Grogan, D.P.; Laxpati, N.G.; Fernandez, A.M.; Skelton, H.M.; Isbaine, F.; Gutekunst, C.-A.; Gross, R.E. Evidence Supporting Deep Brain Stimulation of the Medial Septum in the Treatment of Temporal Lobe Epilepsy. Epilepsia 2022, 63, 2192–2213. [Google Scholar] [CrossRef]
- Mogul, D.J.; van Drongelen, W. Electrical Control of Epilepsy. Annu. Rev. Biomed. Eng. 2014, 16, 483–504. [Google Scholar] [CrossRef]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep Brain Stimulation: Current Challenges and Future Directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef]
- Laxpati, N.G.; Kasoff, W.S.; Gross, R.E. Deep Brain Stimulation for the Treatment of Epilepsy: Circuits, Targets, and Trials. Neurotherapeutics 2014, 11, 508–526. [Google Scholar] [CrossRef]
- Luigjes, J.; van den Brink, W.; Feenstra, M.; van den Munckhof, P.; Schuurman, P.R.; Schippers, R.; Mazaheri, A.; De Vries, T.J.; Denys, D. Deep Brain Stimulation in Addiction: A Review of Potential Brain Targets. Mol. Psychiatry 2012, 17, 572–583. [Google Scholar] [CrossRef]
- Lipsman, N.; Ellis, M.; Lozano, A.M. Current and Future Indications for Deep Brain Stimulation in Pediatric Populations. Neurosurg. Focus 2010, 29, E2. [Google Scholar] [CrossRef]
- Peltola, J.; Colon, A.J.; Pimentel, J.; Coenen, V.A.; Gil-Nagel, A.; Gonçalves Ferreira, A.; Lehtimäki, K.; Ryvlin, P.; Taylor, R.S.; Ackermans, L.; et al. Deep Brain Stimulation of the Anterior Nucleus of the Thalamus in Drug-Resistant Epilepsy in the MORE Multicenter Patient Registry. Neurology 2023, 100, e1852–e1865. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Toyota, E.; Anderson, M.; Abel, T.J.; Donner, E.; Kalia, S.K.; Drake, J.; Rutka, J.T.; Ibrahim, G.M. A Systematic Review of Deep Brain Stimulation for the Treatment of Drug-Resistant Epilepsy in Childhood. J. Neurosurg. Pediatr. 2018, 23, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Salanova, V.; Witt, T.; Worth, R.; Henry, T.R.; Gross, R.E.; Nazzaro, J.M.; Labar, D.; Sperling, M.R.; Sharan, A.; Sandok, E.; et al. Long-Term Efficacy and Safety of Thalamic Stimulation for Drug-Resistant Partial Epilepsy. Neurology 2015, 84, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Shivacharan, R.S.; Rolle, C.E.; Barbosa, D.A.N.; Cunningham, T.N.; Feng, A.; Johnson, N.D.; Safer, D.L.; Bohon, C.; Keller, C.; Buch, V.P.; et al. Pilot Study of Responsive Nucleus Accumbens Deep Brain Stimulation for Loss-of-Control Eating. Nat. Med. 2022, 28, 1791–1796. [Google Scholar] [CrossRef]
- Kahn, L.; Sutton, B.; Winston, H.R.; Abosch, A.; Thompson, J.A.; Davis, R.A. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Real World Experience Post-FDA-Humanitarian Use Device Approval. Front. Psychiatry 2021, 12, 568932. [Google Scholar] [CrossRef]
- Greenberg, B.D.; Gabriels, L.A.; Malone, D.A.; Rezai, A.R.; Friehs, G.M.; Okun, M.S.; Shapira, N.A.; Foote, K.D.; Cosyns, P.R.; Kubu, C.S.; et al. Deep Brain Stimulation of the Ventral Internal Capsule/Ventral Striatum for Obsessive-Compulsive Disorder: Worldwide Experience. Mol. Psychiatry 2010, 15, 64–79. [Google Scholar] [CrossRef]
- Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A.; et al. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [Google Scholar] [CrossRef]
- Deuschl, G.; Herzog, J.; Kleiner-Fisman, G.; Kubu, C.; Lozano, A.M.; Lyons, K.E.; Rodriguez-Oroz, M.C.; Tamma, F.; Tröster, A.I.; Vitek, J.L.; et al. Deep Brain Stimulation: Postoperative Issues. Mov. Disord. 2006, 21 (Suppl. 14), S219–S237. [Google Scholar] [CrossRef]
- Doshi, P.K.; Rai, N.; Das, D. Surgical and Hardware Complications of Deep Brain Stimulation-A Single Surgeon Experience of 519 Cases Over 20 Years. Neuromodulation 2022, 25, 895–903. [Google Scholar] [CrossRef]
