Optimal Design of Galvanic Vestibular Stimulation for Patients with Vestibulopathy and Cerebellar Disorders
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Input Variations
2.3. Run GVS Application Models
2.3.1. Original Raw Output
2.3.2. Output Data Normalization
2.3.3. Output Data Transformation
2.3.4. Output Data Integration
2.3.5. Building the Ranking Orders
2.4. Sensitivity Analysis
2.5. Statistical Analysis:
3. Results
3.1. Clinical Characteristics
3.2. Determining the Optimal GVS Mode Specific for Vestibulopathy
3.3. Determining the Optimal GVS Mode Specific for Cerebellar Ataxia
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef]
- Utz, K.S.; Dimova, V.; Oppenländer, K.; Kerkhoff, G. Electrified minds: Transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications. Neuropsychologia 2010, 48, 2789–2810. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.C.; Day, B.L. Probing the human vestibular system with galvanic stimulation. J. Appl. Physiol. 2004, 96, 2301–2316. [Google Scholar] [CrossRef]
- Goldberg, J.; Smith, C.E.; Fernandez, C. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J. Neurophysiol. 1984, 51, 1236–1256. [Google Scholar] [CrossRef]
- Minor, L.B.; Goldberg, J.M. Vestibular-nerve inputs to the vestibulo-ocular reflex: A functional-ablation study in the squirrel monkey. J. Neurosci. 1991, 11, 1636–1648. [Google Scholar] [CrossRef]
- Courjon, J.; Precht, W.; Sirkin, D. Vestibular nerve and nuclei unit responses and eye movement responses to repetitive galvanic stimulation of the labyrinth in the rat. Exp. Brain Res. 1987, 66, 41–48. [Google Scholar] [CrossRef]
- Dlugaiczyk, J.; Gensberger, K.D.; Straka, H. Galvanic vestibular stimulation: From basic concepts to clinical applications. J. Neurophysiol. 2019, 121, 2237–2255. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; MacDougall, H.G. What galvanic vestibular stimulation actually activates. Front. Neurol. 2012, 3, 117. [Google Scholar] [CrossRef] [PubMed]
- Wardman, D.L.; Fitzpatrick, R.C. What does galvanic vestibular stimulation stimulate? In Sensorimotor Control of Movement Posture; Springer: New York, NY, USA, 2002; pp. 119–128. [Google Scholar]
- Barmack, N.H. Central vestibular system: Vestibular nuclei and posterior cerebellum. Brain Res. Bull. 2003, 60, 511–541. [Google Scholar] [CrossRef]
- van Dun, K.; Manto, M. Non-invasive cerebellar stimulation: Moving towards clinical applications for cerebellar and extra-cerebellar disorders. Cerebellum 2018, 17, 259–263. [Google Scholar] [CrossRef]
- Iwasaki, S.; Yamamoto, Y.; Togo, F.; Kinoshita, M.; Yoshifuji, Y.; Fujimoto, C.; Yamasoba, T. Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 2014, 82, 969–975. [Google Scholar] [CrossRef]
- Fujimoto, C.; Egami, N.; Kawahara, T.; Uemura, Y.; Yamamoto, Y.; Yamasoba, T.; Iwasaki, S. Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front. Neurol. 2018, 9, 900. [Google Scholar] [CrossRef]
- Fujimoto, C.; Yamamoto, Y.; Kamogashira, T.; Kinoshita, M.; Egami, N.; Uemura, Y.; Togo, F.; Yamasoba, T.; Iwasaki, S. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci. Rep. 2016, 6, 37575. [Google Scholar] [CrossRef]
