Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design
Abstract
:1. Introduction
2. Methods
2.1. Information Resources, Search Strategy, and Eligibility Criteria
2.2. Study Inclusion
2.3. Outcome Variables
2.4. Risk of Bias
3. Results
3.1. Risk of Bias
3.2. Overview of tDCS RCTs in FM
3.2.1. tDCS over the Primary Motor Cortex
3.2.2. tDCS over the DLPFC
3.2.3. tDCS over M1 vs. DLPFC
3.2.4. Other Cortical Regions
3.2.5. Home-Based tDCS
4. Discussion
4.1. Target Region
4.2. Efficacy
4.3. Combined Intervention
4.4. Limitations of the Studies
4.5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Häuser, W.; Ablin, J.; Fitzcharles, M.-A.; Littlejohn, G.; Luciano, J.V.; Usui, C.; Walitt, B. Fibromyalgia. Nat. Rev. Dis. Primers 2015, 1, 15022. [Google Scholar] [CrossRef]
- Bair, M.J.; Krebs, E.E. Fibromyalgia. Ann. Intern. Med. 2020, 172, ITC33–ITC48. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.-A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology Preliminary Diagnostic Criteria for Fibromyalgia and Measurement of Symptom Severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Seok, H.Y.; Koo, Y.S.; Kim, B.-J. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis. PLoS ONE 2016, 11, e0149248. [Google Scholar] [CrossRef] [PubMed]
- Mhalla, A.; de Andrade, D.C.; Baudic, S.; Perrot, S.; Bouhassira, D. Alteration of cortical excitability in patients with fibromyalgia. Pain 2010, 149, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Wolcott, E.; Wang, Z.; Jorgenson, K.; Harvey, W.F.; Tao, J.; Rones, R.; Wang, C. Altered resting state functional connectivity of the cognitive control network in fibromyalgia and the modulation effect of mind-body intervention. Brain Imaging Behav. 2019, 13, 482–492. [Google Scholar] [CrossRef]
- Duquette, M.; Roy, M.; Leporé, F.; Peretz, I.; Rainville, P. Mécanismes cérébraux impliqués dans l’interaction entre la douleur et les émotions. Rev. Neurol. 2007, 163, 169–179. [Google Scholar] [CrossRef]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2020, 24, 256–313. [Google Scholar] [CrossRef]
- Camacho-Conde, J.A.; Gonzalez-Bermudez, M.d.R.; Carretero-Rey, M.; Khan, Z.U. Brain stimulation: A therapeutic approach for the treatment of neurological disorders. CNS Neurosci. Ther. 2022, 28, 5–18. [Google Scholar] [CrossRef]
- Salehinejad, M.A.; Ghanavati, E.; Glinski, B.; Hallajian, A.-H.; Azarkolah, A. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav. 2022, 12, e2724. [Google Scholar] [CrossRef]
- Teixeira, P.E.P.; Pacheco-Barrios, K.; Branco, L.C.; de Melo, P.S.; Marduy, A.; Caumo, W.; Papatheodorou, S.; Keysor, J.; Fregni, F. The Analgesic Effect of Transcranial Direct Current Stimulation in Fibromyalgia: A Systematic Review, Meta-Analysis, and Meta-Regression of Potential Influencers of Clinical Effect. Neuromodulation Technol. Neural Interface 2023, 26, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Marlow, N.M.; Bonilha, H.S.; Short, E.B. Efficacy of Transcranial Direct Current Stimulation and Repetitive Transcranial Magnetic Stimulation for Treating Fibromyalgia Syndrome: A Systematic Review. Pain Pract. 2013, 13, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Brighina, F.; Curatolo, M.; Cosentino, G.; De Tommaso, M.; Battaglia, G.; Sarzi-Puttini, P.C.; Guggino, G.; Fierro, B. Brain Modulation by Electric Currents in Fibromyalgia: A Structured Review on Non-invasive Approach With Transcranial Electrical Stimulation. Front. Hum. Neurosci. 2019, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, K.; Gracely, R.; Glass, J. Fibromyalgia dyscognition: Concepts and issues. Reumatismo 2012, 64, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Glass, J.M.; Park, D.C. Cognitive dysfunction in fibromyalgia. Curr. Rheumatol. Rep. 2001, 3, 123–127. [Google Scholar] [CrossRef]