- Berényi, A.; Belluscio, M.; Mao, D.; Buzsáki, G. Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation. Science 2012, 337, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Kozák, G.; Berényi, A. Sustained Efficacy of Closed Loop Electrical Stimulation for Long-Term Treatment of Absence Epilepsy in Rats. Sci. Rep. 2017, 7, 6300. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Ju, C.; Joo, J.; Lee, J.; Shon, Y.-M.; Park, S.-M. Closed-Loop Direct Control of Seizure Focus in a Rodent Model of Temporal Lobe Epilepsy via Localized Electric Fields Applied Sequentially. Nat. Commun. 2022, 13, 7805. [Google Scholar] [CrossRef]
- Zanos, S. Closed-Loop Neuromodulation in Physiological and Translational Research. Cold Spring Harb. Perspect. Med. 2019, 9, a034314. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ugalde, H.M.; Le Rolle, V.; Bonnet, J.-L.; Henry, C.; Mabo, P.; Carrault, G.; Hernandez, A.I. Closed-Loop Vagus Nerve Stimulation Based on State Transition Models. IEEE Trans. Biomed. Eng. 2018, 65, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Kastner, S. Promises and Limitations of Human Intracranial Electroencephalography. Nat. Neurosci. 2018, 21, 474–483. [Google Scholar] [CrossRef]
- Brondi, M.; Bruzzone, M.; Lodovichi, C.; Dal Maschio, M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022, 11, 1848. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Harangozó, M.; Pedraza, L.; Földi, T.; Kozák, G.; Li, Q.; Berényi, A. Closed-Loop Stimulation of the Medial Septum Terminates Epileptic Seizures. Brain 2021, 144, 885–908. [Google Scholar] [CrossRef]
- Parastarfeizabadi, M.; Kouzani, A.Z. Advances in Closed-Loop Deep Brain Stimulation Devices. J. Neuroeng. Rehabil. 2017, 14, 79. [Google Scholar] [CrossRef]
- Cho, J.; Seong, G.; Chang, Y.; Kim, C. Energy-Efficient Integrated Circuit Solutions Toward Miniaturized Closed-Loop Neural Interface Systems. Front. Neurosci. 2021, 15, 667447. [Google Scholar] [CrossRef]
- Gill, J.L.; Schneiders, J.A.; Stangl, M.; Aghajan, Z.M.; Vallejo, M.; Hiller, S.; Topalovic, U.; Inman, C.S.; Villaroman, D.; Bari, A.; et al. A Pilot Study of Closed-Loop Neuromodulation for Treatment-Resistant Post-Traumatic Stress Disorder. Nat. Commun. 2023, 14, 2997. [Google Scholar] [CrossRef]
- Sisterson, N.D.; Wozny, T.A.; Kokkinos, V.; Constantino, A.; Richardson, R.M. Closed-Loop Brain Stimulation for Drug-Resistant Epilepsy: Towards an Evidence-Based Approach to Personalized Medicine. Neurotherapeutics 2019, 16, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Roa, J.A.; Abramova, M.; Fields, M.; Vega-Talbott, M.L.; Yoo, J.; Marcuse, L.; Wolf, S.; McGoldrick, P.; Ghatan, S.; Panov, F. Responsive Neurostimulation of the Thalamus for the Treatment of Refractory Epilepsy. Front. Hum. Neurosci. 2022, 16, 926337. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Bullinger, K.L.; Dickey, A.S.; Karakis, I.; Alwaki, A.; Cabaniss, B.T.; Winkel, D.; Rodriguez-Ruiz, A.; Willie, J.T.; Gross, R.E. Anterior Nucleus of the Thalamus Deep Brain Stimulation vs Temporal Lobe Responsive Neurostimulation for Temporal Lobe Epilepsy. Epilepsia 2022, 63, 2290–2300. [Google Scholar] [CrossRef]
- Zhou, A.; Santacruz, S.R.; Johnson, B.C.; Alexandrov, G.; Moin, A.; Burghardt, F.L.; Rabaey, J.M.; Carmena, J.M.; Muller, R. A Wireless and Artefact-Free 128-Channel Neuromodulation Device for Closed-Loop Stimulation and Recording in Non-Human Primates. Nat. Biomed. Eng. 2019, 3, 15–26. [Google Scholar] [CrossRef]
