Dopaminergic Epistases in Schizophrenia
Abstract
:1. Introduction
1.1. Dopamine Receptors
1.2. Metabolizing Enzymes Genes
1.3. Synthesizing Enzymes
1.4. Dopamine Transporters
2. Methods
2.1. Selection Criteria
2.2. Identifying Studies
- 1.
- each combination of 2 of the 14 genes under review (totaling 91 different complex keywords) connected through the operator “AND”; the complex keywords associated with each gene are as follows:
- (DRD1 OR “dopamine receptor D1” OR “dopamine D1 receptor”)
- (DRD2 OR “dopamine receptor D2” OR “dopamine D2 receptor”)
- (DRD3 OR “dopamine receptor D3” OR “dopamine D3 receptor”)
- (DRD4 OR “dopamine receptor D4” OR “dopamine D4 receptor”)
- (DRD5 OR “dopamine receptor D5” OR “dopamine D5 receptor”)
- (COMT OR Catechol-O-Methyltransferase)
- (“MAO-A” OR “monoamine oxidase A” OR “MAO A” OR MAOA)
- (“MAO-B” OR “monoamine oxidase B” OR “MAO B” OR MAOB)
- (DBH OR “Dopamine beta-hydroxylase” OR “dopamine beta-monooxygenase”)
- (TH OR “tyrosine hydroxylase” OR “tyrosine 3-monooxigenase”)
- (DDC OR “dopa decarboxylase” OR “tryptophan decarboxylase” OR “Aromatic L-amino acid decarboxylase” OR AADC OR AAAD OR “5-hydroxytryptophan decarboxylase”)
- (DAT OR “dopamine transporter” OR “dopamine active transporter” OR SLC6A3 OR “Solute Carrier Family 6 Member 3” OR “DA Transporter”)
- (VMAT1 OR “Vesicular monoamine transporter 1” OR “chromaffin granule amine transporter” OR CGAT OR “solute carrier family 18 member 1” OR SLC18A1 OR “VMAT 1” OR “VMAT-1”)
- (VMAT2 OR “Vesicular monoamine transporter 2” OR “solute carrier family 18 member 2” OR SLC18A2 OR “VMAT 2” OR “VMAT-2”)
- 2.
- psychosis: “schizo* OR psychosis OR psychotic”,
- 3.
- risk: “vulnerability OR predisposition OR susceptibility OR risk OR proneness”, and
- 4.
- epistatic interaction: “epistasis OR “genexgene” OR “gene-gene” OR interact* OR epistatic OR GxG”,
2.3. Data Collection and Analysis
3. Results
3.1. Characteristics of Studies
3.2. Synthesis–Receptor–Transporter–Metabolism Gene Complex Interaction
3.3. Receptor-Metabolism Gene–Gene Interaction
3.4. Receptor–Transporter Gene–Gene Interaction
3.5. Receptor-Synthesis Gene–Gene Interaction
3.6. Transporter-Metabolism Gene–Gene Interaction
3.7. Synthesis-Metabolism Gene–Gene Interaction
3.8. Transporters Gene–Gene Interaction
3.9. Receptor Gene–Gene Interaction
3.10. Metabolism Gene–Gene Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hany, M.; Rehman, B.; Azhar, Y.; Chapman, J. Schizophrenia; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539864/ (accessed on 15 November 2023).
- Popovic, D.; Schmitt, A.; Kaurani, L.; Senner, F.; Papiol, S.; Malchow, B.; Fischer, A.; Schulze, T.G.; Koutsouleris, N.; Falkai, P. Childhood Trauma in Schizophrenia: Current Findings and Research Perspectives. Front. Neurosci. 2019, 13, 274. [Google Scholar]
- Corcoran, C.; Mujica-Parodi, L.; Yale, S.; Leitman, D.; Malaspina, D. Could Stress Cause Psychosis in Individuals Vulnerable to Schizophrenia? CNS Spectr. 2002, 7, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.-G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; et al. The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue. Front. Psychiatry 2014, 5, 47. [Google Scholar]
- Shen, L.H.; Liao, M.H.; Tseng, Y.C. Recent Advances in Imaging of Dopaminergic Neurons for Evaluation of Neuropsychiatric Disorders. J. Biomed. Biotechnol. 2012, 2012, 259349. [Google Scholar] [CrossRef]
- Johnson, E.C.; Border, R.; Melroy-Greif, W.E.; de Leeuw, C.; Ehringer, M.A.; Keller, M.C. No evidence that schizophrenia candidate genes are more associated with schizophrenia than non-candidate genes. Biol. Psychiatry 2017, 82, 702–708. [Google Scholar] [CrossRef]
- Bertolucci-D’Angio, M.; Serrano, A.; Scatton, B. Mesocorticolimbic dopaminergic systems and emotional states. J. Neurosci. Methods 1990, 34, 135–142. [Google Scholar] [CrossRef]
- Kapur, S. Psychosis as a State of Aberrant Salience: A Framework Linking Biology, Phenomenology, and Pharmacology in Schizophrenia. Am. J. Psychiatry 2003, 160, 13–23. [Google Scholar] [CrossRef]
- Tzschentke, T.M. Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Prog. Neurobiol. 2001, 63, 241–320. [Google Scholar]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine Receptors: From Structure to Function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar]
- Seamans, J.K.; Yang, C.R. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 2004, 74, 1–58. [Google Scholar]
- Jones-Tabah, J.; Mohammad, H.; Paulus, E.G.; Clarke, P.B.S.; Hébert, T.E. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front. Cell Neurosci. 2022, 15, 806618. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kato, M.; Takano, H.; Arakawa, R.; Okumura, M.; Otsuka, T.; Kodaka, F.; Hayashi, M.; Okubo, Y.; Ito, H.; et al. Differential Contributions of Prefrontal and Hippocampal Dopamine D1 and D2 Receptors in Human Cognitive Functions. J. Neurosci. 2008, 28, 12032–12038. [Google Scholar] [CrossRef] [PubMed]
- Sawaguchi, T.; Goldman-Rakic, P.S. D1 Dopamine Receptors in Prefrontal Cortex: Involvement in Working Memory. Science 1991, 251, 947–950. [Google Scholar] [CrossRef]
- Bhatia, A.; Lenchner, J.R.; Saadabadi, A. Biochemistry, Dopamine Receptors; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538242/ (accessed on 16 November 2023).
