Frequency, Characteristics, and Correlates of Cognitive Complaints in a Cohort of Individuals with Post-Acute Sequelae of COVID-19
Abstract
:1. Introduction
- The frequency of cognitive complaints, as measured by the PAOFI, in an ambulatory cohort approximately 7 months after acute COVID-19. Based on prior literature, we hypothesized that clinically significant cognitive complaints, when assessed with a standardized instrument, would be found in approximately one in three study participants.
- The strength of associations between subjective cognitive complaints on the PAOFI and objective NP performance. In the existing literature, cognitive complaints are associated with depression rather than objective NP performance across multiple clinical populations [11,12,13,14,15,16]. Therefore, we hypothesized that subjective cognitive complaints would be strongly correlated with depression and other measures of distress but weakly or not at all correlated with objective NP test performance.
- Whether cognitive complaints in specific domains, particularly memory, language and cognitive/executive function, are correlated with performance on NP tests that assess those domains. In studies in which cognitive complaints correlated with reduced NP performance, complaints correlated with impairments both in the corresponding domain and in other domains [15,16]. Therefore, we hypothesized that complaints would not be domain-specific.
- Correlations and predictors of cognitive complaints after COVID-19 among sociodemographic, medical, psychiatric, and NP variables. We hypothesized that pre-existing psychiatric history, depressive symptoms, and severity of COVID-19 illness would predict cognitive complaints.
2. Methods
2.1. Study Measurements and Instruments
2.2. Data Analysis
3. Results
3.1. Overall Group Characteristics (Table 1)
3.2. Overall Frequency and Correlates of Cognitive Complaints (CC)
3.3. Comparison between Those Who Presented with Clinically Significant Cognitive Complaints (CC) to Those with No Cognitive Complaints (NC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-Term and Long-Term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, M.; Canoll, P.D.; Klein, R.S. How COVID-19 Affects the Brain. JAMA Psychiatry 2021, 78, 682. [Google Scholar] [CrossRef] [PubMed]
- Pihlaja, R.E.; Kauhanen, L.-L.S.; Ollila, H.S.; Tuulio-Henriksson, A.S.; Koskinen, S.K.; Tiainen, M.; Salmela, V.R.; Hästbacka, J.; Hokkanen, L.S. Associations of Subjective and Objective Cognitive Functioning after COVID-19: A Six-Month Follow-up of ICU, Ward, and Home-Isolated Patients. Brain Behav. Immun. Health 2023, 27, 100587. [Google Scholar] [CrossRef] [PubMed]
- Chelune, G.J.; Lehman, R.A.; Heaton, R.K. Neuropsychological and Personality Correlates of Patients’ Complaints of Disability. In Advances in Clinical Neuropsychology; Goldstein, G., Tarter, R.E., Eds.; Springer: Boston, MA, USA, 1996; pp. 95–126. [Google Scholar]
- Ferrando, S.J. Diagnosis and Treatment of HIV-associated Neurocognitive Disorders. New Dir. Ment. Health Serv. 2000, 2000, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.B. Historical Insight into Infections and Disorders Associated with Neurological and Psychiatric Sequelae Similar to Long COVID. Med. Sci. Monit. 2021, 27, e931447-1. [Google Scholar] [CrossRef] [PubMed]
- Bransfield, R.C.; Aidlen, D.M.; Cook, M.J.; Javia, S. A Clinical Diagnostic System for Late-Stage Neuropsychiatric Lyme Borreliosis Based upon an Analysis of 100 Patients. Healthcare 2020, 8, 13. [Google Scholar] [CrossRef]