- Hosain, M.K.; Kouzani, A.; Tye, S. Closed Loop Deep Brain Stimulation: An Evolving Technology. Australas. Phys. Eng. Sci. Med. 2014, 37, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Vassileva, A.; van Blooijs, D.; Leijten, F.; Huiskamp, G. Neocortical Electrical Stimulation for Epilepsy: Closed-Loop versus Open-Loop. Epilepsy Res. 2018, 141, 95–101. [Google Scholar] [CrossRef]
- Salam, M.T.; Perez Velazquez, J.L.; Genov, R. Seizure Suppression Efficacy of Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of Epilepsy. IEEE Trans. Neural. Syst. Rehabil. Eng. 2016, 24, 710–719. [Google Scholar] [CrossRef]
- Basu, I.; Yousefi, A.; Crocker, B.; Zelmann, R.; Paulk, A.C.; Peled, N.; Ellard, K.K.; Weisholtz, D.S.; Cosgrove, G.R.; Deckersbach, T.; et al. Closed-Loop Enhancement and Neural Decoding of Cognitive Control in Humans. Nat. Biomed. Eng. 2023, 7, 576–588. [Google Scholar] [CrossRef]
- Khodagholy, D.; Ferrero, J.J.; Park, J.; Zhao, Z.; Gelinas, J.N. Large-Scale, Closed-Loop Interrogation of Neural Circuits Underlying Cognition. Trends. Neurosci. 2022, 45, 968–983. [Google Scholar] [CrossRef]
- Ramgopal, S.; Thome-Souza, S.; Jackson, M.; Kadish, N.E.; Sánchez Fernández, I.; Klehm, J.; Bosl, W.; Reinsberger, C.; Schachter, S.; Loddenkemper, T. Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy. Epilepsy Behav. 2014, 37, 291–307. [Google Scholar] [CrossRef]
- Bigelow, M.D.; Kouzani, A.Z. Neural Stimulation Systems for the Control of Refractory Epilepsy: A Review. J. Neuroeng. Rehabil. 2019, 16, 126. [Google Scholar] [CrossRef]
- Maia, J.; Fonseca, B.M.; Teixeira, N.; Correia-da-Silva, G. Unveiling the Angiogenic Effects of Cannabinoids: Enhancers or Inhibitors? Biochem. Pharmacol. 2023, 215, 115686. [Google Scholar] [CrossRef] [PubMed]
- Pintori, N.; Caria, F.; De Luca, M.A.; Miliano, C. THC and CBD: Villain versus Hero? Insights into Adolescent Exposure. Int. J. Mol. Sci. 2023, 24, 5251. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Schouten, M.; Meeus, G.; Slagmolen, L.; Koppo, K. Molecular Networks Underlying Cannabinoid Signaling in Skeletal Muscle Plasticity. J. Cell. Physiol. 2022, 237, 3517–3540. [Google Scholar] [CrossRef] [PubMed]
- Crescente, G.; Minervini, G.; Spagnuolo, C.; Moccia, S. Cannabis Bioactive Compound-Based Formulations: New Perspectives for the Management of Orofacial Pain. Molecules 2022, 28, 106. [Google Scholar] [CrossRef]
- Gray, R.A.; Whalley, B.J. The Proposed Mechanisms of Action of CBD in Epilepsy. Epileptic. Disord. 2020, 22, 10–15. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Z.; Jin, B.; Qin, X.; Zhu, X.; Sun, J.; Huo, L.; Wang, R.; Shi, Y.; Jia, Z.; et al. Cannabidiol Inhibits Febrile Seizure by Modulating AMPA Receptor Kinetics through Its Interaction with the N-Terminal Domain of GluA1/GluA2. Pharmacol. Res. 2020, 161, 105128. [Google Scholar] [CrossRef]
- Filipiuc, L.E.; Ababei, D.C.; Alexa-Stratulat, T.; Pricope, C.V.; Bild, V.; Stefanescu, R.; Stanciu, G.D.; Tamba, B.-I. Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 2021, 13, 1823. [Google Scholar] [CrossRef]
- Franco, V.; Bialer, M.; Perucca, E. Cannabidiol in the Treatment of Epilepsy: Current Evidence and Perspectives for Further Research. Neuropharmacology 2021, 185, 108442. [Google Scholar] [CrossRef]
