Transcranial Magnetic Stimulation (rTMS) on the Precuneus in Alzheimer’s Disease: A Literature Review
Abstract
:1. Introduction
2. Method
- Database search: A comprehensive search was conducted in several electronic databases, including PubMed, Scopus, and Web of Science. The search terms used were “precuneus”, “rTMS”, and “transcranial magnetic stimulation”. The search was limited to studies published in English between the years of 2010 and 2023.
- Study selection: All the studies retrieved from the database search were screened for eligibility. Eligible studies were those that investigated the use of rTMS on the precuneus as a potential treatment for Alzheimer’s disease in humans. Exclusion criteria were studies that used animal models, studies that focused on other forms of brain stimulation, and studies that investigated rTMS as a treatment for other forms of dementia or cognitive decline.
- Data extraction: Data were extracted from the eligible studies using a standardized data extraction form. The standardized data extraction form was a systematic approach we employed to ensure consistency in collecting relevant data from the studies reviewed. This method involves a predefined template that delineates the specific variables and parameters of interest, ensuring that every researcher involved in the data collection process retrieves the same type of information, thus minimizing bias and variation in the data extraction phase. The following information was collected: authors, year of publication, study design, sample size, stimulation parameters, outcome measures, and results.
- Data synthesis: The extracted data were analyzed and synthesized to provide an overview of the current state of the literature on the use of rTMS on the precuneus as a potential treatment for Alzheimer’s disease.
3. Results
3.1. Preclinical Alzheimer, Mild Cognitive Impairement, Subjective Cognitive Decline
3.2. Alzheimer’s Disease
4. Discussion
4.1. Key Findings
4.2. Mechanisms behind the Beneficial Effects of Precuneus Stimulation
4.3. Comparative Findings between Precuneus and DLPFC Stimulation
4.4. Limitations
4.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behrmann, M.; Geng, J.J.; Shomstein, S. Parietal cortex and attention. Curr. Opin. Neurobiol. 2004, 14, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, B.N.; Petersson, K.M.; Andersson, J.; Johansson, M.; Fransson, P.; Ingvar, M. Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. Neuroimage 2003, 20, 1934–1943. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.C.; Luber, B.; Crupain, M.; Keenan, J.P.; Nowak, M.; Kjaer, T.W.; Sackeim, H.A.; Lisanby, S.H. Parietal cortex and representation of the mental Self. Proc. Natl. Acad. Sci. USA 2004, 101, 6827–6832. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006, 129 Pt 3, 564–583. [Google Scholar] [CrossRef]
- Vogt, B.A.; Laureys, S. Posterior cingulate, precuneal and retrosplenial cortices: Cytology and components of the neural network correlates of consciousness. Prog. Brain Res. 2005, 150, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.E. The precuneus and consciousness. CNS Spectr. 2007, 12, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198, Erratum in Nat. Rev. Neurosci. 2009, 10, 312. [Google Scholar] [CrossRef]
- Ye, Q.; Zou, F.; Lau, H.; Hu, Y.; Kwok, S.C. Causal Evidence for Mnemonic Metacognition in Human Precuneus. J. Neurosci. 2018, 38, 6379–6387. [Google Scholar] [CrossRef]
- Bonnì, S.; Lupo, F.; Lo Gerfo, E.; Martorana, A.; Perri, R.; Caltagirone, C.; Koch, G. Altered parietal-motor connections in Alzheimer’s disease patients. J. Alzheimers Dis. 2013, 33, 525–533. [Google Scholar] [CrossRef]
- Benussi, A.; Alberici, A.; Ferrari, C.; Cantoni, V.; Dell’Era, V.; Turrone, R.; Cotelli, M.S.; Binetti, G.; Paghera, B.; Koch, G.; et al. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease. Alzheimers Res. Ther. 2018, 10, 94. [Google Scholar] [CrossRef]
- Chang, C.H.; Lane, H.Y.; Lin, C.H. Brain Stimulation in Alzheimer’s Disease. Front. Psychiatry 2018, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yan, L.; Huang, L.; Guan, X.; Dong, C.; Tao, H.; Wang, T.; Qin, X.; Wan, Q. Repetitive transcranial magnetic stimulation for the treatment of Alzheimer’s disease: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2018, 13, e0205704. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jiang, W.J.; Shan, P.Y.; Lu, M.; Wang, T.; Li, R.H.; Zhang, N.; Ma, L. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer’s disease: A systematic review and meta-analysis. J. Neurol. Sci. 2019, 398, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.; Umiltà, C.; Rusconi, E. The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neurosci. Biobehav. Rev. 2011, 35, 516–536. [Google Scholar] [CrossRef] [PubMed]