- Jansen, C.E.; Miaskowski, C.A.; Dodd, M.J.; Dowling, G.A. A Meta-Analysis of the Sensitivity of Various Neuropsychological Tests Used to Detect Chemotherapy-Induced Cognitive Impairment in Patients with Breast Cancer. Oncol. Nurs. Forum 2007, 34, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Ocon, A.J. Caught in the Thickness of Brain Fog: Exploring the Cognitive Symptoms of Chronic Fatigue Syndrome. Front. Physiol. 2013, 4, 63. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive Impairment in Multiple Sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Bryant, V.E.; Fieo, R.A.; Fiore, A.J.; Richards, V.L.; Porges, E.C.; Williams, R.; Lu, H.; Zhou, Z.; Cook, R.L. Subjective Cognitive Complaints: Predictors and Health Outcomes in People Living with HIV. AIDS Behav. 2022, 26, 1163–1172. [Google Scholar] [CrossRef]
- Pullens, M.J.J.; De Vries, J.; Roukema, J.A. Subjective Cognitive Dysfunction in Breast Cancer Patients: A Systematic Review. Psycho-Oncol. 2010, 19, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Pullens, M.J.J.; De Vries, J.; Van Warmerdam, L.J.C.; Van De Wal, M.A.; Roukema, J.A. Chemotherapy and Cognitive Complaints in Women with Breast Cancer. Psychooncology 2013, 22, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Rourke, S.B.; Halman, M.H.; Bassel, C. Neuropsychiatric Correlates of Memory-Metamemory Dissociations in HIV-Infection. J. Clin. Exp. Neuropsychol. 1999, 21, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Rourke, S.B.; Halman, M.H.; Bassel, C. Neurocognitive Complaints in HIV-Infection and Their Relationship to Depressive Symptoms and Neuropsychological Functioning. J. Clin. Exp. Neuropsychol. 1999, 21, 737–756. [Google Scholar] [CrossRef] [PubMed]
- Ganz, P.A.; Kwan, L.; Castellon, S.A.; Oppenheim, A.; Bower, J.E.; Silverman, D.H.S.; Cole, S.W.; Irwin, M.R.; Ancoli-Israel, S.; Belin, T.R. Cognitive Complaints After Breast Cancer Treatments: Examining the Relationship with Neuropsychological Test Performance. J. Natl. Cancer Inst. 2013, 105, 791–801. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Calabria, M.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Anson, B.; Lleó, A.; Alcolea, D.; Belvís, R.; Morollón, N.; et al. Neuropsychological Deficits in Patients with Cognitive Complaints after COVID-19. Brain Behav. 2022, 12, e2508. [Google Scholar] [CrossRef] [PubMed]
- Gomzyakova, N.A.; Palchikova, E.I.; Tumova, M.A.; Kasyanov, E.D.; Sorokin, M.Y. Association of Anxiety and Depression with Objective and Subjective Cognitive Decline in Outpatient Healthcare Consumers with COVID-19: А Cross-Sectional Study. Consort. Psychiatr. 2022, 3, 46–57. [Google Scholar] [CrossRef]
- Lynch, S.; Ferrando, S.J.; Dornbush, R.; Shahar, S.; Smiley, A.; Klepacz, L. Screening for Brain Fog: Is the Montreal Cognitive Assessment an Effective Screening Tool for Neurocognitive Complaints Post-COVID-19? Gen. Hosp. Psychiatry 2022, 78, 80–86. [Google Scholar] [CrossRef]
- Ferrando, S.J.; Dornbush, R.; Lynch, S.; Shahar, S.; Klepacz, L.; Karmen, C.L.; Chen, D.; Lobo, S.A.; Lerman, D. Neuropsychological, Medical, and Psychiatric Findings After Recovery from Acute COVID-19: A Cross-Sectional Study. J. Acad. Consult. Liaison Psychiatry 2022, 63, 474–484. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention CDC Coronavirus Disease 2019 (COVID-19)—Symptoms. Available online: http://www.CDC.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 1 November 2023).