- Rybakowski, J.K.; Borkowska, A.; Czerski, P.M.; Kapelski, P.; Dmitrzak-Weglarz, M.; Hauser, J. An association study of dopamine receptors polymorphisms and the Wisconsin Card Sorting Test in schizophrenia. J. Neural Transm. 2005, 112, 1575–1582. [Google Scholar] [CrossRef]
- Pan, Y.; Yao, J.; Wang, B. Association of dopamine D1 receptor gene polymorphism with schizophrenia: A meta-analysis. Neuropsychiatr. Dis. Treat. 2014, 10, 1133–1139. [Google Scholar]
- Lee, K.Y.; Joo, E.J.; Ji, Y.I.; Kim, D.-H.; Park, J.; Chung, I.-W.; Lee, S.I.; Joo, Y.H.; Ahn, Y.M.; Song, J.Y.; et al. Associations between DRDs and schizophrenia in a Korean population: Multi-stage association analyses. Exp. Mol. Med. 2011, 43, 44–52. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, C.X.; Wang, Q.; Zhu, Y.-S.; Zhao, Y.; Huang, J.; Zhang, H.-B.; Gao, C.-G.; Li, S.-B. An association study between dopamine D1 receptor gene polymorphisms and the risk of schizophrenia. Brain Res. 2011, 1420, 106–113. [Google Scholar] [CrossRef]
- Lai, I.C.; Mo, G.H.; Chen, M.L.; Chen, J.-Y.; Liao, D.-L.; Bai, Y.-M.; Lin, C.-C.; Chen, T.-T. Analysis of genetic variations in the dopamine D1 receptor (DRD1) gene and antipsychotics-induced tardive dyskinesia in schizophrenia. Eur. J. Clin. Pharmacol. 2011, 67, 383–388. [Google Scholar] [CrossRef]
- Novak, G.; LeBlanc, M.; Zai, C.; Shaikh, S.; Renou, J.; DeLuca, V.; Bulgin, N.; Kennedy, J.L.; Le Foll, B. Association of polymorphisms in the BDNF, DRD1 and DRD3 genes with tobacco smoking in schizophrenia. Ann. Hum. Genet. 2010, 74, 291–298. [Google Scholar] [CrossRef]
- Grandy, D.K.; Litt, M.; Allen, L.; Bunzow, J.R.; Marchionni, M.; Makam, H.; Reed, L.; Magenis, R.E.; Civelli, O. The human dopamine D2 receptor gene is located on chromosome 11 at q22–q23 and identifies a TaqI RFLP. Am. J. Hum. Genet. 1989, 45, 778–785. [Google Scholar]
- Mishra, A.; Singh, S.; Shukla, S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson’s disease. J. Exp. Neurosci. 2018, 12, 1179069518779829. [Google Scholar] [CrossRef] [PubMed]
- Zakzanis, K.K.; Hansen, K.T. Dopamine D2 densities and the schizophrenic brain. Schizophr. Res. 1998, 32, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Pantelis, C.; Papadimitriou, G.N.; Papiol, S.; Parkhomenko, E.; Pato, M.T.; Paunio, T.; O’Donovan, M.C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar]
- Serretti, A.; Macciardi, F.; Smeraldi, E. Dopamine receptor D2 Ser/Cys311 variant associated with disorganized symptomatology of schizophrenia. Schizophr. Res. 1998, 34, 207–210. [Google Scholar] [CrossRef]
- Serretti, A.; Lattuada, E.; Lorenzi, C.; Lilli, R.; Smeraldi, E. Dopamine receptor D2 Ser/Cys 311 variant is associated with delusion and disorganization symptomatology in major psychoses. Mol. Psychiatry 2000, 5, 270–274. [Google Scholar] [CrossRef]
- Habibzadeh, P.; Nemati, A.; Dastsooz, H.; Taghipour-Sheshdeh, A.; Paul, P.M.; Sahraian, A.; Faghihi, M.A. Investigating the association between common DRD2/ANKK1 genetic polymorphisms and schizophrenia: A meta-analysis. J. Genet. 2021, 100, 59. [Google Scholar] [CrossRef]
- Glatt, S.J.; Faraone, S.V.; Tsuang, M.T. Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol. Psychiatry 2003, 8, 911–915. [Google Scholar] [CrossRef]
- Sokoloff, P.; Giros, B.; Martres, M.P.; Bouthenet, M.L.; Schwartz, J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990, 347, 146–151. [Google Scholar] [CrossRef]
- Zapata, A.; Shippenberg, T.S. D3 receptor ligands modulate extracellular dopamine clearance in the nucleus accumbens. J. Neurochem. 2002, 81, 1035–1042. [Google Scholar] [CrossRef]
- Jönsson, E.G.; Kaiser, R.; Brockmöller, J.; Nimgaonkar, V.L.; Crocq, M.A. Meta-analysis of the dopamine D3 receptor gene (DRD3) Ser9Gly variant and schizophrenia. Psychiatr. Genet. 2004, 14, 9–12. [Google Scholar] [CrossRef]