- Iwasaki, S.; Fujimoto, C.; Egami, N.; Kinoshita, M.; Togo, F.; Yamamoto, Y.; Yamasoba, T. Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul. 2018, 11, 709–715. [Google Scholar] [CrossRef]
- Wuehr, M.; Nusser, E.; Krafczyk, S.; Straube, A.; Brandt, T.; Jahn, K.; Schniepp, R. Noise-enhanced vestibular input improves dynamic walking stability in healthy subjects. Brain Stimul. 2016, 9, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Hilliard, D.; Passow, S.; Thurm, F.; Schuck, N.W.; Garthe, A.; Kempermann, G.; Li, S.-C. Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Sci. Rep. 2019, 9, 9310. [Google Scholar] [CrossRef]
- Wilkinson, D.; Zubko, O.; DeGutis, J.; Milberg, W.; Potter, J. Improvement of a figure copying deficit during subsensory galvanic vestibular stimulation. J. Neurophysiol. 2010, 4, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.; Nicholls, S.; Pattenden, C.; Kilduff, P.; Milberg, W. Galvanic vestibular stimulation speeds visual memory recall. Exp. Brain Res. 2008, 189, 243–248. [Google Scholar] [CrossRef]
- Goel, R.; Kofman, I.; Jeevarajan, J.; De Dios, Y.; Cohen, H.S.; Bloomberg, J.J.; Mulavara, A.P. Using low levels of stochastic vestibular stimulation to improve balance function. PLoS ONE 2015, 10, e0136335. [Google Scholar] [CrossRef] [PubMed]
- Dilda, V.; MacDougall, H.G.; Curthoys, I.S.; Moore, S.T. Effects of Galvanic vestibular stimulation on cognitive function. Exp. Brain Res. 2012, 216, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Kang, J.-J.; Oh, S.-Y. Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front. Neurol. 2022, 13, 955088. [Google Scholar] [CrossRef]
- Duan, N.; Bhaumik, D.K.; Palinkas, L.A.; Hoagwood, K. Optimal design and purposeful sampling: Complementary methodologies for implementation research. Adm. Policy Ment. Health 2015, 42, 524–532. [Google Scholar] [CrossRef]
- Sverdlov, O.; Ryeznik, Y.; Wong, W.K. On optimal designs for clinical trials: An updated review. J. Stat. Theory Pract. 2020, 14, 10. [Google Scholar] [CrossRef]
- Zohar, S.; O’Quigley, J. Optimal designs for estimating the most successful dose. Stat. Med. 2006, 25, 4311–4320. [Google Scholar] [CrossRef] [PubMed]
- Marschner, I.C. Optimal design of clinical trials comparing several treatments with a control. Pharm. Stat. 2007, 6, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Galvanin, F.; Barolo, M.; Macchietto, S.; Bezzo, F. Optimal design of clinical tests for the identification of physiological models of type 1 diabetes in the presence of model mismatch. Med. Biol. Eng. Comput. 2011, 49, 263–277. [Google Scholar] [CrossRef]
- Hennig, S.; Nyberg, J.; Fanta, S.; Backman, J.T.; Hoppu, K.; Hooker, A.C.; Karlsson, M.O. Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. J. Clin. Pharmacol. 2012, 52, 347–360. [Google Scholar] [CrossRef]
- Dette, H.; Kiss, C.; Benda, N.; Bretz, F. Optimal designs for dose finding studies with an active control. J. R. Stat. Soc. B 2014, 76, 265–295. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Cheung, H. Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions. Appl. Energy 2018, 228, 1280–1291. [Google Scholar] [CrossRef]