- Graf, C. The Lawton Instrumental Activities of Daily Living Scale. Am. J. Nurs. 2008, 108, 52–62. [Google Scholar] [CrossRef]
- Chalder, T.; Berelowitz, G.; Pawlikowska, T.; Watts, L.; Wessely, S.; Wright, D.; Wallace, E.P. Development of a Fatigue Scale. J. Psychosom. Res. 1993, 37, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Blevins, C.A.; Weathers, F.W.; Davis, M.T.; Witte, T.K.; Domino, J.L. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. J. Trauma. Stress. 2015, 28, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092. [Google Scholar] [CrossRef] [PubMed]
- Endicott, J.; Nee, J.; Harrison, W.; Blumenthal, R. Quality of Life Enjoyment and Satisfaction Questionnaire: A New Measure. Psychopharmacol. Bull. 1993, 29, 321–326. [Google Scholar] [PubMed]
- Holdnack, J.A.; Drozdick, L.W. Advanced Clinical Solutions for WAIS-IV and WMS-IV. In Clinical and Interpretive Manual; Pearson Assessments: San Antonio, TX, USA, 2009; pp. 109–118. [Google Scholar]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary Clinical Validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W. Neuropsychological Assessment, 4th ed.; Hannay, H.J., Fischer, J.S., Eds.; Oxford University Press: Oxford, UK; New York, NY, USA, 2004; ISBN 978-0-19-511121-7. [Google Scholar]
- Gladsjo, J.A.; Schuman, C.C.; Evans, J.D.; Peavy, G.M.; Miller, S.W.; Heaton, R.K. Norms for Letter and Category Fluency: Demographic Corrections for Age, Education, and Ethnicity. Assessment 1999, 6, 147–178. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.J.; Freshwater, S.M.; Zarabeth, G.; University, N.S. Stroop Color and Word Test Children’s Version for Ages 5–14: A Manual for Clinical and Experimental Uses; Stoelting: Wood Dale, IL, USA, 2003. [Google Scholar]
- Miller, E.N.; Seines, O.A.; McArthur, J.C.; Satz, P.; Becker, J.T.; Cohen, B.A.; Sheridan, K.; Machado, A.M.; Gorp, W.G.V.; Visscher, B. Neuropsychological Performance in HIV-1-Infected Homosexual Men: The Multicenter AIDS Cohort Study (MACS). Neurology 1990, 40, 197. [Google Scholar] [CrossRef]
- IBM. SPSS Statistics for Windows; Version 29; IBM: New York, NY, USA, 2022. [Google Scholar]
- de Ruijter, N.S.; Schoonbrood, A.M.G.; van Twillert, B.; Hoff, E.I. Anosognosia in Dementia: A Review of Current Assessment Instruments. Alzheimers Dement. (Amst.) 2020, 12, e12079. [Google Scholar] [CrossRef]
- De Carolis, A.; Cipollini, V.; Corigliano, V.; Comparelli, A.; Sepe-Monti, M.; Orzi, F.; Ferracuti, S.; Giubilei, F. Anosognosia in People with Cognitive Impairment: Association with Cognitive Deficits and Behavioral Disturbances. Dement. Geriatr. Cogn. Disord. Extra 2015, 5, 42–50. [Google Scholar] [CrossRef]
- Petersen, J.Z.; Porter, R.J.; Miskowiak, K.W. Clinical Characteristics Associated with the Discrepancy between Subjective and Objective Cognitive Impairment in Depression. J. Affect. Disord. 2019, 246, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lin, K.; Rao, D.; Dang, Y.; Ouyang, H.; Guo, Y.; Ma, J.; Chen, J. Neuropsychological Performance in Bipolar I, Bipolar II and Unipolar Depression Patients: A Longitudinal, Naturalistic Study. J. Affect. Disord. 2012, 136, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Mouta, S.; Fonseca Vaz, I.; Pires, M.; Ramos, S.; Figueiredo, D. What Do We Know about Pseudodementia? Gen. Psych. 2023, 36, e100939. [Google Scholar] [CrossRef]