- Zautra, A.J.; Fasman, R.; Reich, J.W.; Harakas, P.; Johnson, L.M.; Olmsted, M.E.; Davis, M.C. Fibromyalgia: Evidence for deficits in positive affect regulation. Psychosom. Med. 2005, 67, 147. [Google Scholar] [CrossRef]
- Moshfeghinia, R.; Shekouh, D.; Mostafavi, S.; Hosseinzadeh, M.; Bahadori, A.R.; Abdollahifard, S.; Razmkon, A. The effects of transcranial direct-current stimulation (tDCS) on pain intensity of patients with fibromyalgia: A systematic review and meta-analysis. BMC Neurol. 2023, 23, 395. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Hsiao, C.-Y.; Su, M.-I.; Chiu, C.-C.; Huang, Y.-C.; Huang, W.-L. Treating fibromyalgia with electrical neuromodulation: A systematic review and meta-analysis. Clin. Neurophysiol. 2023, 148, 17–28. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Yoo, H.B.; Ost, J.; Joos, W.; Van Havenbergh, T.; De Ridder, D.; Vanneste, S. Adding Prefrontal Transcranial Direct Current Stimulation Before Occipital Nerve Stimulation in Fibromyalgia. Clin. J. Pain 2018, 34, 421–427. [Google Scholar] [CrossRef]
- Paula, T.M.H.d.; Castro, M.S.; Medeiros, L.F.; Paludo, R.H.; Couto, F.F.; Costa, T.R.d.; Fortes, J.P.; Salbego, M.d.O.; Behnck, G.S.; Moura, T.A.M.d.; et al. Association of low-dose naltrexone and transcranial direct current stimulation in fibromyalgia: A randomized, double-blinded, parallel clinical trial. Braz. J. Anesthesiol. (Engl. Ed.) 2023, 73, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, M.E.; Simis, M.; Grecco, L.C.; Battistella, L.R.; Baptista, A.F.; Fregni, F. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial. Front. Hum. Neurosci. 2016, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.d.S.d.; Zortea, M.; Alves, R.L.; Naziazeno, C.C.d.S.; Saldanha, J.S.; Carvalho, S.d.C.R.d.; Leite, A.J.d.C.; Torres, I.L.d.S.; Souza, A.d.; Calvetti, P.Ü.; et al. Cognitive effects of transcranial direct current stimulation combined with working memory training in fibromyalgia: A randomized clinical trial. Sci. Rep. 2018, 8, 12477. [Google Scholar] [CrossRef] [PubMed]
- Matias, M.G.L.; Germano Maciel, D.; França, I.M.; Cerqueira, M.S.; Silva, T.C.L.A.; Okano, A.H.; Pegado, R.; Brito Vieira, W.H. Transcranial Direct Current Stimulation Associated With Functional Exercise Program for Treating Fibromyalgia: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 245–254. [Google Scholar] [CrossRef]
- Villamar, M.F.; Wivatvongvana, P.; Patumanond, J.; Bikson, M.; Truong, D.Q.; Datta, A.; Fregni, F. Focal modulation of the primary motor cortex in fibromyalgia using 4× 1-ring high-definition transcranial direct current stimulation (HD-tDCS): Immediate and delayed analgesic effects of cathodal and anodal stimulation. J. Pain 2013, 14, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Zortea, M.; Carvalho, S.; Leite, J.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates attention and pain in fibromyalgia: Randomized clinical trial. Sci. Rep. 2017, 7, 135. [Google Scholar] [CrossRef]