- Caparelli, E.; Backus, W.; Telang, F.; Wang, G.; Maloney, T.; Goldstein, R.; Henn, F. Is 1 Hz rTMS Always Inhibitory in Healthy Individuals? Open Neuroimag. J. 2012, 6, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ji, G.J.; Geng, Z.; Wang, L.; Yan, Y.; Wu, Y.; Xiao, G.; Gao, L.; Wei, Q.; Zhou, S.; et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: A randomized controlled trial. Brain Stimul. 2022, 15, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Geroldi, C.; Zanetti, O.; Rossini, P.M.; Miniussi, C. Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch. Neurol. 2006, 63, 1602–1604. [Google Scholar] [CrossRef]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Zanetti, O.; Miniussi, C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur. J. Neurol. 2008, 15, 1286–1292. [Google Scholar] [CrossRef]
- Cotelli, M.; Calabria, M.; Manenti, R.; Rosini, S.; Zanetti, O.; Cappa, S.F.; Miniussi, C. Improved language performance in Alzheimer disease following brain stimulation. J. Neurol. Neurosurg. Psychiatry 2011, 82, 794–797. [Google Scholar] [CrossRef]
- Turriziani, P.; Smirni, D.; Mangano, G.R.; Zappalà, G.; Giustiniani, A.; Cipolotti, L.; Oliveri, M. Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer’s Disease. J. Alzheimers Dis. 2019, 72, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Bentwich, J.; Dobronevsky, E.; Aichenbaum, S.; Shorer, R.; Peretz, R.; Khaigrekht, M.; Marton, R.G.; Rabey, J.M. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: A proof of concept study. J. Neural Transm. 2011, 118, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.P.; Suarez, A.; Kemoun, G.; Meignier, M.; Le Saout, E.; Damier, P.; Nizard, J.; Lefaucheur, J.P. Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease. Neurophysiol. Clin. 2017, 47, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Anderkova, L.; Eliasova, I.; Marecek, R.; Janousova, E.; Rektorova, I. Distinct Pattern of Gray Matter Atrophy in Mild Alzheimer’s Disease Impacts on Cognitive Outcomes of Noninvasive Brain Stimulation. J. Alzheimers Dis. 2015, 48, 251–260. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Cong, Y.; Zhang, J.; Tan, M.; Zhang, H.; Geng, N.; Li, M.; Yu, W.; Shan, P. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget 2017, 8, 33864–33871. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.; Taylor, J.L.; McNerney, M.W. rTMS for the treatment of Alzheimer’s disease: Where should we be stimulating? Expert Rev. Neurother. 2018, 18, 903–905. [Google Scholar] [CrossRef] [PubMed]
- Bonnì, S.; Veniero, D.; Mastropasqua, C.; Ponzo, V.; Caltagirone, C.; Bozzali, M.; Koch, G. TMS evidence for a selective role of the precuneus in source memory retrieval. Behav. Brain Res. 2015, 282, 70–75. [Google Scholar] [CrossRef]
- Mancini, M.; Mastropasqua, C.; Bonnì, S.; Ponzo, V.; Cercignani, M.; Conforto, S.; Koch, G.; Bozzali, M. Theta Burst Stimulation of the Precuneus Modulates Resting State Connectivity in the Left Temporal Pole. Brain Topogr. 2017, 30, 312–319. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Pellicciari, M.C.; Casula, E.P.; Mancini, M.; Esposito, R.; Ponzo, V.; Picazio, S.; Di Lorenzo, F.; Serra, L.; et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 2018, 169, 302–311. [Google Scholar] [CrossRef]
- Chen, J.; Ma, N.; Hu, G.; Nousayhah, A.; Xue, C.; Qi, W.; Xu, W.; Chen, S.; Rao, J.; Liu, W.; et al. rTMS modulates precuneus-hippocampal subregion circuit in patients with subjective cognitive decline. Aging 2020, 13, 1314–1331. [Google Scholar] [CrossRef]