- Laux, L.C.; Bebin, E.M.; Checketts, D.; Chez, M.; Flamini, R.; Marsh, E.D.; Miller, I.; Nichol, K.; Park, Y.; Segal, E.; et al. Long-Term Safety and Efficacy of Cannabidiol in Children and Adults with Treatment Resistant Lennox-Gastaut Syndrome or Dravet Syndrome: Expanded Access Program Results. Epilepsy Res. 2019, 154, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Bardhi, K.; Coates, S.; Watson, C.J.W.; Lazarus, P. Cannabinoids and Drug Metabolizing Enzymes: Potential for Drug-Drug Interactions and Implications for Drug Safety and Efficacy. Expert Rev. Clin. Pharmacol. 2022, 15, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Alsherbiny, M.A.; Li, C.G. Medicinal Cannabis-Potential Drug Interactions. Medicines 2018, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.T.; Gruber, S.A. Contemplating Cannabis? The Complex Relationship between Cannabinoids and Hepatic Metabolism Resulting in the Potential for Drug-Drug Interactions. Front. Psychiatry 2022, 13, 1055481. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Kander, R. The Sustainability of Industrial Hemp: A Literature Review of Its Economic, Environmental, and Social Sustainability. Sustainability 2023, 15, 6457. [Google Scholar] [CrossRef]
- Chopra, A.S.; Lordan, R.; Horbańczuk, O.K.; Atanasov, A.G.; Chopra, I.; Horbańczuk, J.O.; Jóźwik, A.; Huang, L.; Pirgozliev, V.; Banach, M.; et al. The Current Use and Evolving Landscape of Nutraceuticals. Pharmacol. Res. 2022, 175, 106001. [Google Scholar] [CrossRef]
- Villanueva, M.R.B.; Joshaghani, N.; Villa, N.; Badla, O.; Goit, R.; Saddik, S.E.; Dawood, S.N.; Rabih, A.M.; Niaj, A.; Raman, A.; et al. Efficacy, Safety, and Regulation of Cannabidiol on Chronic Pain: A Systematic Review. Cureus 2022, 14, e26913. [Google Scholar] [CrossRef]
- Arnold, J.C.; McCartney, D.; Suraev, A.; McGregor, I.S. The Safety and Efficacy of Low Oral Doses of Cannabidiol: An Evaluation of the Evidence. Clin. Transl. Sci. 2023, 16, 10–30. [Google Scholar] [CrossRef]
- MacCallum, C.A.; Russo, E.B. Practical Considerations in Medical Cannabis Administration and Dosing. Eur. J. Intern. Med. 2018, 49, 12–19. [Google Scholar] [CrossRef]
- Lattanzi, S.; Zaccara, G.; Russo, E.; La Neve, A.; Lodi, M.A.M.; Striano, P. Practical Use of Pharmaceutically Purified Oral Cannabidiol in Dravet Syndrome and Lennox-Gastaut Syndrome. Expert Rev. Neurother. 2021, 21, 99–110. [Google Scholar] [CrossRef]
- Lattanzi, S.; Trinka, E.; Striano, P.; Rocchi, C.; Salvemini, S.; Silvestrini, M.; Brigo, F. Highly Purified Cannabidiol for Epilepsy Treatment: A Systematic Review of Epileptic Conditions Beyond Dravet Syndrome and Lennox-Gastaut Syndrome. CNS Drugs 2021, 35, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Brunt, T.M.; Bossong, M.G. The Neuropharmacology of Cannabinoid Receptor Ligands in Central Signaling Pathways. Eur. J. Neurosci. 2022, 55, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Talwar, A.; Estes, E.; Aparasu, R.; Reddy, D.S. Clinical Efficacy and Safety of Cannabidiol for Pediatric Refractory Epilepsy Indications: A Systematic Review and Meta-Analysis. Exp. Neurol. 2023, 359, 114238. [Google Scholar] [CrossRef] [PubMed]
- Peña-Ceballos, J.; Moloney, P.B.; Munteanu, T.; Doyle, M.; Colleran, N.; Liggan, B.; Breen, A.; Murphy, S.; El-Naggar, H.; Widdess-Walsh, P.; et al. Adjunctive Cenobamate in Highly Active and Ultra-Refractory Focal Epilepsy: A “Real-World” Retrospective Study. Epilepsia 2023, 64, 1225–1235. [Google Scholar] [CrossRef]
- Singh, A. Cenobamate for Treatment-Resistant Focal Seizures: Current Evidence and Place in Therapy. J. Cent. Nerv. Syst. Dis. 2022, 14, 11795735211070209. [Google Scholar] [CrossRef]
- Chung, S.S.; French, J.A.; Kowalski, J.; Krauss, G.L.; Lee, S.K.; Maciejowski, M.; Rosenfeld, W.E.; Sperling, M.R.; Mizne, S.; Kamin, M. Randomized Phase 2 Study of Adjunctive Cenobamate in Patients with Uncontrolled Focal Seizures. Neurology 2020, 94, e2311–e2322. [Google Scholar] [CrossRef]