- Lundstrom, K.; Turpin, M.P. Proposed schizophrenia-related gene polymorphism: Expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem. Biophys. Res. Commun. 1996, 225, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Bombin, I.; Arango, C.; Mayoral, M.; Castro-Fornieles, J.; Gonzalez-Pinto, A.; Gonzalez-Gomez, C.; Moreno, M.; Parellada, M.; Baeza, I.; Graell, M.; et al. DRD3, but not COMT or DRD2, genotype affects executive functions in healthy and first-episode psychosis adolescents. Am. J. Med. Genet. Part. B Neuropsychiatr. Genet. 2008, 147B, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.L.; Wu, X.; Zhang, J.J.; Wang, B.J.; Yao, J. A meta-analysis of data associating DRD4 gene polymorphisms with schizophrenia. Neuropsychiatr. Dis. Treat. 2018, 14, 153–164. [Google Scholar] [CrossRef] [PubMed]
- McGeary, J. The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: A review. Pharmacol. Biochem. Behav. 2009, 93, 222–229. [Google Scholar] [CrossRef]
- Ferré, S.; Belcher, A.M.; Bonaventura, J.; Quiroz, C.; Sánchez-Soto, M.; Casadó-Anguera, V.; Cai, N.-S.; Moreno, E.; Boateng, C.A.; Keck, T.M.; et al. Functional and pharmacological role of the dopamine D4 receptor and its polymorphic variants. Front. Endocrinol. 2022, 13, 1014678. [Google Scholar] [CrossRef]
- Lung, F.W.; Shu, B.C.; Kao, W.T.; Chen, C.N.; Ku, Y.C.; Tzeng, D.S. Association of DRD4 uVNTR and TP53 codon 72 polymorphisms with schizophrenia: A case-control study. BMC Med. Genet. 2009, 10, 147. [Google Scholar] [CrossRef]
- Rinetti, G.; Camarena, B.; Cruz, C.; Apiquián, R.; Fresán, A.; Páez, F.; Nicolini, H. Dopamine D4 receptor (DRD4) gene polymorphism in the first psychotic episode. Arch. Med. Res. 2001, 32, 35–38. [Google Scholar] [CrossRef]
- Carr, G.V.; Maltese, F.; Sibley, D.R.; Weinberger, D.R.; Papaleo, F. The Dopamine D5 Receptor Is Involved in Working Memory. Front. Pharmacol. 2017, 8, 666. [Google Scholar] [CrossRef]
- Pal, P.; Mihanović, M.; Molnar, S.; Xi, H.; Sun, G.; Guha, S.; Jeran, N.; Tomljenović, A.; Malnar, A.; Missoni, S.; et al. Association of Tagging Single Nucleotide Polymorphisms on 8 Candidate Genes in Dopaminergic Pathway with Schizophrenia in Croatian Population. Croat. Med. J. 2009, 50, 361–369. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, M.; Pang, H.; Xu, X.M.; Wang, B.J. Relationship between genetic polymorphisms in the DRD5 gene and paranoid schizophrenia in northern Han Chinese. Genet. Mol. Res. 2014, 13, 1609–1618. [Google Scholar] [CrossRef]
- Muir, W.J.; Thomson, M.L.; McKeon, P.; Mynett-Johnson, L.; Whitton, C.; Evans, K.L.; Porteous, D.J.; Blackwood, D.H.R. Markers close to the dopamine D5 receptor gene (DRD5) show significant association with schizophrenia but not bipolar disorder. Am. J. Med. Genet. 2001, 105, 152–158. [Google Scholar] [PubMed]
- Opmeer, E.M.; Kortekaas, R.; Aleman, A. Depression and the role of genes involved in dopamine metabolism and signalling. Prog. Neurobiol. 2010, 92, 112–133. [Google Scholar] [PubMed]
- Käenmäki, M.; Tammimäki, A.; Myöhänen, T.; Pakarinen, K.; Amberg, C.; Karayiorgou, M.; Gogos, J.A.; Männistö, P.T. Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J. Neurochem. 2010, 114, 1745–1755. [Google Scholar] [CrossRef] [PubMed]
- Tunbridge, E.M.; Farrell, S.M.; Harrison, P.J.; Mackay, C.E. Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest. NeuroImage 2013, 68, 49–54. [Google Scholar] [PubMed]
- White, T.P.; Loth, E.; Rubia, K.; Krabbendam, L.; Whelan, R.; Banaschewski, T.; Barker, G.J.; Bokde, A.L.W.; Büchel, C.; Conrod, P.; et al. Sex differences in COMT polymorphism effects on prefrontal inhibitory control in adolescence. Neuropsychopharmacology 2014, 39, 2560–2569. [Google Scholar]
- Correlation of the COMT Val158Met Polymorphism with Latitude and a Hunter-Gather Lifestyle Suggests Culture–Gene Coevolution and Selective Pressure on Cognition Genes due to Climate. Available online: https://www.jstage.jst.go.jp/article/ase/121/3/121_130731/_html/-char/en (accessed on 16 November 2023).