- Gardoki-Souto, I.; Martín de la Torre, O.; Hogg, B.; Redolar-Ripoll, D.; Valiente-Gómez, A.; Martínez Sadurní, L.; Blanch, J.M.; Lupo, W.; Pérez, V.; Radua, J. Augmentation of EMDR with multifocal transcranial current stimulation (MtCS) in the treatment of fibromyalgia: Study protocol of a double-blind randomized controlled exploratory and pragmatic trial. Trials 2021, 22, 104. [Google Scholar] [CrossRef]
- Fregni, F.; Gimenes, R.; Valle, A.C.; Ferreira, M.J.L.; Rocha, R.R.; Natalle, L.; Bravo, R.; Rigonatti, S.P.; Freedman, S.D.; Nitsche, M.A.; et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006, 54, 3988–3998. [Google Scholar] [CrossRef]
- Valle, A.; Roizenblatt, S.; Botte, S.; Zaghi, S.; Riberto, M.; Tufik, S.; Boggio, P.S.; Fregni, F. Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: Results of a randomized, sham-controlled longitudinal clinical trial. J. Pain Manag. 2009, 2, 353–361. [Google Scholar]
- Riberto, M.; Marcon Alfieri, F.; Monteiro de Benedetto Pacheco, K.; Dini Leite, V.; Nemoto Kaihami, H.; Fregni, F.; Rizzo Battistella, L. Efficacy of transcranial direct current stimulation coupled with a multidisciplinary rehabilitation program for the treatment of fibromyalgia. Open Rheumatol. J. 2011, 5, 45–50. [Google Scholar] [CrossRef]
- Mendonca, M.E.; Santana, M.B.; Baptista, A.F.; Datta, A.; Bikson, M.; Fregni, F.; Araujo, C.P. Transcranial DC Stimulation in Fibromyalgia: Optimized Cortical Target Supported by High-Resolution Computational Models. J. Pain 2011, 12, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.J.; Hansen, O.A.; Aslaksen, P.M. Transcranial direct current stimulation as a treatment for patients with fibromyalgia: A randomized controlled trial. Pain 2015, 156, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Jales, L.H., Jr.; Costa, M.d.D.L.; Jales Neto, L.H.; Ribeiro, J.P.M.; Freitas, W.J.S.d.N.; Teixeira, M.J. Estimulação elétrica transcraniana por corrente contínua em fibromialgia: Efeitos sobre a dor e a qualidade de vida, avaliados clinicamente e por cintilografia de perfusão cerebral. Rev. Dor 2015, 16, 37–42. [Google Scholar]
- Khedr, E.M.; Omran, E.A.H.; Ismail, N.M.; El-Hammady, D.H.; Goma, S.H.; Kotb, H.; Galal, H.; Osman, A.M.; Farghaly, H.S.M.; Karim, A.A.; et al. Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: A double blinded, randomized clinical trial. Brain Stimul. 2017, 10, 893–901. [Google Scholar] [CrossRef] [PubMed]
- To, W.T.; James, E.; Ost, J.; Hart, J.; De Ridder, D.; Vanneste, S. Differential effects of bifrontal and occipital nerve stimulation on pain and fatigue using transcranial direct current stimulation in fibromyalgia patients. J. Neural Transm. 2017, 124, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Brietzke, A.P.; Zortea, M.; Carvalho, F.; Sanches, P.R.S.; Silva, D.P., Jr.; Torres, I.L.d.S.; Fregni, F.; Caumo, W. Large Treatment Effect With Extended Home-Based Transcranial Direct Current Stimulation Over Dorsolateral Prefrontal Cortex in Fibromyalgia: A Proof of Concept Sham-Randomized Clinical Study. J. Pain 2020, 21, 212–224. [Google Scholar] [CrossRef] [PubMed]
- de Melo, G.A.; de Oliveira, E.A.; dos Santos Andrade, S.M.M.; Fernández-Calvo, B.; Torro, N. Comparison of two tDCS protocols on pain and EEG alpha-2 oscillations in women with fibromyalgia. Sci. Rep. 2020, 10, 18955. [Google Scholar] [CrossRef] [PubMed]
- Caumo, W.; Alves, R.L.; Vicuña, P.; Alves, C.F.d.S.; Ramalho, L.; Sanches, P.R.S.; Silva, D.P.; da Silva Torres, I.L.; Fregni, F. Impact of Bifrontal Home-Based Transcranial Direct Current Stimulation in Pain Catastrophizing and Disability due to Pain in Fibromyalgia: A Randomized, Double-Blind Sham-Controlled Study. J. Pain 2022, 23, 641–656. [Google Scholar] [CrossRef]