- Mester, R.; Landeros, A.; Rackauckas, C.; Lange, K. Differential methods for assessing sensitivity in biological models. PLoS Comput. Biol. 2022, 18, e1009598. [Google Scholar] [CrossRef]
- Andersson, M.; Streb, M.; Ko, J.Y.; Klass, V.L.; Klett, M.; Ekström, H.; Johansson, M.; Lindbergh, G. Parametrization of physics-based battery models from input–output data: A review of methodology and current research. J. Power Sources 2022, 521, 230859. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Kang, J.-J.; Kim, S.; Lee, J.-M.; Kim, J.-S.; Dieterich, M. A preliminary trial of botulinum toxin type A in patients with vestibular migraine: A longitudinal fMRI study. Front. Neurol. 2022, 13, 955158. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Dieterich, M.; Lee, B.N.; Boegle, R.; Kang, J.J.; Lee, N.R.; Gerb, J.; Hwang, S.B.; Kirsch, V. Endolymphatic hydrops in patients with vestibular migraine and concurrent Meniere’s disease. Front. Neurol. 2021, 12, 594481. [Google Scholar] [CrossRef]
- Tyrrell, R.; Sarig-Bahat, H.; Williams, K.; Williams, G.; Treleaven, J. Simulator sickness in patients with neck pain and vestibular pathology during virtual reality tasks. Virtual Real. 2018, 22, 211–219. [Google Scholar] [CrossRef]
- Preuss, N.; Kalla, R.; Müri, R.; Mast, F.W. Framing susceptibility in a risky choice game is altered by galvanic vestibular stimulation. Sci. Rep. 2017, 7, 2947. [Google Scholar] [CrossRef]
- Ambrus, G.G.; Paulus, W.; Antal, A. Cutaneous perception thresholds of electrical stimulation methods: Comparison of tDCS and tRNS. Clin. Neurophysiol. 2010, 121, 1908–1914. [Google Scholar] [CrossRef]
- McFadden, J.L.; Borckardt, J.J.; George, M.S.; Beam, W. Reducing procedural pain and discomfort associated with transcranial direct current stimulation. Brain Stimul. 2011, 4, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Ferrè, E.R.; Day, B.L.; Bottini, G.; Haggard, P. How the vestibular system interacts with somatosensory perception: A sham-controlled study with galvanic vestibular stimulation. Neurosci. Lett. 2013, 550, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Parisi, S.L.; Héroux, M.E.; Culham, E.G.; Norman, K.E. Functional mobility and postural control in essential tremor. Arch. Phys. Med. Rehabil. 2006, 87, 1357–1364. [Google Scholar] [CrossRef]
- Schmitz-Hubsch, T.; Fimmers, R.; Rakowicz, M.; Rola, R.; Zdzienicka, E.; Fancellu, R.; Mariotti, C.; Linnemann, C.; Schols, L.; Timmann, D.; et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 2010, 74, 678–684. [Google Scholar] [CrossRef]
- Ali, P.J.M.; Faraj, R.H.; Koya, E.; Ali, P.J.M.; Faraj, R.H. Data normalization and standardization: A technical report. Mach. Learn. Tech. Rep. 2014, 1, 1–6. [Google Scholar]
- Lu, W.; Fan, H.; Leung, A.; Wong, J. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. Environ. Monit. Assess. 2002, 79, 217–230. [Google Scholar] [CrossRef]