- Wang, Y.; Fang, Y.; Shen, Y.; Xu, Q. Analysis of association between the catechol-O-methyltransferase (COMT) gene and negative symptoms in chronic schizophrenia. Psychiatry Res. 2010, 179, 147–150. [Google Scholar] [CrossRef]
- Madzarac, Z.; Tudor, L.; Sagud, M.; Nedic Erjavec, G.; Mihaljevic Peles, A.; Pivac, N. The Associations between COMT and MAO-B Genetic Variants with Negative Symptoms in Patients with Schizophrenia. Curr. Issues Mol. Biol. 2021, 43, 618–636. [Google Scholar] [CrossRef]
- Assary, E.; Vincent, J.P.; Keers, R.; Pluess, M. Gene-environment interaction and psychiatric disorders: Review and future directions. Semin. Cell Dev. Biol. 2018, 77, 133–143. [Google Scholar]
- Schlüter, T.; Winz, O.; Henkel, K.; Eggermann, T.; Mohammadkhani-Shali, S.; Dietrich, C.; Heinzel, A.; Decker, M.; Cumming, P.; Zerres, K.; et al. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. NeuroImage 2016, 125, 378–385. [Google Scholar]
- Kim, S.K.; Park, H.J.; Seok, H.; Jeon, H.S.; Chung, J.-H.; Kang, W.S.; Kim, J.W.; Yu, G.I.; Shin, D.H. Association study between monoamine oxidase A (MAOA) gene polymorphisms and schizophrenia: Lack of association with schizophrenia and possible association with affective disturbances of schizophrenia. Mol. Biol. Rep. 2014, 41, 3457–3464. [Google Scholar]
- Qiu, H.T.; Meng, H.Q.; Song, C.; Xiu, M.H.; Chen, D.C.; Zhu, F.Y.; Wu, G.Y.; Kosten, T.A.; Kosten, T.R.; Zhang, X.Y. Association between monoamine oxidase (MAO)-A gene variants and schizophrenia in a Chinese population. Brain Res. 2009, 1287, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Culej, J.; Gabaj, N.N.; Štefanović, M.; Karlović, D. Prediction of schizophrenia using MAOA-uVNTR polymorphism: A case-control study. Indian. J. Psychiatry 2020, 62, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Leko, M.B.; Perković, M.N.; Erjavec, G.N.; Klepac, N.; Štrac, D.; Borovečki, F.; Pivac, N.; Hof, P.R.; Šimić, G. Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ε4 Allele in Alzheimer’s Disease. Curr. Alzheimer Res. 2021, 18, 585–594. [Google Scholar]
- An, H.; Heo, J.Y.; Lee, C.J.; Nam, M.H. The Pathological Role of Astrocytic MAOB in Parkinsonism Revealed by Genetic Ablation and Over-expression of MAOB. Exp. Neurobiol. 2021, 30, 113–119. [Google Scholar] [CrossRef]
- Wei, Y.L.; Li, C.X.; Li, S.B.; Liu, Y.; Hu, L. Association study of monoamine oxidase A/B genes and schizophrenia in Han Chinese. Behav. Brain Funct. 2011, 7, 42. [Google Scholar] [CrossRef]
- Sun, J.; Jayathilake, K.; Zhao, Z.; Meltzer, H.Y. Investigating association of four gene regions (GABRB3, MAOB, PAH, and SLC6A4) with five symptoms in schizophrenia. Psychiatry Res. 2012, 198, 202–206. [Google Scholar] [CrossRef]
- Yang, B.Z.; Balodis, I.M.; Lacadie, C.M.; Xu, J.; Potenza, M.N. A Preliminary Study of DBH (Encoding Dopamine Beta-Hydroxylase) Genetic Variation and Neural Correlates of Emotional and Motivational Processing in Individuals with and Without Pathological Gambling. J. Behav. Addict. 2016, 5, 282–292. [Google Scholar] [CrossRef]
- Randesi, M.; van den Brink, W.; Levran, O.; Yuferov, V.; Blanken, P.; van Ree, J.M.; Ott, J.; Kreek, M.J. Dopamine gene variants in opioid addiction: Comparison of dependent patients, nondependent users and healthy controls. Pharmacogenomics 2018, 19, 95–104. [Google Scholar] [CrossRef]
- Zhou, N.; Yu, Q.; Li, X.; Yu, Y.; Kou, C.; Li, W.; Xu, H.; Luo, X.; Zuo, L.; Kosten, T.R.; et al. Association of the dopamine β-hydroxylase 19 bp insertion/deletion polymorphism with positive symptoms but not tardive dyskinesia in schizophrenia. Hum. Psychopharmacol. 2013, 28, 230–237. [Google Scholar] [CrossRef]
- Dai, D.; Wang, Y.; Yuan, J.; Zhou, X.; Jiang, D.; Li, J.; Zhang, Y.; Yin, H.; Duan, S. Meta-analyses of 10 polymorphisms associated with the risk of schizophrenia. Biomed. Rep. 2014, 2, 729–736. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, Y.; Li, W.; He, J.; Li, J.; Yang, X.; Mao, P.; Cubells, J.F.; Tang, Y.-L. Associations between the DBH gene, plasma dopamine β-hydroxylase activity and cognitive measures in Han Chinese patients with schizophrenia. Schizophr. Res. 2018, 193, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kukshal, P.; Chowdari, K.V.; Srivastava, V.; Wood, J.; McClain, L.; Bhatia, T.; Bhagwat, A.; Deshpande, S.N.; Nimgaonkar, V.L.; Thelma, B. Dopaminergic gene polymorphisms and cognitive function in a north Indian schizophrenia cohort. J. Psychiatr. Res. 2013, 47, 1615–1622. [Google Scholar] [CrossRef]
- Hui, L.; Zhang, X.; Yu, Y.Q.; Han, M.; Huang, X.F.; Chen, D.C.; Wang, Z.R.; Du, W.L.; Kou, C.G.; Yu, Q.; et al. Association between DBH 19 bp insertion/deletion polymorphism and cognition in first-episode schizophrenic patients. Schizophr. Res. 2013, 147, 236–240. [Google Scholar] [CrossRef]
- Pae, C.-U.; Kim, J.-J.; Serretti, A.; Lee, C.-U.; Lee, S.-J.; Lee, C.; Paik, I.-H. VNTR polymorphism of tyrosine hydroxylase gene and schizophrenia in the Korean population. Neuropsychobiology 2003, 47, 131–136. [Google Scholar] [CrossRef]
- Horiguchi, M.; Ohi, K.; Hashimoto, R.; Hao, Q.; Yasuda, Y.; Yamamori, H.; Fujimoto, M.; Umeda-Yano, S.; Takeda, M.; Ichinose, H. Functional polymorphism (C-824T) of the tyrosine hydroxylase gene affects IQ in schizophrenia. Psychiatry Clin. Neurosci. 2014, 68, 456–462. [Google Scholar] [CrossRef]