- Samartin-Veiga, N.; Pidal-Miranda, M.; González-Villar, A.J.; Bradley, C.; Garcia-Larrea, L.; O’Brien, A.T.; Carrillo-de-la-Peña, M.T. Transcranial direct current stimulation of 3 cortical targets is no more effective than placebo as treatment for fibromyalgia: A double-blind sham-controlled clinical trial. Pain 2022, 163, e850–e861. [Google Scholar] [CrossRef]
- Loreti, E.H.; Freire, A.M.; Alexandre da Silva, A.; Kakuta, E.; Martins Neto, U.R.; Konkiewitz, E.C. Effects of Anodal Transcranial Direct Current Stimulation on the Primary Motor Cortex in Women With Fibromyalgia: A Randomized, Triple-Blind Clinical Trial. Neuromodulation Technol. Neural Interface 2023, 26, 767–777. [Google Scholar] [CrossRef]
- Caumo, W.; Lopes, R.; Vicunha, P.; Fernanda, C.; Medeiros, L.; Ramalho, L.; Tomeddi, R.; Bruck, S.; Boher, L.; Sanches, P.R.S.; et al. Efficacy of home-based transcranial direct current stimulation over the primary motor cortex and dorsolateral prefrontal cortex in the disability due to pain in fibromyalgia: A factorial sham-randomized clinical study. J. Pain 2023. [Google Scholar] [CrossRef] [PubMed]
- Haefeli, M.; Elfering, A. Pain assessment. Eur. Spine J. 2006, 15 (Suppl. S1), S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Ritter, P.L.; González, V.M.; Laurent, D.D.; Lorig, K.R. Measurement of pain using the visual numeric scale. J. Rheumatol. 2006, 33, 574–580. [Google Scholar] [PubMed]
- Scott, J.; Huskisson, E. Vertical or horizontal visual analogue scales. Ann. Rheum. Dis. 1979, 38, 560. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Bishop, S.R.; Pivik, J. The pain catastrophizing scale: Development and validation. Psychol. Assess. 1995, 7, 524. [Google Scholar] [CrossRef]
- Burckhardt, C.S.; Clark, S.R.; Bennett, R.M. The fibromyalgia impact questionnaire: Development and validation. J. Rheumatol. 1991, 18, 728–733. [Google Scholar]
- Syddall, H.E.; Martin, H.J.; Harwood, R.H.; Cooper, C.; Aihie Sayer, A. The SF-36: A simple, effective measure of mobility-disability for epidemiological studies. J. Nutr. Health Aging 2009, 13, 57–62. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343. [Google Scholar] [CrossRef]
- Lorenz, J.; Minoshima, S.; Casey, K. Keeping pain out of mind: The role of the dorsolateral prefrontal cortex in pain modulation. Brain 2003, 126, 1079–1091. [Google Scholar] [CrossRef]
- Aguglia, A.; Salvi, V.; Maina, G.; Rossetto, I.; Aguglia, E. Fibromyalgia syndrome and depressive symptoms: Comorbidity and clinical correlates. J. Affect. Disord. 2011, 128, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, M.A.; Ghanavai, E.; Rostami, R.; Nejati, V. Cognitive control dysfunction in emotion dysregulation and psychopathology of major depression (MD): Evidence from transcranial brain stimulation of the dorsolateral prefrontal cortex (DLPFC). J. Affect. Disord. 2017, 210, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Nikolin, S.; Moffa, A.; Razza, L.; Martin, D.; Brunoni, A.R.; Palm, U.; Padberg, F.; Bennabi, D.; Haffen, E.; Blumberger, D.M.; et al. Time-course of the tDCS antidepressant effect: An individual participant data meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 125, 110752. [Google Scholar] [CrossRef] [PubMed]