- García, S.; Luengo, J.; Herrera, F. Data preprocessing in data mining. Polish Academy of Sciences: Warsaw, Poland; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Saltelli, A. Sensitivity analysis for importance assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef]
- Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419. [Google Scholar] [CrossRef]
- McDonnell, M.D.; Ward, L.M. The benefits of noise in neural systems: Bridging theory and experiment. Nat. Rev. Neurosci. 2011, 12, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Wuehr, M.; Decker, J.; Schniepp, R. Noisy galvanic vestibular stimulation: An emerging treatment option for bilateral vestibulopathy. J. Neurol. 2017, 264, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Struzik, Z.R.; Soma, R.; Ohashi, K.; Kwak, S. Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann. Neurol. 2005, 58, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Keywan, A.; Wuehr, M.; Pradhan, C.; Jahn, K. Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects. Front. Neurol. 2018, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Putman, E.J.; Galvan-Garza, R.C.; Clark, T.K. The Effect of Noisy Galvanic Vestibular Stimulation on Learning of Functional Mobility and Manual Control Nulling Sensorimotor Tasks. Front. Hum. Neurosci. 2021, 15, 756674. [Google Scholar] [CrossRef]
- 52. Kwan, A.; Forbes, P.A.; Mitchell, D.E.; Blouin, J.S.; Cullen, K.E. Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat. Commun. 2019, 10, 1904. [Google Scholar] [CrossRef]
- Kim, J.; Curthoys, I.S. Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig. Brain Res. Bull. 2004, 64, 265–271. [Google Scholar] [CrossRef] [PubMed]
Pt. | Age | Sex | Diagnosis | Time from the Onset | Classification | MMSE | Caloric Paresis (%, Side) | vHIT Gain | oVEMP AR, % | cVEMP AR, % | |
---|---|---|---|---|---|---|---|---|---|---|---|
Right HC | Left HC | ||||||||||
1 | 54 | F | Vestibular neuritis, L | 3 days | Acute UVP | 29 | 29.54 | 1.08 | 0.52 | 12 | 1 |
2 | 51 | M | Vestibular neuritis, L | 3 days | Acute UVP | 30 | 22.67 | 0.62 | 0.27 | 11 | 9 |
3 | 59 | M | Vestibular neuritis, L | 4 days | Acute UVP | 30 | 84.39 (L) | 0.94 | 0.26 | 52 | 47 |
4 | 64 | F | Vestibular neuritis, L | 3 days | Acute UVP | 29 | 48.08 (L) | 1.21 | 0.76 | 32 | 30 |
5 | 57 | M | Vestibular neuritis, R | 3 days | Acute UVP | 29 | 55.49 (R) | 0.34 | 0.9 | 43 | 12 |
6 | 31 | M | Vestibular neuritis, R | 3 days | Acute UVP | 30 | 65.3 (R) | 0.85 | 0.97 | 23 | 6 |
7 | 59 | M | Vestibular neuritis, L | 5 days | Acute UVP | 29 | 39.44 (R) | 1.07 | 1.13 | 18 | 21 |
8 | 82 | M | Chronic UVP, R | 34 months | Chronic UVP | 28 | 34.55 (R) | 0.41 | 0.36 | 34 | 31 |
9 | 72 | F | Chronic UVP, R | 71 months | Chronic UVP | 28 | 36.07 (R) | 0.56 | 1.14 | 21 | 37 |
10 | 49 | M | Bilateral vestibulopathy | 52 months | Chronic BVP | 30 | 12.3 | 0.36 | 0.31 | 19 | 41 |
11 | 26 | M | Bilateral vestibulopathy | 61 months | Chronic BVP | 30 | 13.03 | 0.16 | 0.16 | 7 | 2 |
12 | 71 | M | Presbyvestibulopathy | 42 months | Chronic BVP | 29 | 10.01 | 0.44 | 0.59 | n/a | n/a |