- Hu, J.; Chan, L.F.; Souza, R.P.; Tampakeras, M.; Kennedy, J.L.; Zai, C.; De Luca, V. The role of tyrosine hydroxylase gene variants in suicide attempt in schizophrenia. Neurosci. Lett. 2014, 559, 39–43. [Google Scholar] [CrossRef]
- Ishiguro, H.; Arinami, T.; Saito, T.; Akazawa, S.; Enomoto, M.; Mitushio, H.; Fujishiro, H.; Tada, K.; Akimoto, Y.; Mifune, H.; et al. Systematic search for variations in the tyrosine hydroxylase gene and their associations with schizophrenia, affective disorders, and alcoholism. Am. J. Med. Genet. 1998, 81, 388–396. [Google Scholar] [CrossRef]
- Li, J.; Meltzer, H.Y. A genetic locus in 7p12.2 associated with treatment resistant schizophrenia. Schizophr. Res. 2014, 159, 333–339. [Google Scholar] [CrossRef]
- Zazueta, A.; Castillo, T.; Cavieres, Á.; González, R.; Abarca, M.; Nieto, R.R.; Deneken, J.; Araneda, C.; Moya, P.R.; Bustamante, M.L. Polymorphisms in Schizophrenia-Related Genes Are Potential Predictors of Antipsychotic Treatment Resistance and Refractoriness. Int. J. Neuropsychopharmacol. 2022, 25, 701–708. [Google Scholar] [CrossRef]
- Børglum, A.D.; Hampson, M.; Kjeldsen, T.E.; Muir, W.; Murray, V.; Ewald, H.; Mors, O.; Blackwood, D.; Kruse, T.A. Dopa decarboxylase genotypes may influence age at onset of schizophrenia. Mol. Psychiatry 2001, 6, 712–717. [Google Scholar] [CrossRef]
- Richards, M.; Iijima, Y.; Kondo, H.; Shizuno, T.; Hori, H.; Arima, K.; Saitoh, O.; Kunugi, H. Association study of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population. Behav. Brain Funct. BBF. 2006, 2, 39. [Google Scholar] [CrossRef] [PubMed]
- Riddle, E.L.; Fleckenstein, A.E.; Hanson, G.R. Role of monoamine transporters in mediating psychostimulant effects. AAPS J. 2005, 7, E847–E851. [Google Scholar] [CrossRef] [PubMed]
- Sotnikova, T.D.; Beaulieu, J.M.; Gainetdinov, R.R.; Caron, M.G. Molecular biology, pharmacology and functional role of the plasma membrane dopamine transporter. CNS Neurol. Disord. Drug Targets 2006, 5, 45–56. [Google Scholar] [PubMed]
- Xu, F.L.; Ding, M.; Wu, X.; Liu, Y.-P.; Xia, X.; Yao, J.; Wang, B.-J. A Meta-analysis of the Association Between SLC6A3 Gene Polymorphisms and Schizophrenia. J. Mol. Neurosci. 2020, 70, 155–166. [Google Scholar] [CrossRef]
- Lohoff, F.W.; Carr, G.V.; Brookshire, B.; Ferraro, T.N.; Lucki, I. Deletion of the vesicular monoamine transporter 1 (vmat1/slc18a1) gene affects dopamine signaling. Brain Res. 2019, 1712, 151–157. [Google Scholar] [CrossRef]
- Lohoff, F.W.; Weller, A.E.; Bloch, P.J.; Buono, R.J.; Doyle, G.A.; Ferraro, T.N.; Berrettini, W.H. Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology 2008, 57, 55–60. [Google Scholar] [CrossRef]
- Han, H.; Xia, X.; Zheng, H.; Zhao, C.; Xu, Y.; Tao, J.; Wang, X. The Gene Polymorphism of VMAT2 Is Associated with Risk of Schizophrenia in Male Han Chinese. Psychiatry Investig. 2020, 17, 1073–1078. [Google Scholar] [CrossRef]
- Gejman, P.V.; Sanders, A.R.; Duan, J. The role of genetics in the etiology of schizophrenia. Psychiatr. Clin. North. Am. 2010, 33, 35–66. [Google Scholar] [CrossRef]
- Escudero, I.; Johnstone, M. Genetics of schizophrenia. Curr. Psychiatry Rep. 2014, 16, 502. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, X.; Qin, W.; Liu, F.; Wang, Q.; Xu, Q.; Wang, J.; Yu, C. Network-Dependent Modulation of COMT and DRD2 Polymorphisms in Healthy Young Adults. Sci. Rep. 2015, 5, 17996. [Google Scholar] [CrossRef]
- Gong, P.; Xi, S.; Shen, G.; Li, S.; Zhang, P.; Cao, G.; Zhang, F.; Shen, Y.; Feng, T.; Ma, H. The effects of DBH, MAOA, and MAOB on attentional biases for facial expressions. J. Mol. Neurosci. 2013, 49, 606–613. [Google Scholar] [PubMed]
- Walter, N.T.; Markett, S.A.; Montag, C.; Reuter, M. A genetic contribution to cooperation: Dopamine-relevant genes are associated with social facilitation. Soc. Neurosci. 2011, 6, 289–301. [Google Scholar] [PubMed]
- Heinzel, S.; Dresler, T.; Baehne, C.G.; Heine, M.; Boreatti-Hümmer, A.; Jacob, C.P.; Renner, T.J.; Reif, A.; Lesch, K.-P.; Fallgatter, A.J.; et al. COMT × DRD4 epistasis impacts prefrontal cortex function underlying response control. Cereb. Cortex 2013, 23, 1453–1462. [Google Scholar] [PubMed]
- Gosso, M.F.; de Geus, E.J.; Polderman, T.J.; Boomsma, D.I.; Heutink, P.; Posthuma, D. Catechol O-methyl transferase and dopamine D2 receptor gene polymorphisms: Evidence of positive heterosis and gene-gene interaction on working memory functioning. Eur. J. Hum. Genet. 2008, 16, 1075–1082. [Google Scholar] [PubMed]
- Taheri, N.; Pirboveiri, R.; Sayyah, M.; Bijanzadeh, M.; Ghandil, P. Association of DRD2, DRD4 and COMT genes variants and their gene-gene interactions with antipsychotic treatment response in patients with schizophrenia. BMC Psychiatry 2023, 23, 781. [Google Scholar]
- Rajagopal, V.M.; Rajkumar, A.P.; Jacob, K.S.; Jacob, M. Gene-gene interaction between DRD4 and COMT modulates clinical response to clozapine in treatment-resistant schizophrenia. Pharmacogenet Genom. 2018, 28, 31–35. [Google Scholar]
- The HuGENetTM HuGE Review Handbook, Version 1.0. Guidelines for Systematic Review and Meta-Analysis of Gene Disease Association Studies. EQUATOR Network. Available online: https://www.equator-network.org/reporting-guidelines/the-hugenet-huge-review-handbook-version-1-0-guidelines-for-systematic-review-and-meta-analysis-of-gene-disease-association-studies/ (accessed on 12 April 2024).