- Traikapi, A.; Kalli, I.; Kyriakou, A.; Stylianou, E.; Symeou, R.T.; Kardama, A.; Christou, Y.P.; Phylactou, P.; Konstantinou, N. Episodic memory effects of gamma frequency precuneus transcranial magnetic stimulation in Alzheimer’s disease: A randomized multiple baseline study. J. Neuropsychol. 2022, 17, 279–301. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Casula, E.P.; Bonnì, S.; Borghi, I.; Assogna, M.; Minei, M.; Pellicciari, M.C.; Motta, C.; D’Acunto, A.; Porrazzini, F.; et al. Precuneus magnetic stimulation for Alzheimer’s disease: A randomized, sham-controlled trial. Brain 2022, 145, 3776–3786. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.G.; Chambers, C.D.; Gould, I.C.; Henderson, T.R.; Janko, N.E.; Allen, N.B.; Mattingley, J.B. Simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies 5 using transcranial magnetic stimulation. J. Neurophysiol. 2005, 94, 4520–4527. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Qi, X.; Jiang, X.; Xing, H.; Huang, X.; Gong, Q. Effect of regional intrinsic activity following two kinds of theta burst stimulation on precuneus. Hum. Brain Mapp. 2023, 44, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, D.; Guan, M.; Ren, X.; Li, D.; Yin, K.; Zhou, P.; Li, B.; Wang, H. Increased thalamic gray matter volume induced by repetitive transcranial magnetic stimulation treatment in patients with major depressive disorder. Front. Psychiatry 2023, 14, 1163067. [Google Scholar] [CrossRef] [PubMed]
- Hebscher, M.; Ibrahim, C.; Gilboa, A. Precuneus stimulation alters the neural dynamics of autobiographical memory retrieval. Neuroimage 2020, 210, 116575. [Google Scholar] [CrossRef]
Reference Year | Population | Disease | Protocol Device | Main Cognitive Assessment | Outcome |
---|---|---|---|---|---|
Koch G et al. 2018 [29] | n = 14 7 females 7 males | Early AD | 20 Hz 1600 pulses 10 sessions Over 2 weeks Adjusted MT * Neuronavigated Magstim Rapid2 Eight coil 70 mm | ADCS-PACC | Significant improvement at the Delayed Recall of the Rey Auditory Verbal learning Test performance after rTMS (pre vs. post, 2.42 ± 0.8 vs. 3.14 ± 0.8). No significant effects were detected after sham stimulation. No significant effects were observed on patients’ executive functions, attention, or global cognition. |
Chen J et al. 2020 [30] | n = 30 22 females 8 males | SCD | 10 Hz 1000 pulses 10 sessions Over 2 weeks 100% MT Pz site of the 10–20 EEG system was used to locate the precuneus Magstim Rapid2 Eight coil 70 mm | AVLT | Significant interactions between group (real group and sham group) and stimulation (pre-rTMS and post-rTMS) in the changes of AVLT-IR and AVLT-tot scores (p < 0.05). SCD subjects showed an improvement in episodic memory (AVLT) after 2 weeks of real rTMS treatment. |
Traikapi A et al. 2022 [31] | n = 5 3 females 2 males | AD | 40 Hz 1000 pulses 10 sessions Over 2 weeks 65–90% MT Left and right precuneus were stimulated on separate days Neuronavigated Magstim Rapid 2 | ADAS-Cog | All patients demonstrated improvement after rTMS treatment, and average score dropped from 33 pre-treatment to 28 post-treatment. The effect was slightly more pronounced in the follow-up phase, with an average score reduction of 5.6 points (average score dropped to 27.4) compared to the pre-treatment score. |
Koch et al. 2022 [32] | n = 50 26 females 24 males | mild-to-moderate AD | 20 Hz 1600 pulses 10 sessions Over 2 weeks Adjusted MT * Neuronavigated Magstim Rapid 2 Eight coil 70 mm | CDR-SB | Patients who underwent active treatment maintained their cognitive performance, while those who received sham-rTMS demonstrated a general decline in cognitive abilities. The estimated mean change in the CDR-SB score from the start to the end of the study was −0.25 for the PC-rTMS group and −1.42 for the sham-rTMS group. The proportion of responders, defined as patients with a change in CDR-SB score of less than or equal to 1, was 68.2% in the active group and 34.7% in the sham group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millet, B.; Mouchabac, S.; Robert, G.; Maatoug, R.; Dondaine, T.; Ferreri, F.; Bourla, A. Transcranial Magnetic Stimulation (rTMS) on the Precuneus in Alzheimer’s Disease: A Literature Review. Brain Sci. 2023, 13, 1332. https://doi.org/10.3390/brainsci13091332
Millet B, Mouchabac S, Robert G, Maatoug R, Dondaine T, Ferreri F, Bourla A. Transcranial Magnetic Stimulation (rTMS) on the Precuneus in Alzheimer’s Disease: A Literature Review. Brain Sciences. 2023; 13(9):1332. https://doi.org/10.3390/brainsci13091332
Chicago/Turabian StyleMillet, Bruno, Stéphane Mouchabac, Gabriel Robert, Redwan Maatoug, Thibaut Dondaine, Florian Ferreri, and Alexis Bourla. 2023. "Transcranial Magnetic Stimulation (rTMS) on the Precuneus in Alzheimer’s Disease: A Literature Review" Brain Sciences 13, no. 9: 1332. https://doi.org/10.3390/brainsci13091332
APA StyleMillet, B., Mouchabac, S., Robert, G., Maatoug, R., Dondaine, T., Ferreri, F., & Bourla, A. (2023). Transcranial Magnetic Stimulation (rTMS) on the Precuneus in Alzheimer’s Disease: A Literature Review. Brain Sciences, 13(9), 1332. https://doi.org/10.3390/brainsci13091332