- Latimer, D.R.; Edinoff, A.N.; Ruff, R.D.; Rooney, K.C.; Penny, K.M.; Patel, S.B.; Sabbenahalli, S.; Kaye, A.M.; Cornett, E.M.; Viswanath, O.; et al. Cenobamate, a Sodium Channel Inhibitor and Positive Allosteric Modulator of GABAA Ion Channels, for Partial Onset Seizures in Adults: A Comprehensive Review and Clinical Implications. Neurol. Int. 2021, 13, 252–265. [Google Scholar] [CrossRef]
- Boison, D. New Insights into the Mechanisms of the Ketogenic Diet. Curr. Opin. Neurol. 2017, 30, 187–192. [Google Scholar] [CrossRef]
- Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 8767. [Google Scholar] [CrossRef]
- Makuku, R.; Sinaei Far, Z.; Khalili, N.; Moyo, A.; Razi, S.; Keshavarz-Fathi, M.; Mahmoudi, M.; Rezaei, N. The Role of Ketogenic Diet in the Treatment of Neuroblastoma. Integr. Cancer Ther. 2023, 22, 15347354221150787. [Google Scholar] [CrossRef]
- Gulati, S. Dietary Therapies: Emerging Paradigms in Therapy of Drug Resistant Epilepsy in Children: Based on 6th Dr. I. C. Verma Excellence in Research Award Oration. Indian J. Pediatr. 2018, 85, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Mittal, A.K.; Rajput, S.K.; Sinha, J.K. Cognition and Memory Impairment Attenuation via Reduction of Oxidative Stress in Acute and Chronic Mice Models of Epilepsy Using Antiepileptogenic Nux Vomica. J. Ethnopharmacol. 2021, 267, 113509. [Google Scholar] [CrossRef]
- Pizzo, F.; Collotta, A.D.; Di Nora, A.; Costanza, G.; Ruggieri, M.; Falsaperla, R. Ketogenic Diet in Pediatric Seizures: A Randomized Controlled Trial Review and Meta-Analysis. Expert Rev. Neurother. 2022, 22, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Mhanna, A.; Mhanna, M.; Beran, A.; Al-Chalabi, M.; Aladamat, N.; Mahfooz, N. Modified Atkins Diet versus Ketogenic Diet in Children with Drug-Resistant Epilepsy: A Meta-Analysis of Comparative Studies. Clin. Nutr. ESPEN 2022, 51, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Winesett, S.P.; Bessone, S.K.; Kossoff, E.H.W. The Ketogenic Diet in Pharmacoresistant Childhood Epilepsy. Expert Rev. Neurother. 2015, 15, 621–628. [Google Scholar] [CrossRef]
- Zhu, H.; Bi, D.; Zhang, Y.; Kong, C.; Du, J.; Wu, X.; Wei, Q.; Qin, H. Ketogenic Diet for Human Diseases: The Underlying Mechanisms and Potential for Clinical Implementations. Signal Transduct. Target. Ther. 2022, 7, 11. [Google Scholar] [CrossRef]
- Kapoor, D.; Garg, D.; Sharma, S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann. Indian Acad. Neurol. 2021, 24, 470–480. [Google Scholar] [CrossRef]
- Corsello, A.; Trovato, C.M.; Di Profio, E.; Cardile, S.; Campoy, C.; Zuccotti, G.; Verduci, E.; Diamanti, A. Ketogenic Diet in Children and Adolescents: The Effects on Growth and Nutritional Status. Pharmacol. Res. 2023, 191, 106780. [Google Scholar] [CrossRef]
- McNally, M.A.; Hartman, A.L. Ketone Bodies in Epilepsy. J. Neurochem. 2012, 121, 28–35. [Google Scholar] [CrossRef]
- Augustin, K.; Khabbush, A.; Williams, S.; Eaton, S.; Orford, M.; Cross, J.H.; Heales, S.J.R.; Walker, M.C.; Williams, R.S.B. Mechanisms of Action for the Medium-Chain Triglyceride Ketogenic Diet in Neurological and Metabolic Disorders. Lancet Neurol. 2018, 17, 84–93. [Google Scholar] [CrossRef]
- Sridharan, B.; Lee, M.-J. Ketogenic Diet: A Promising Neuroprotective Composition for Managing Alzheimer’s Diseases and Its Pathological Mechanisms. Curr. Mol. Med. 2022, 22, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A.L.; Gasior, M.; Vining, E.P.G.; Rogawski, M.A. The Neuropharmacology of the Ketogenic Diet. Pediatr. Neurol. 2007, 36, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.C.; Tewari, B.P.; Chaunsali, L.; Sontheimer, H. Neuron-Glia Interactions in the Pathophysiology of Epilepsy. Nat. Rev. Neurosci. 2019, 20, 282–297. [Google Scholar] [CrossRef] [PubMed]