- Lichtenstein, P.; Yip, B.H.; Björk, C.; Pawitan, Y.; Cannon, T.D.; Sullivan, P.F.; Hultman, C.M. Common genetic influences for schizophrenia and bipolar disorder: A population-based study of 2 million nuclear families. Lancet 2009, 373, 234–239. [Google Scholar] [CrossRef]
- DeMichele-Sweet, M.A.A.; Weamer, E.A.; Klei, L.; Vrana, D.T.; Hollingshead, D.J.; Seltman, H.J.; Sims, R.; Foroud, T.; Hernandez, I.; Moreno-Grau, S.; et al. Genetic risk for schizophrenia and psychosis in Alzheimer disease. Mol. Psychiatry 2018, 23, 963–972. [Google Scholar]
- Ottawa Hospital Research Institute. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 April 2024).
- Vercammen, A.; Weickert, C.S.; Skilleter, A.J.; Lenroot, R.; Schofield, P.R.; Weickert, T.W. Common polymorphisms in dopamine-related genes combine to produce a ‘schizophrenia-like’ prefrontal hypoactivity. Transl. Psychiatry 2014, 4, e356. [Google Scholar]
- Srivastava, V.; Deshpande, S.N.; Thelma, B.K. Dopaminergic Pathway Gene Polymorphisms and Genetic Susceptibility to Schizophrenia among North Indians. Neuropsychobiology 2010, 61, 64–70. [Google Scholar]
- Bi, Y.; Huang, X.N.; Chen, S.; Wu, X.; Cao, Y.; Zhang, R.; Yang, F.; Wang, L.; Li, W.; Xu, Y.; et al. No association between SLC6A2, SLC6A3, DRD2 polymorphisms and schizophrenia in the Han Chinese population. Psychiatry Res. 2017, 253, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.; Kuepper, Y.; Mueller, E.A.; Wielpuetz, C.; Mason, O.; Hennig, J. Dopaminergic foundations of schizotypy as measured by the German version of the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)—A suitable endophenotype of schizophrenia. Front. Hum. Neurosci. 2013, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Talkowski, M.E.; Kirov, G.; Bamne, M.; Georgieva, L.; Torres, G.; Mansour, H.; Chowdari, K.V.; Milanova, V.; Wood, J.; McClain, L.; et al. A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum. Mol. Genet. 2008, 17, 747–758. [Google Scholar] [CrossRef]
- Hwang, N.Y.; Yun, K.W.; Joo, Y.H.; Kim, C.Y.; Jung, S.H.; Kim, B.; Shin, E.S.; Oh, S.Y.; Oh, H.B. Association between Schizophrenia and the Genetic Polymorphism of DRD3, DRD4 and HTR2A. Ann. Lab. Med. 2004, 24, 446–451. [Google Scholar]
- Xu, Q.; Jia, Y.B.; Zhang, B.Y.; Zou, K.; Tao, Y.-B.; Wang, Y.-P.; Qiang, B.-Q.; Wu, G.-Y.; Ji, H.-K.; Huang, Y.; et al. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: A novel strategy for complex disorders. Mol. Psychiatry 2004, 9, 510–521. [Google Scholar] [CrossRef]
- Sáiz, P.A.; García-Portilla, M.P.; Arango, C.; Morales, B.; Arias, B.; Corcoran, P.; Fernández, J.M.; Alvarez, V.; Coto, E.; Bascarán, M.-T.; et al. Genetic polymorphisms in the dopamine-2 receptor (DRD2), dopamine-3 receptor (DRD3), and dopamine transporter (SLC6A3) genes in schizophrenia: Data from an association study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 26–31. [Google Scholar] [CrossRef]
- Oishi, K.; Niitsu, T.; Kanahara, N.; Sato, Y.; Iwayama, Y.; Toyota, T.; Hashimoto, T.; Sasaki, T.; Takase, M.; Shiina, A.; et al. Genetic risks of schizophrenia identified in a matched case–control study. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 775–781. [Google Scholar] [CrossRef]
- Gupta, M.; Chauhan, C.; Bhatnagar, P.; Gupta, S.; Grover, S.; Singh, P.K.; Purushottam, M.; Mukherjee, O.; Jain, S.; Brahmachari, S.K.; et al. Genetic susceptibility to schizophrenia: Role of dopaminergic pathway gene polymorphisms. Pharmacogenomics 2009, 10, 277–291. [Google Scholar] [CrossRef]
- Cheah, S.Y.; Lurie, J.K.; Lawford, B.R.; Young, R.M.D.; Morris, C.P.; Voisey, J. Interaction of multiple gene variants and their effects on schizophrenia phenotypes. Compr. Psychiatry 2016, 71, 63–70. [Google Scholar] [CrossRef]
- Álvarez, S.; Mas, S.; Gassó, P.; Bernardo, M.; Parellada, E.; Lafuente, A. Lack of association between schizophrenia and polymorphisms in dopamine metabolism and transport genes. Fundam. Clin. Pharmacol. 2010, 24, 741–747. [Google Scholar] [CrossRef]