13 | 68 | M | Presbyvestibulopathy | 48 months | Chronic BVP | 28 | 21 | 0.30 | 0.47 | n/a | n/a |
14 | 63 | M | Presbyvestibulopathy | 69 months | Chronic BVP | 30 | 15.2 | 0.45 | 0.39 | 21 | 31 |
15 | 71 | M | CANVAS | 65 months | Chronic BVP | 29 | 18.42 | 0.21 | 0.19 | 15 | 30 |
16 | 59 | F | CANVAS | 44 months | Chronic BVP | 30 | 20.1 | 0.28 | 0.34 | n/a | n/a |
17 | 72 | F | CANVAS | 57 months | Chronic BVP | 27 | 17.91 | 0.18 | 0.24 | 26 | 31 |
18 | 61 | M | CANVAS | 46 months | Chronic BVP | 30 | 20.0 | 0.37 | 0.40 | 11 | 7 |
19 | 59 | M | MSA-C | 80 months | CA | 29 | 14.58 | 1 | 0.91 | 11 | 11 |
20 | 57 | M | MSA-C | 90 months | CA | 30 | 15.5 | 0.91 | 0.90 | 8 | 4 |
21 | 69 | M | MSA-C | 67 months | CA | 27 | 4.61 | 0.95 | 0.93 | 4 | 23 |
22 | 22 | M | SCA type 2 | 23 months | CA | 30 | 19.77 | 1.02 | 1.04 | 28 | 24 |
23 | 23 | M | SCA type 2 | 25 months | CA | 30 | 19.77 | 1.02 | 1.04 | 38 | 24 |
24 | 56 | M | SCA type 6 | 15 months | CA | 27 | 2.46 | 1.09 | 1.16 | 0 | 13 |
25 | 42 | M | Cerebellar ataxia * | 63 months | CA | 30 | 19.7 | 1.07 | 1.02 | 6 | 4 |
26 | 55 | M | Cerebellar ataxia † | 67 months | CA | 28 | 19.06 (L) | 0.98 | 1.03 | 25 | 8 |
27 | 58 | M | Cerebellar ataxia ‡ | 62 months | CA | 28 | 8.08 | 0.91 | 0.94 | 36 | 15 |
28 | 73 | M | Late-onset cerebellar ataxia | 78 months | CA | 27 | 13.5 | 0.89 | 0.91 | 3 | 8 |
29 | 62 | M | Late-onset cerebellar ataxia | 97 months | CA | 30 | 9.5 | 1.02 | 0.99 | 11 | 8 |
30 | 61 | M | Late-onset cerebellar ataxia | 10 months | CA | 30 | −27.11 | 0.74 | 0.81 | 6 | 4 |
31 | 62 | M | Late-onset cerebellar ataxia | 13 months | CA | 29 | 21.6 | 1.12 | 1.09 | 56 | 8 |
Rank | GVS Protocol | Min F | Sum of the F Value | Sensitivity | Vestibular Perception (Spinning, Tilting or Tingling Sensation) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mode Number | Waveform | Amplitude (mA) | Duration (min) | D-VAS | ABC | SARA | ||||
Unilateral vestibulopathy (n = 9) | ||||||||||
1 | 7 | Noisy | 0.4 | 30 | −0.65 | −0.8 | 2.13 | −9.51 | 2.35 | no |
2 | 1 | Sinusoidal | 0.4 | 30 | −0.39 | −0.69 | 1.58 | −7.38 | 4.32 | no |
3 | 16 | DC | 0.8 | 5 | −0.41 | −0.64 | 2.56 | −4.26 | 2.67 | yes (spinning) |
4 | 2 | Sinusoidal | 0.4 | 5 | −0.29 | −0.54 | 2.16 | −10.8 | 2.25 | no |
5 | 10 | Noisy | 0.8 | 5 | −0.29 | −0.49 | 1.57 | −3.55 | 12.27 | no |
6 | 14 | DC | 0.4 | 5 | −0.21 | −0.45 | 3.57 | −1.85 | 5.57 | no |
7 | 9 | Noisy | 0.8 | 30 | −0.34 | −0.41 | 6.63 | −5.76 | 1.48 | no |
8 | 13 | DC | 0.4 | 30 | −0.13 | −0.39 | 1.26 | −9.69 | 9.83 | no |
9 | 4 | Sinusoidal | 0.8 | 5 | −0.17 | −0.31 | 1.9 | −2.91 | 7.71 | no |
10 | 8 | Noisy | 0.4 | 5 | −0.12 | −0.3 | 1.58 | −2.72 | n.c. | no |
11 | 12 | Noisy | 1.2 | 5 | −0.28 | −0.28 | n.c. | n.c. | 1 | no |
12 | 5 | Sinusoidal | 1.2 | 30 | −0.19 | −0.25 | 1.33 | −4 | n.c. | no |
13 | 3 | Sinusoidal | 0.8 | 30 | −0.07 | −0.05 | n.c. | −4.26 | 1.31 | no |
14 | 17 | DC | 1.2 | 30 | −0.09 | −0.09 | 0.68 | n.c. | −2.12 | yes (tilting, tingling) |
15 | 15 | DC | 0.8 | 30 | −0.16 | −0.08 | −0.45 | −0.76 | 0.53 | no |
16 | 18 | DC | 1.2 | 5 | −0.04 | −0.04 | n.c. | n.c. | 1 | yes (tingling) |