- Farooqi, M.; Khan, A.; Jacobs, A.; D’Souza, V.; Consiglio, F.; Karmen, C.L.; Dornbush, R.; Hasnat, G.S.; Ferrando, S.J. Examining the Long-Term Sequelae of SARS-CoV2 Infection in Patients Seen in an Outpatient Psychiatric Department. NDT 2022, 18, 1259–1268. [Google Scholar] [CrossRef]
- Smith, P.B. Response Bias(Es). In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 5539–5540. ISBN 978-94-007-0752-8. [Google Scholar]
Measure | Total Sample (n = 74) | No Cognitive Complaints (n = 51) | Cognitive Complaints (n = 23) | Statistic, df, p Value |
---|---|---|---|---|
Sociodemographic Characteristics | ||||
Age (m, SD) | 43.49 (15.06) | 40.39 (14.77) | 50.35 (13.61) | t = −2.748; df = 72; p = 0.008 |
Female (N, (%)) | 52 (70%) | 35 (69%) | 17 (74%) | Chi sq = 0.212, df = 1, p = 0.65 |
Ethnic Minority (N (%)) | 26 (35%) | 17 (33%) | 9 (39%) | Chi sq =0.234, df 1, p = 0.63 |
Years of Education (m, SD) | 16.05 (2.20) | 16.31 (2.13) | 15.48 (2.27) | t = 1.529, df 72, p = 0.13 |
In a Relationship | 48 (65%) | 34 (67%) | 14 (61%) | Chi sq = 0.23, df 1, p = 0.6229 |
Employed or Student | 59 (80%) | 42 (82%) | 17 (74%) | Chi sq = 0.70, df = 1, p = 0.40 |
Medical Characteristics | ||||
Days between acute illness and assessment (m, SD) | 222.4 (134.3) | 208.90 (136.3) | 251.04 (127.9) | t = −1.25; df = 72; p = 0.21 |
# of medical comorbidities (m, SD) | 1.53 (1.50) | 1.25 (1.34) | 2.13 (1.69) | t = −2.40; df = 72; p = 0.019 |
Seeking medical care for PASC (N, %) | 46 (62%) | 26 (51%) | 20 (87%) | Chi sq = 8.72, df = 1, p = 0.003 |
Peak COVID symptoms (m, SD) | 16.64 (6.24) | 14.45 (5.48) | 21.48 (5.03) | t = −5.235; df = 72; p < 0.001 |
Appt 1 COVID symptoms (m, SD) | 6.45 (4.78) | 4.98 (4.15) | 9.7 (4.55) | t = −4.391; df 72; p < 0.001 |
Chalder Fatigue Scale, (N = 73) (m, SD) | 21.73 (7.66) | N = 50, 19.22 (7.48) | N = 23, 27.17 (4.69) | t = −5.521, df 64.211, p < 0.001 |
Chalder criteria for clinically significant fatigue (N = 73) (N, %) | 44 (60.3%) | 22 (43%) | 22 (95.7%) | Chi sq = 18.141, df 2, p < 0.001 |
Psychiatric Characteristics | ||||
Prior psychiatric history (N, %) | 31 (42%) | 18 (35%) | 13 (57%) | Chi sq = 2.934, df 1, p = 0.087 |
PHQ−9 Score (m, SD) | 10.2 (6.19) | 7.82 (5.30) | 15.48 (4.58) | t = −5.985; df 72; p < 0.001 |
Met PHQ−9 criteria for clinically significant depression (N, %) | 39 (53%) | 18 (35%) | 21 (91%)) | Chi sq = 19.949, df 1, Fisher’s exact p < 0.001 |
GAD, (m, SD) | 7.35 (5.51) | 5.20 (4.10) | 12.13 (5.29) | t = −6.138, df 72; p < 0.001 |
Met GAD−7 criteria for clinically significant anxiety (N, %) | 23 (31%) | 8 (16%) | 15 (65%) | Chi sq = 18.155, df 1, Fisher’s exact p <0.001 |
PCL−5 score (m, SD) | M = 21.81 SD = 15.202 | M = 16.12 SD = 11.554 | M = 34.43 SD = 14.890 | t = −5.757; df 72; p < 0.001 |