- Ohara, K.; Nakamura, Y.; Xie, D.W.; Ishigaki, T.; Deng, Z.-L.; Tani, K.; Zhang, H.-Y.; Kondo, N.; Liu, J.-C.; Miyasato, K.; et al. Polymorphisms of dopamine D2-like (D2, D3, and D4) receptors in schizophrenia. Biol. Psychiatry 1996, 40, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.; Lawyer, G.; Sillén, A.; Jönsson, E.G.; Agartz, I.; Terenius, L.; Arnborg, S. Potential genetic variants in schizophrenia: A Bayesian analysis. World J. Biol. Psychiatry 2007, 8, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lochman, J.; Balcar, V.J.; Šťastný, F.; Šerý, O. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory Regions of the ADRA2A, DRD3 and SNAP-25 Genes. Psychiatry Res. 2013, 205, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Norton, N.; Kirov, G.; Zammit, S.; Jones, G.; Jones, S.; Owen, R.; Krawczak, M.; Williams, N.M.; O’Donovan, M.C.; Owen, M.J. Schizophrenia and functional polymorphisms in the MAOA and COMT genes: No evidence for association or epistasis. Am. J. Med. Genet. 2002, 114, 491–496. [Google Scholar] [CrossRef]
- Hoenicka, J.; Garrido, E.; Ponce, G.; Rodríguez-Jiménez, R.; Martínez, I.; Rubio, G.; Jiménez-Arriero, M.; Palomo, T. Sexually dimorphic interaction between the DRD1 and COMT genes in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 948–954. [Google Scholar] [CrossRef]
- Gareeva, A.E.; Khusnutdinova, E.K. The Role of Intergenic Interactions of Neurotrophic and Neurotransmitter System Genes in the Development of Susceptibility to Paranoid Schizophrenia. Russ. J. Genet. 2020, 56, 79–87. [Google Scholar] [CrossRef]
- Created with BioRender. Available online: https://www.biorender.com/ (accessed on 25 October 2024).
- Fedosova, A.; Titova, N.; Kokaeva, Z.; Shipilova, N.; Katunina, E.; Klimov, E. Genetic Markers as Risk Factors for the Development of Impulsive-Compulsive Behaviors in Patients with Parkinson’s Disease Receiving Dopaminergic Therapy. J. Pers. Med. 2021, 11, 1321. [Google Scholar] [CrossRef]
- Söderqvist, S.; Matsson, H.; Peyrard-Janvid, M.; Kere, J.; Klingberg, T. Polymorphisms in the Dopamine Receptor 2 Gene Region Influence Improvements during Working Memory Training in Children and Adolescents. J. Cogn. Neurosci. 2014, 26, 54–62. [Google Scholar] [CrossRef]
- Garcia-Garcia, M.; Via, M.; Zarnowiec, K.; SanMiguel, I.; Escera, C.; Clemente, I.C. COMT and DRD2/ANKK-1 gene-gene interaction account for resetting of gamma neural oscillations to auditory stimulus-driven attention. PLoS ONE 2017, 12, e0172362. [Google Scholar]
- Balcı, F.; Wiener, M.; Cavdaroğlu, B.; Branch Coslett, H. Epistasis effects of dopamine genes on interval timing and reward magnitude in humans. Neuropsychologia 2013, 51, 293–308. [Google Scholar]
- Stelzel, C.; Basten, U.; Montag, C.; Reuter, M.; Fiebach, C.J. Effects of dopamine-related gene-gene interactions on working memory component processes. Eur. J. Neurosci. 2009, 29, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, A.; Di Giorgio, A.; Blasi, G.; Sambataro, F.; Caforio, G.; Sinibaldi, L.; Latorre, V.; Rampino, A.; Taurisano, P.; Fazio, L.; et al. Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks. Biol. Psychiatry 2008, 64, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Prata, D.P.; Mechelli, A.; Fu, C.H.; Picchioni, M.; Toulopoulou, T.; Bramon, E.; Walshe, M.; Murray, R.M.; Collier, D.A.; McGuire, P. Epistasis between the DAT 3′ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proc. Natl. Acad. Sci. USA 2009, 106, 13600–13605. [Google Scholar] [CrossRef]
- Alexander, N.; Osinsky, R.; Mueller, E.; Schmitz, A.; Guenthert, S.; Kuepper, Y.; Hennig, J. Genetic variants within the dopaminergic system interact to modulate endocrine stress reactivity and recovery. Behav. Brain Res. 2011, 216, 53–58. [Google Scholar] [CrossRef]
- Bertolino, A.; Fazio, L.; Di Giorgio, A.; Blasi, G.; Romano, R.; Taurisano, P.; Caforio, G.; Sinibaldi, L.; Ursini, G.; Popolizio, T.; et al. Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans. J. Neurosci. 2009, 29, 1224–1234. [Google Scholar] [CrossRef]
- Su, P.; Liu, F. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity. Exp. Neurol. 2017, 295, 176–183. [Google Scholar] [CrossRef]
- Savitz, J.; Hodgkinson, C.A.; Martin-Soelch, C.; Shen, P.-H.; Szczepanik, J.; Nugent, A.; Herscovitch, P.; Grace, A.A.; Goldman, D.; Drevets, W.C. The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement. PLoS ONE 2013, 8, e54108. [Google Scholar] [CrossRef]
- Stehouwer, J.S.; Chopra, A. N-((E)-4-[18F]Fluorobut-2-en-1-yl)-2β-carbomethoxy-3β-(4′-fluorophenyl)nortropane. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK53694/ (accessed on 18 April 2024).