- Molavi, P.; Aziziaram, S.; Basharpoor, S.; Atadokht, A.; Nitsche, M.A.; Salehinejad, M.A. Repeated transcranial direct current stimulation of dorsolateral-prefrontal cortex improves executive functions, cognitive reappraisal emotion regulation, and control over emotional processing in borderline personality disorder: A randomized, sham-controlled, parallel-group study. J. Affect. Disord. 2020, 274, 93–102. [Google Scholar] [PubMed]
- Jafari, E.; Alizadehgoradel, J.; Koluri, F.P.; Nikoozadehkordmirza, E.; Refahi, M.; Taherifard, M.; Nejati, V.; Hallajian, A.H.; Ghanavati, E.; Vicario, C.M.; et al. Intensified electrical stimulation targeting lateral and medial prefrontal cortices for the treatment of social anxiety disorder: A randomized, double-blind, parallel-group, dose-comparison study. Brain Stimul. 2021, 14, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, M.A.; Wischnewski, M.; Ghanavati, E.; Mosayebi-Samani, M.; Kuo, M.-F.; Nitsche, M.A. Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nat. Commun. 2021, 12, 4672. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, M.A.; Ghanavati, E.; Reinders, J.; Hengstler, J.G.; Kuo, M.-F.; Nitsche, M.A. Sleep-dependent upscaled excitability, saturated neuroplasticity, and modulated cognition in the human brain. eLife 2022, 11, e69308. [Google Scholar] [CrossRef]
- DaSilva, A.F.; Datta, A.; Swami, J.; Kim, D.J.; Patil, P.G.; Bikson, M. The Concept, Development, and Application of a Home-Based High-Definition tDCS for Bilateral Motor Cortex Modulation in Migraine and Pain. Front. Pain Res. 2022, 3. [Google Scholar] [CrossRef]
- Akkaya, N.; Atalay, N.S.; Selcuk, S.T.; Alkan, H.; Catalbas, N.; Sahin, F. Frequency of fibromyalgia syndrome in breast cancer patients. Int. J. Clin. Oncol. 2013, 18, 285–292. [Google Scholar] [CrossRef]
- Eyigor, S.; Karapolat, H.; Korkmaz, O.K.; Eyigor, C.; Durmaz, B.; Uslu, R.; Uyar, M. The frequency of fibromyalgia syndrome and quality of life in hospitalized cancer patients. Eur. J. Cancer Care 2009, 18, 195–201. [Google Scholar] [CrossRef]
- Schrier, M.; Amital, D.; Arnson, Y.; Rubinow, A.; Altaman, A.; Nissenabaum, B.; Amital, H. Association of fibromyalgia characteristics in patients with non-metastatic breast cancer and the protective role of resilience. Rheumatol. Int. 2012, 32, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Aviles Gonzalez, C.I.; Angermeyer, M.; Deiana, L.; Loi, C.; Murgia, E.; Holzinger, A.; Cossu, G.; Massa, E.; Romano, F.; Scartozzi, M.; et al. The Quality of Life of People with Solid Cancer is Less Worse than Other Diseases with better Prognosis, Except in the Presence of Depression. Clin Pr. Epidemiol. Ment. Health 2021, 17, 315–323. [Google Scholar] [CrossRef] [PubMed]
Fregni et al. (2006) [28] | Valle et al. (2009) [29] | Riberto et al. (2011) [30] | Mendonca et al. (2011) [31] | Fagerlundet al. (2015) [32] | Jales et al. (2015) [33] | Khedr et al. (2017) [34] | To et al. (2017) [35] | Brietzke et al. (2020) [36] | De Melo et al. (2020) [37] | Caumo et al. (2022) [38] | Samartin-Veiga et al. (2022) [39] | Loreti et al. (2023) [40] | Caumo et al. (2023) [41] | + Low Risk of Bias | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
? Uncertain Risk of Bias | |||||||||||||||
− High Risk of Bias | |||||||||||||||
Selection bias: Random sequence generation | ? | ? | ? | ? | + | ? | + | ? | + | + | + | + | + | + | 57.14% low, 42.8% uncertain, 0% high |
Selection bias:Allocation concealment | + | ? | ? | + | ? | + | ? | ? | + | ? | + | + | + | + | 57.14% low, 42.8% uncertain, 0 % high |