Met PCL- 5 criteria for clinically significant PTSD symptoms (m, SD) | 18 (24%) | 4 (8%) | 14 (61%) | Chi sq = 24.213 Df = 1, Fisher’s exact p <0.001 |
IADL (m, SD) | N = 73 7.48 (1.14) | N = 50 7.76 (0.77) | N = 23 6.87 (1.55) | t = 2.616, df = 27.158, p = 0.014 |
Neuropsychological Characteristics | ||||
TOPF, (m, SD) | 109.51 (12.06) | 109.59 (13.14) | 109.35 (9.48) | t = 0.079; df 72; p = 0.937 |
Normal NP Performance (N, %) | 30 (41%) | 25 (49%) | 5 (22%) | |
Low or Extremely Low NP performance (N, %) | 44 (59%) | 26 (51%) | 18 (78%) | Chi sq = 4.894 df = 1, p = 0.027 |
Extremely Low NP Performance only (N, %) | 15 (20%) | 8 (16%) | 7 (30%) | Chi sq = 2.133 df = 1 Fisher’s exact p = 0.211 |
RBANS Total, (m, SD) | 93.65 (4.21) | 97.88 (11.97) | 84.26 (14.52) | t = 4.235, df = 72, p < 0.001 |
RBANS Immediate Memory, (m, SD) | 88.57 (16.54) | 92.73 (14.33) | 79.35 (17.67) | t = 3.453, df 72, p < 0.001 |
RBANS Visuospatial, (m, SD) | 104.95 (16.38) | 108.67 (12.60) | 96.7 (20.65) | t = 2.573 df = 29.634 p = 0.015 |
RBANS Language, (m, SD) | M = 94.20 SD = 14.387 | M = 96.92 SD = 15.324 | M = 88.17 SD = 9.898 | t = 2.507, df 72, p = 0.014 |
RBANS SMF | t = 3.950, df = 72, p < 0.001 | |||
RBANS Attention, (m, SD) | 97.39 (15.34) | 101.08 (14.70) | 89.22 (13.74) | t = 3.277, df 72, p = 0.002 |
RBANS Delayed Memory, (m, SD) | 92.16 (15.71) | 94.29 (14.41) | 87.43 (13.74) | t = 1.763, df 72, p = 0.082 |
Trails A, (m, SD) | 46.30 (11.16) | 48.2 (11.16) | 42.09 (10.17) | t = 2.238, df 72, p = 0.028 |
Trails B, (m, SD) | 44.51 (11.39) | M = 46.86 SD = 10.214 | M = 39.30 SD = 12.327 | t = 2.760, df 72, p = 0.007 |
Letter Fluency, (m, SD) | N = 73 47.30 (10.58) | N = 50 47.74 (10.63) | 46.35 (9.213) | t = 0.541, df = 71, p = 0.590 |
Category Fluency, (m, SD) | 48.64 (10.58) | 49.31 (10.97) | 47.13 (9.71) | t = 0.820, df = 72, p = 0.415 |
Stroop CW, (m, SD) | 47.169 (11.61) | 49.29 (11.77) | 42.46 (9.92) | t = 2.420, df= 72, p = 0.018 |
Total MOCA, (m, SD) | 25.74 (2.65) | 26.39 (2.65) | 24.30 (2.06) | t = 3.351, df = 72, p = 0.001 |
PAOFI Domain | Memory | Language | Cognitive/Executive | |
---|---|---|---|---|
Measurement Domain | ||||
Cognitive Complaints | ||||
PAOFI Memory | - | 0.79 (r2 = 0.62) 1 | 0.84 (r2 = 0.71) 1 | |
PAOFI Language | - | - | 0.79 (r2 = 0.62) 1 | |
PAOFI Cognitive/Executive | - | - | - | |
Sociodemographic | ||||
Age | 0.28 (r2 = 0.08) 3 | 0.13 (r2 = 0.02) 4 | 0.31 (r2 = 0.10) 2 | |
Psychiatric | ||||
PHQ-9 | 0.68 (r2 = 0.46) 1 | 0.63 (r2 = 0.40) 1 | 0.72 (r2 = 0.52) 1 | |
GAD-7 | 0.63 (r2 = 0.40) 1 | 0.62 (r2 = 0.38) 1 | 0.60 (r2 = 0.36) 1 | |
PCL-5 | 0.65 (r2 = 0.42) 1 | 0.60 (r2 = 0.36) 1 | 0.61 (r2 = 0.37) 1 | |
Medical | ||||
Acute COVID symptoms | 0.48 (r2 = 0.23) 1 | 0.45 (r2 = 0.20) 1 | 0.45 (r2 = 0.20) 1 | |
Appt. 1 COVID symptoms | 0.57 (r2 = 0.32) 1 | 0.58 (r2 = 0.34) 1 | 0.62 (r2 = 0.38) 1 | |
Chalder Fatigue Scale | 0.64 (r2 = 0.41) 1 | 0.66 (r2 = 0.44) 1 | 0.66 (r2 = 0.44) 1 | |
IADL | −0.41 (r2 = 0.17) 1 | −0.28 (r2 = 0.08) 3 | −0.53 (r2 = 0.28) 1 | |
Neuropsychological | ||||