- Stafstrom, C.E.; Carmant, L. Seizures and Epilepsy: An Overview for Neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5, a022426. [Google Scholar] [CrossRef]
- Cicek, E.; Sanlier, N. The Place of a Ketogenic Diet in the Treatment of Resistant Epilepsy: A Comprehensive Review. Nutr. Neurosci. 2023, 26, 828–841. [Google Scholar] [CrossRef]
- Skrobas, U.; Duda, P.; Bryliński, Ł.; Drożak, P.; Pelczar, M.; Rejdak, K. Ketogenic Diets in the Management of Lennox-Gastaut Syndrome-Review of Literature. Nutrients 2022, 14, 4977. [Google Scholar] [CrossRef]
- Freeman, J.; Veggiotti, P.; Lanzi, G.; Tagliabue, A.; Perucca, E.; Institute of Neurology IRCCS, C. Mondino Foundation. The Ketogenic Diet: From Molecular Mechanisms to Clinical Effects. Epilepsy Res. 2006, 68, 145–180. [Google Scholar] [CrossRef]
- Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Chao, H.; Ciulla, D.M.; DaSilva, J.A.; et al. Development of a Gene-Editing Approach to Restore Vision Loss in Leber Congenital Amaurosis Type 10. Nat. Med. 2019, 25, 229–233. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, S.; Raghunath, M.; Bhaskar, R.; Sinha, J.K. Balancing Potential Benefits and Ethical Considerations of Gene Editing. Lancet 2023, 401, 2109–2110. [Google Scholar] [CrossRef]
- Kullmann, D.M.; Schorge, S.; Walker, M.C.; Wykes, R.C. Gene Therapy in Epilepsy-Is It Time for Clinical Trials? Nat. Rev. Neurol. 2014, 10, 300–304. [Google Scholar] [CrossRef]
- Goodspeed, K.; Bailey, R.M.; Prasad, S.; Sadhu, C.; Cardenas, J.A.; Holmay, M.; Bilder, D.A.; Minassian, B.A. Gene Therapy: Novel Approaches to Targeting Monogenic Epilepsies. Front. Neurol. 2022, 13, 805007. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide off-Target Effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef]
- Goldberg, E.M.; Coulter, D.A. Mechanisms of Epileptogenesis: A Convergence on Neural Circuit Dysfunction. Nat. Rev. Neurosci. 2013, 14, 337–349. [Google Scholar] [CrossRef]
- Rakhade, S.N.; Jensen, F.E. Epileptogenesis in the Immature Brain: Emerging Mechanisms. Nat. Rev. Neurol. 2009, 5, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of Genome Editing Technology in the Targeted Therapy of Human Diseases: Mechanisms, Advances and Prospects. Signal Transduct. Target. Ther. 2020, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Fisher, A.L.; Huang, H.; Xie, Z. CRISPR-Mediated Genome Editing and Human Diseases. Genes Dis. 2016, 3, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Dhuriya, Y.K.; Naik, A.A. CRISPR: A Tool with Potential for Genomic Reprogramming in Neurological Disorders. Mol. Biol. Rep. 2023, 50, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.L.; Gøtzsche, C.R.; Woldbye, D.P.D. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front. Mol. Neurosci. 2021, 14, 695937. [Google Scholar] [CrossRef]
- Riban, V.; Fitzsimons, H.L.; During, M.J. Gene Therapy in Epilepsy. Epilepsia 2009, 50, 24–32. [Google Scholar] [CrossRef]
- Simonato, M.; Bennett, J.; Boulis, N.M.; Castro, M.G.; Fink, D.J.; Goins, W.F.; Gray, S.J.; Lowenstein, P.R.; Vandenberghe, L.H.; Wilson, T.J.; et al. Progress in Gene Therapy for Neurological Disorders. Nat. Rev. Neurol. 2013, 9, 277–291. [Google Scholar] [CrossRef]