Reporting bias: Selective reporting | + | − | + | + | + | + | + | + | + | + | + | + | + | 92.9% low, 0% uncertain, 7.1% high | |
Performance bias: Blinding (participants and personnel) | + | + | + | + | + | + | + | ? | + | + | + | + | + | + | 92.9% low, 7.1% uncertain, 0% high |
Detection bias: Blinding of outcome assessment | + | + | + | + | + | + | + | ? | + | ? | + | + | + | + | 85.8% low, 14.2% uncertain, 0% high |
Attrition bias: Incomplete outcome data | + | + | + | + | + | + | − | − | + | − | + | + | + | + | 78.6% low, 0% uncertain, 21.4% high |
Other bias | + | + | + | + | + | + | − | + | + | − | + | + | + | + | 85.8% low, 0% uncertain, 14.2% high |
# | Author | Design (Control Condition) | n Active/Sham | Mean Age ± SD | Target Electrode Site | Return Electrode Site | Electrode Size | Intensity | Session Number and Duration | Polarity | Pain Outcome Measure | Major Finding |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Fregni et al. (2006) [28] | RCT double blind (sham controlled) | Active = 22 Sham = 11 | 53.4 ± 8.9 | Left dlPFC/ M1 | Fp2 | 7 × 5 cm | 2 mA | 5 × 20 min | anodal | VAS/SF36-PF | Anodal tDCS of the primary motor cortex induced significantly greater pain improvement compared with sham stimulation and stimulation of the DLPFC. |
2 | Valle et al. (2009) [29] | RCT double blind (sham controlled) | Active = 27 Sham = 14 | 54.8 ± 9.6 | Left dlPFC/ M1 | Fp2 | 7 × 5 cm | 2 mA | 10 × 20 min | anodal | VAS/FIQ | M1 and DLPFC stimulation both display improvements in pain scores and quality of life at the end of the treatment protocol. Only M1 stimulation resulted in long-lasting benefits at 30 and 60 follow-ups. |
3 | Riberto et al. (2011) [30] | RCT double blind (sham controlled) | Active = 11 Sham = 12 | 58.3 ± 12.1 | M1 | Fp2 | 7 × 5 cm | 2 mA | 10 × 20 min | anodal | SF36 (pain)/FIQ | Active treatment had a significantly greater reduction of SF-36 pain domain scores and a tendency toward higher improvement in FIQ scores as compared with sham tDCS. |
4 | Mendonca et al. (2011) [31] | RCT double blind (sham controlled) | Active = 24 Sham = 6 | 43.2 ± 9.8 | supra-orbital region/ M1 | transition of the cervical and thoracic spine | 8 × 10 cm | 2 mA | 1 × 20 min (4 single sessions) | anodal/cathodal | VNS/PPT | significant pain reduction in cathodal and anodal supra-orbital region groups indexed by VNS. |
5 | Fagerlund et al. (2015) [32] | RCT double blind (sham controlled) | Active = 24 Sham = 24 | N/A | M1 | Fp2 | 7 × 5 cm | 2 mA | 5 × 20 min | anodal | NRS/FIQ | A small, significant improvement in pain was observed under the active tDCS but not the sham condition. Fibromyalgia-related daily functioning improved in the active tDCS group vs. the sham group. |
6 | Jales et al. (2015) [33] | RCT double blind (sham controlled) | Active = 10 Sham = 10 | 46.4 ± 10.61 | M1 | Fp2 | 7 × 5 cm | 1 mA | 10 × 20 min | anodal | VAS/SF36-PF | decrease in the Fibromyalgia Impact Questionnaire and the Visual Analog Scale scores in the active tDCS |
7 | Khedr et al. (2017) [34] | RCT double blind (sham controlled) | Active = 18 Sham = 18 | 31.3 ± 10.9 | M1 | Contralateral arm | 6 × 4 cm | 2 mA | 10 × 20 min | Anodal | VAS | Higher improvement in the experimental scores of the patients in the real tDCS group in VAS, pain threshold and depressive scores |