17 | 6 | Sinusoidal | 1.2 | 5 | −0.01 | 0.05 | n.c. | −1 | n.c. | no |
18 | 11 | Noisy | 1.2 | 30 | −0.08 | 0.08 | 0.45 | 3.67 | −1.06 | no |
Bilateral vestibulopathy (n = 9) | ||||||||||
1 | 9 | Noisy | 0.8 | 30 | −0.38 | −0.38 | 1.75 | −2.33 | n.c. | no |
2 | 7 | Noisy | 0.4 | 30 | −0.14 | −0.22 | n.c. | −1 | n.c. | no |
3 | 2 | Sinusoidal | 0.4 | 5 | −0.01 | −0.01 | 1 | n.c. | n.c. | no |
4 | 6 | Sinusoidal | 1.2 | 5 | −0.13 | −0.13 | 1 | n.c. | n.c. | no |
5 | 8 | Noisy | 0.4 | 5 | 0 | 0 | n.c. | n.c. | n.c. | no |
6 | 11 | Noisy | 1.2 | 30 | 0 | 0 | n.c. | n.c. | n.c. | no |
7 | 4 | Sinusoidal | 0.8 | 5 | 0 | 0 | n.c. | n.c. | n.c. | no |
8 | 5 | Sinusoidal | 1.2 | 30 | 0 | 0 | n.c. | n.c. | n.c. | no |
9 | 1 | Sinusoidal | 0.4 | 30 | 0 | 0 | n.c. | n.c. | n.c. | no |
10 | 12 | Noisy | 1.2 | 5 | 0 | 0.02 | n.c. | −1 | n.c. | no |
11 | 10 | Noisy | 0.8 | 5 | 0 | 0.09 | n.c. | −1 | n.c. | no |
12 | 3 | Sinusoidal | 0.8 | 30 | 0 | 0.4 | 1.6 | −2.67 | n.c. | no |
Rank | GVS Protocol | Min F | Sum of the F Value | Sensitivity | Vestibular Perception (Spinning, Tilting or Tingling Sensation) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mode | Waveform | Amplitude (mA) | Duration (min) | D-VAS | ABC | SARA | ||||
1 | 10 | Noisy | 0.8 | 5 | −0.94 | −0.98 | 1.3 | −6.66 | 12.21 | no |
2 | 7 | Noisy | 0.4 | 30 | −0.38 | −0.88 | 1 | 16.6 | 15.69 | no |
3 | 12 | Noisy | 1.2 | 5 | −0.54 | −0.63 | 1.01 | −126 | n.c. | no |
4 | 8 | Noisy | 0.4 | 5 | −0.22 | −0.42 | 1.67 | −3.26 | 10.46 | no |
5 | 9 | Noisy | 0.8 | 30 | −0.38 | −0.32 | 1.01 | −97.15 | n.c. | no |
6 | 2 | Sinusoidal | 0.4 | 5 | −0.08 | −0.21 | n.c. | −1.24 | 5.22 | no |
7 | 4 | Sinusoidal | 0.8 | 5 | −0.2 | −0.2 | 1.64 | n.c. | 2.56 | no |
8 | 6 | Sinusoidal | 1.2 | 5 | −0.13 | −0.18 | 1.45 | −3.24 | n.c. | no |
9 | 11 | Noisy | 1.2 | 30 | −0.13 | −0.01 | n.c. | −1 | n.c. | no |
10 | 5 | Sinusoidal | 1.2 | 30 | −0.03 | −0.01 | n.c. | −1 | n.c. | no |
11 | 3 | Sinusoidal | 0.8 | 30 | −0.04 | 0.07 | n.c. | −2.29 | 1.78 | no |
12 | 1 | Sinusoidal | 0.4 | 30 | 0 | 0.1 | 1.56 | −2.79 | n.c. | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Lee, S.-B.; Kang, J.-J.; Oh, S.-Y. Optimal Design of Galvanic Vestibular Stimulation for Patients with Vestibulopathy and Cerebellar Disorders. Brain Sci. 2023, 13, 1333. https://doi.org/10.3390/brainsci13091333
Nguyen TT, Lee S-B, Kang J-J, Oh S-Y. Optimal Design of Galvanic Vestibular Stimulation for Patients with Vestibulopathy and Cerebellar Disorders. Brain Sciences. 2023; 13(9):1333. https://doi.org/10.3390/brainsci13091333
Chicago/Turabian StyleNguyen, Thanh Tin, Seung-Beop Lee, Jin-Ju Kang, and Sun-Young Oh. 2023. "Optimal Design of Galvanic Vestibular Stimulation for Patients with Vestibulopathy and Cerebellar Disorders" Brain Sciences 13, no. 9: 1333. https://doi.org/10.3390/brainsci13091333
APA StyleNguyen, T. T., Lee, S.-B., Kang, J.-J., & Oh, S.-Y. (2023). Optimal Design of Galvanic Vestibular Stimulation for Patients with Vestibulopathy and Cerebellar Disorders. Brain Sciences, 13(9), 1333. https://doi.org/10.3390/brainsci13091333