- Morey, N.; Przybyla, M.; van der Hoven, J.; Ke, Y.D.; Delerue, F.; van Eersel, J.; Ittner, L.M. Treatment of Epilepsy Using a Targeted P38γ Kinase Gene Therapy. Sci. Adv. 2022, 8, eadd2577. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Kuchenbuch, M. Impact of Predictive, Preventive and Precision Medicine Strategies in Epilepsy. Nat. Rev. Neurol. 2020, 16, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.P.; Leblanc, G.G.; Brooks-Kayal, A.; Jensen, F.E.; Lowenstein, D.H.; Noebels, J.L.; Spencer, D.D.; Swann, J.W. Curing Epilepsy: Progress and Future Directions. Epilepsy Behav. 2009, 14, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, M.S.; Samulski, R.J.; McCown, T.J. Adeno-Associated Virus (AAV) Gene Therapy for Neurological Disease. Neuropharmacology 2013, 69, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Finer, M.; Glorioso, J. A Brief Account of Viral Vectors and Their Promise for Gene Therapy. Gene Ther. 2017, 24, 1–2. [Google Scholar] [CrossRef]
- Kang, L.; Jin, S.; Wang, J.; Lv, Z.; Xin, C.; Tan, C.; Zhao, M.; Wang, L.; Liu, J. AAV Vectors Applied to the Treatment of CNS Disorders: Clinical Status and Challenges. J. Control. Release 2023, 355, 458–473. [Google Scholar] [CrossRef]
- Morris, G.; Schorge, S. Gene Therapy for Neurological Disease: State of the Art and Opportunities for Next-Generation Approaches. Neuroscience 2022, 490, 309–314. [Google Scholar] [CrossRef]
- Cattaneo, S.; Verlengia, G.; Marino, P.; Simonato, M.; Bettegazzi, B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front. Mol. Neurosci. 2020, 13, 608001. [Google Scholar] [CrossRef]
- EpiPM Consortium A Roadmap for Precision Medicine in the Epilepsies. Lancet Neurol. 2015, 14, 1219–1228. [CrossRef]
- Fenno, L.; Yizhar, O.; Deisseroth, K. The Development and Application of Optogenetics. Annu. Rev. Neurosci. 2011, 34, 389–412. [Google Scholar] [CrossRef]
- Rost, B.R.; Wietek, J.; Yizhar, O.; Schmitz, D. Optogenetics at the Presynapse. Nat. Neurosci. 2022, 25, 984–998. [Google Scholar] [CrossRef] [PubMed]
- Sparta, D.R.; Jennings, J.H.; Ung, R.L.; Stuber, G.D. Optogenetic Strategies to Investigate Neural Circuitry Engaged by Stress. Behav. Brain Res. 2013, 255, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Stefanescu, R.A.; Shivakeshavan, R.G.; Talathi, S.S. Computational Models of Epilepsy. Seizure 2012, 21, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Tye, K.M.; Deisseroth, K. Optogenetic Investigation of Neural Circuits Underlying Brain Disease in Animal Models. Nat. Rev. Neurosci. 2012, 13, 251–266. [Google Scholar] [CrossRef]
- Paz, J.T.; Huguenard, J.R. Optogenetics and Epilepsy: Past, Present and Future. Epilepsy Curr. 2015, 15, 34–38. [Google Scholar] [CrossRef]
- Exposito-Alonso, D.; Rico, B. Mechanisms Underlying Circuit Dysfunction in Neurodevelopmental Disorders. Annu. Rev. Genet. 2022, 56, 391–422. [Google Scholar] [CrossRef]
- Ledri, M.; Andersson, M.; Wickham, J.; Kokaia, M. Optogenetics for Controlling Seizure Circuits for Translational Approaches. Neurobiol. Dis. 2023, 184, 106234. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Ladas, T.P.; Gonzalez-Reyes, L.E.; Durand, D.M. Seizure Suppression by High Frequency Optogenetic Stimulation Using in Vitro and in Vivo Animal Models of Epilepsy. Brain Stimul. 2014, 7, 890–899. [Google Scholar] [CrossRef]
- Hu, H.; Gan, J.; Jonas, P. Interneurons. Fast-Spiking, Parvalbumin+ GABAergic Interneurons: From Cellular Design to Microcircuit Function. Science 2014, 345, 1255263. [Google Scholar] [CrossRef]
- Kim, C.K.; Adhikari, A.; Deisseroth, K. Integration of Optogenetics with Complementary Methodologies in Systems Neuroscience. Nat. Rev. Neurosci. 2017, 18, 222–235. [Google Scholar] [CrossRef]