TOPF | −0.04 (r2 = 0.002) 4 | −0.06 (r2 = 0.004) 4 | −0.07 (r2 = 0.005) 4 | |
RBANS Total Scale | −0.45 (r2 = 0.20) 1 | −0.36 (r2 = 0.13) 2 | −0.39 (r2 = 0.15) 1 | |
RBANS Immediate Memory | −0.34 (r2 = 0.12) 2 | −0.32 (r2 = 0.10) 2 | −0.36 (r2 = 0.13) 1 | |
RBANS Visuospatial/Constructional | −0.38 (r2 = 0.14) 1 | −0.29 (r2 = 0.08) 3 | −0.32 (r2 = 0.10) 2 | |
BBANS Delayed Memory | −0.29 (r2 = 0.08) 3 | −0.21 (r2 = 0.04) 4 | −0.26 (r2 = 0.07) 3 | |
RBANS Language | −0.19 (r2 = 0.04) 4 | −0.18 (r2 = 0.03) 4 | −0.13 (r2 = 0.02) 1 | |
RBANS Attention | −0.39 (r2 = 0.15) 1 | −0.28 (r2 = 0.08) 3 | −0.30 (r2 = 0.09) 2 | |
Trails A | −0.27 (r2 = 0.07) 3 | −0.18 (r2 = 0.03) 4 | −0.25 (r2 = 0.06) 3 | |
Trails B | −0.37 (r2 = 0.14) 1 | −0.32 (r2 = 0.10) 2 | −0.32 (r2 = 0.10) 2 | |
Letter Fluency | −0.11 (r2 = 0.01) 4 | −0.05 (r2 = 0.003) 4 | −0.07 (r2 = 0.005) 4 | |
Animal Fluency | −005 (r2 = 0.003) 4 | −0.06 (r2 = 0.004) 4 | −0.11 (r2 = 0.01) 4 | |
Stroop Color/Word | −0.44 (r2 = 0.19) 1 | −0.30 (r2 = 0.09) 2 | −0.39 (r2 = 0.15) 1 | |
MOCA | −0.50 (r2 = 0.25) 1 | −0.32 (r2 = 0.10) 2 | −0.48 (r2 = 0.23) 1 |
Variable | Odds Ratio | Wald | B | 95% Confidence Interval (Lower Bound) | 95% Confidence Interval (Upper Bound) | p-Value |
---|---|---|---|---|---|---|
Peak COVID symptom score | 1.321 | 6.622 | 0.279 | 1.069 | 1.634 | 0.010 |
PHQ-9 score | 1.363 | 5.604 | 0.309 | 1.055 | 1.760 | 0.018 |
RBANS Attention | 0.912 | 4.679 | −0.092 | 0.840 | 0.991 | 0.031 |
Trails A | 0.890 | 3.967 | −0.116 | 0.794 | 0.998 | 0.046 |
Age | Removed by backward stepwise (conditional) elimination | |||||
Number of Medical Comorbidities | ||||||
Appt. 1 COVID symptom score | ||||||
Chalder score | ||||||
PCL-5 Score | ||||||
GAD-7 | ||||||
RBANS immediate memory score | ||||||
RBANS Visuospatial | ||||||
RBANS Language | ||||||
Trails B | ||||||
Stroop CW | ||||||
MoCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muschel, C.; Lynch, S.T.; Dornbush, R.; Klepacz, L.; Shahar, S.; Ferrando, S.J. Frequency, Characteristics, and Correlates of Cognitive Complaints in a Cohort of Individuals with Post-Acute Sequelae of COVID-19. Brain Sci. 2024, 14, 3. https://doi.org/10.3390/brainsci14010003
Muschel C, Lynch ST, Dornbush R, Klepacz L, Shahar S, Ferrando SJ. Frequency, Characteristics, and Correlates of Cognitive Complaints in a Cohort of Individuals with Post-Acute Sequelae of COVID-19. Brain Sciences. 2024; 14(1):3. https://doi.org/10.3390/brainsci14010003
Chicago/Turabian StyleMuschel, Cayla, Sean T. Lynch, Rhea Dornbush, Lidia Klepacz, Sivan Shahar, and Stephen J. Ferrando. 2024. "Frequency, Characteristics, and Correlates of Cognitive Complaints in a Cohort of Individuals with Post-Acute Sequelae of COVID-19" Brain Sciences 14, no. 1: 3. https://doi.org/10.3390/brainsci14010003
APA StyleMuschel, C., Lynch, S. T., Dornbush, R., Klepacz, L., Shahar, S., & Ferrando, S. J. (2024). Frequency, Characteristics, and Correlates of Cognitive Complaints in a Cohort of Individuals with Post-Acute Sequelae of COVID-19. Brain Sciences, 14(1), 3. https://doi.org/10.3390/brainsci14010003