8 | To et al. (2017) [35] | RCT single blind (sham controlled) | Active = 15 Sham = 16 | 46.95 ± 10.07 | Left dlPFC/ occipital region | O2—F4 | NR | 1.5 mA | 8 × 20 min | Anodal | NRS/PCS/MFIS | Repeated sessions of occipital tDCS improved pain, but not fatigue, whereas repeated sessions of DLPFC tDCS significantly improved pain as well as fatigue |
9 | Brietzke et al. (2020) [36] | RCT double blind (sham controlled) HB | Active = 10 Sham = 10 | 48.6 | Left dlPFC | F4 | 7 × 5 cm | 2 mA | 60 × 30 min | Anodal | VAS/FIQ | After the first 20 sessions of a-tDCS, the cumulative pain scores reduced by 45.65% vs. 3.94 and at the end of 60 sessions by 62.06% vs. 24.92% in active vs. sham tDCS, respectively. |
10 | De Melo et al. (2020) [37] | RCT double blind (sham controlled) | Active = 13 Sham = 13 | 44.81 ± 8.8 | M1 | NR | 7 × 5 cm | 2 mA | 5/10 × 20 min | Anodal | VAS/CIRS | Reduction in pain intensity after treatment for groups in general in addition to a reduction in alpha 2 oscillations in the frontal and parietal after 5 days |
11 | Caumo et al. (2022) [38] | RCT double blind (sham controlled) HB | Active = 32 Sham = 16 | 49.06 ± 9 | Left dlPFC | F4 | 7 × 5 cm | 2 mA | 20 × 20 min | Anodal | VAS/FIQ/PCS | a-tDCS reduced the Pain Catastrophizing Scale total scores by 51.38% compared to 26.96% in s-tDCS, and the Profile of Chronic Pain: Screen total scores by 31.43% compared to 19.15% in s-tDCS |
12 | Samartin-Veiga et al. (2022) [39] | RCT double blind (sham controlled) | Active = 100 Sham = 30 | 50.31 ± 8.76 | M1/dlPFC/operculo-insular cortex | Fp2 | NR | 2 mA | 15 × 20 min | Anodal | VAS/FIQ | Significant treatment effects across time for clinical pain and for fatigue, cognitive and sleep disturbances, and experimental pain |
13 | Loreti et al. (2023) [40] | RCT triple blind (sham controlled) | Active = 17 Sham = 18 | 41.99 ± 10.16 | M1 | Fp2 | 7 × 5 cm | 2 mA | 10 × 13 min 20 min with 13 min break | Anodal | VAS/FAS | The active tDCS group showed improvement in pain after 10, 30, and 90 days compared with the sham tDCS. Improvement in quality of life (QoL) and fatigue was observed in the active tDCS group |
14 | Caumo et al. (2023) [41] | RCT double blind (sham controlled) HB | Active = 68 Sham = 34 | 46.96 ± 9.42 | M1/left dlPFC | F4—Fp2 | 7 × 5 cm | 2 mA | 20 × 20 min | Anodal | FIQ/PCS | a-tDCS on DLPFC significantly reduced pain scores by 36.53% compared to 25.79% in s-tDCS. a-tDCS on M1 reduced pain scores by 45.89% compared to 22.92% over s-tDCS. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azarkolah, A.; Noorbala, A.A.; Ansari, S.; Hallajian, A.-H.; Salehinejad, M.A. Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design. Brain Sci. 2024, 14, 26. https://doi.org/10.3390/brainsci14010026
Azarkolah A, Noorbala AA, Ansari S, Hallajian A-H, Salehinejad MA. Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design. Brain Sciences. 2024; 14(1):26. https://doi.org/10.3390/brainsci14010026
Chicago/Turabian StyleAzarkolah, Anita, Ahmad Ali Noorbala, Sahar Ansari, Amir-Homayun Hallajian, and Mohammad Ali Salehinejad. 2024. "Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design" Brain Sciences 14, no. 1: 26. https://doi.org/10.3390/brainsci14010026
APA StyleAzarkolah, A., Noorbala, A. A., Ansari, S., Hallajian, A. -H., & Salehinejad, M. A. (2024). Efficacy of Transcranial Direct Current Stimulation on Pain Level and Disability of Patients with Fibromyalgia: A Systematic Review of Randomized Controlled Trials with Parallel-Group Design. Brain Sciences, 14(1), 26. https://doi.org/10.3390/brainsci14010026