- Zaaimi, B.; Turnbull, M.; Hazra, A.; Wang, Y.; Gandara, C.; McLeod, F.; McDermott, E.E.; Escobedo-Cousin, E.; Idil, A.S.; Bailey, R.G.; et al. Closed-Loop Optogenetic Control of the Dynamics of Neural Activity in Non-Human Primates. Nat. Biomed. Eng. 2023, 7, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Zhang, F. Molecular Tools and Approaches for Optogenetics. Biol. Psychiatry 2012, 71, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.S.; Maimon, B.E.; Diaz, M.; Song, H.; Herr, H.M. Closed-Loop Functional Optogenetic Stimulation. Nat. Commun. 2018, 9, 5303. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.A.; Hutchings, C.; Djamgoz, M.B.A. Clinical Potential of Nerve Input to Tumors: A Bioelectricity Perspective. Bioelectricity 2021, 3, 14–26. [Google Scholar] [CrossRef]
- Bansal, A.; Shikha, S.; Zhang, Y. Towards Translational Optogenetics. Nat. Biomed. Eng. 2023, 7, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Papagiakoumou, E. Optical Developments for Optogenetics. Biol. Cell 2013, 105, 443–464. [Google Scholar] [CrossRef]
- Aurup, C.; Pouliopoulos, A.N.; Kwon, N.; Murillo, M.F.; Konofagou, E.E. Evaluation of Non-Invasive Optogenetic Stimulation with Transcranial Functional Ultrasound Imaging. Ultrasound Med. Biol. 2023, 49, 908–917. [Google Scholar] [CrossRef]
- Saha, R.; Wu, K.; Bloom, R.P.; Liang, S.; Tonini, D.; Wang, J.-P. A Review on Magnetic and Spintronic Neurostimulation: Challenges and Prospects. Nanotechnology 2022, 33, 182004. [Google Scholar] [CrossRef]
- Gopinath, N. Artificial Intelligence and Neuroscience: An Update on Fascinating Relationships. Process. Biochem. 2023, 125, 113–120. [Google Scholar] [CrossRef]
- Kaur, T.; Diwakar, A.; Kirandeep; Mirpuri, P.; Tripathi, M.; Chandra, P.S.; Gandhi, T.K. Artificial Intelligence in Epilepsy. Neurol. India 2021, 69, 560–566. [Google Scholar] [CrossRef]
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine Learning in Medical Applications: A Review of State-of-the-Art Methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef] [PubMed]
- Contreras, L.F.H.; Truong, N.D.; Eshraghian, J.K.; Xu, Z.; Huang, Z.; Nikpour, A.; Kavehei, O. Neuromorphic Neuromodulation: Towards the next Generation of on-Device AI-Revolution in Electroceuticals. arXiv 2023, arXiv:2307.12471. [Google Scholar] [CrossRef]
- Yoo, J.; Shoaran, M. Neural Interface Systems with On-Device Computing: Machine Learning and Neuromorphic Architectures. Curr. Opin. Biotechnol. 2021, 72, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Pal Attia, T.; Crepeau, D.; Kremen, V.; Nasseri, M.; Guragain, H.; Steele, S.W.; Sladky, V.; Nejedly, P.; Mivalt, F.; Herron, J.A.; et al. Epilepsy Personal Assistant Device-A Mobile Platform for Brain State, Dense Behavioral and Physiology Tracking and Controlling Adaptive Stimulation. Front. Neurol. 2021, 12, 704170. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Sinha, J.K.; Ghosh, S.; Sharma, H.; Bhaskar, R.; Narayanan, K.B. A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management. Brain Sci. 2023, 13, 1305. https://doi.org/10.3390/brainsci13091305
Ghosh S, Sinha JK, Ghosh S, Sharma H, Bhaskar R, Narayanan KB. A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management. Brain Sciences. 2023; 13(9):1305. https://doi.org/10.3390/brainsci13091305
Chicago/Turabian StyleGhosh, Shampa, Jitendra Kumar Sinha, Soumya Ghosh, Hitaishi Sharma, Rakesh Bhaskar, and Kannan Badri Narayanan. 2023. "A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management" Brain Sciences 13, no. 9: 1305. https://doi.org/10.3390/brainsci13091305
APA StyleGhosh, S., Sinha, J. K., Ghosh, S., Sharma, H., Bhaskar, R., & Narayanan, K. B. (2023). A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management. Brain Sciences, 13(9), 1305. https://doi.org/10.3390/brainsci13091305