- Li, Y.; Kuzhikandathil, E.V. Molecular characterization of individual D3 dopamine receptor-expressing cells isolated from multiple brain regions of a novel mouse model. Brain Struct. Funct. 2012, 217, 809–833. [Google Scholar] [CrossRef]
- Zhuo, C.; Cheng, L.; Li, G.; Xu, Y.; Jing, R.; Li, S.; Zhang, L.; Lin, X. COMT-Val158Met polymorphism modulates antipsychotic effects on auditory verbal hallucinations and temporal lobe gray matter volumes in healthy individuals-symptom relief accompanied by worrisome volume reductions. Brain Imaging Behav. 2020, 14, 1373–1381. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, M.; Zhou, W.; Li, M.; Huai, C.; Shen, L.; Wang, T.; Wu, H.; Zhang, N.; Zhang, Z.; et al. Association Between the COMT Val158Met Polymorphism and Antipsychotic Efficacy in Schizophrenia: An Updated Meta-Analysis. Curr. Neuropharmacol. 2021, 19, 1780–1790. [Google Scholar] [CrossRef]
- Schacht, J.P. COMT val158met moderation of dopaminergic drug effects on cognitive function: A critical review. Pharmacogenomics J. 2016, 16, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Farrell, S.M.; Tunbridge, E.M.; Braeutigam, S.; Harrison, P.J. COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition. Biol. Psychiatry 2012, 71, 538–544. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X.; Liu, X.; Zhang, T.; Li, Y.; Yan, P. DRD3 Ser9Gly polymorphism and treatment response to antipsychotics in schizophrenia: A meta-analysis. Neurosci. Lett. 2022, 786, 136788. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Shen, Y.C.; Chen, C.H. Effects of the DRD3 Ser9Gly polymorphism on aripiprazole efficacy in schizophrenic patients as modified by clinical factors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 470–474. [Google Scholar] [CrossRef]
- Samanaite, R.; Gillespie, A.; Sendt, K.V.; McQueen, G.; MacCabe, J.H.; Egerton, A. Biological Predictors of Clozapine Response: A Systematic Review. Front. Psychiatry 2018, 9, 327. [Google Scholar]
- Breuer, R.; Mattheisen, M.; Frank, J.; Krumm, B.; Treutlein, J.; Kassem, L.; Strohmaier, J.; Herms, S.; Mühleisen, T.W.; Degenhardt, F.; et al. Detecting significant genotype-phenotype association rules in bipolar disorder: Market research meets complex genetics. Int. J. Bipolar Disord. 2018, 6, 24. [Google Scholar] [CrossRef]
- Murrie, B.; Lappin, J.; Large, M.; Sara, G. Transition of Substance-Induced, Brief, and Atypical Psychoses to Schizophrenia: A Systematic Review and Meta-analysis. Schizophr. Bull. 2020, 46, 505–516. [Google Scholar] [CrossRef]
Title | Author | SNPs Investigated | Method Used | No. Participants | Risk of Bias (NOS Score 1) | Results |
---|---|---|---|---|---|---|
1. A network of dopaminergic gene variations implicated as risk factors for schizophrenia | Talkowski [98], 2008 | DRD3: rs10934256, rs1800828, rs324030, rs6280, rs7625282, rs2134655; COMT: rs165815, rs174696; DAT: rs2078247, rs3756450, rs403636, rs463379, rs456082, rs464049, rs37022, rs6347, rs12516948; VMAT2: rs363338, rs363343, rs929493, rs4752045, rs363227 | Logistic Regression: unconditional logit model (case-control), conditional logit model (family trios) | 2956: 478 patients; 501 controls; 679 family trios | 7 S **** C- E *** | Multiple associations between COMT × DAT, DAT × DRD3, DAT × VMAT2, DRD3 × VMAT2 |
2. Association study of schizophrenia and DRD3, DRD4, and HTR2A gene polymorphisms | Hwang [99], 2004 | DRD3: rs6280; DRD4: 12-bp VNTR | Logistic Linear Regression | 387: 145 patients (75 M, 70 F); 242 controls (126 M, 116 F) | 8 S *** C ** E *** | DRD3 rs6280 × DRD4 12 bp VNTR |
3. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders | Xu [100], 2004 | COMT: rs165599, rs165656, rs165688, rs174682, rs174694, rs4818, rs740603, rs933269; MAOA: rs1801291, rs6323; MAOB: rs1040399; DBH: rs2005663, rs2007153; DDC: rs1451373, rs1451374, rs6263, rs921450 | PESCP (potential effective SNP combination pattern), PEDE (potential effective dynamic effects) | 476: 83 patients (34 M, 49 F); 108 controls; 95 family trios | 7 S ** C ** E *** | No relevant associations |
4. Common polymorphisms in dopamine-related genes combine to produce a ’schizophrenia-like’ prefrontal hypoactivity | Vercammen [94], 2014 | DRD2: rs2283265; COMT: rs4680 | Correlation (oligogenic score) | 70: 27 patients (19 M, 8 F); 43 controls (19 M, 24 F) | 6 S *** C- E *** | COMT rs4680 × DRD2 rs2283265 |
5. Dopaminergic foundations of schizotypy as measured by the German version of the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)—a suitable endophenotype of schizophrenia | Grant [97], 2013 | COMT: rs4680; MAOA: uVNTR | GLM Analysis (general linear model) | 288: 91 M, 197 F | Correlational (NOS not applicable) | COMT rs4680 × MAOA uVNTR (trend-level) |
6. Dopaminergic pathway gene polymorphisms and genetic susceptibility to schizophrenia among north Indians | Srivastava [95], 2010 | DRD1: rs4532, rs5330, rs5331, rs13306309, rs686; DRD2: rs1799732, rs1079597, rs1801028, rs2234689, rs1800497; DRD4: rs4646984, rs1800955, 48-bp VNTR; COMT: rs2075507, rs4633, rs4818, rs4680, rs362204; MAOA: 30-bp VNTR; MAOB: rs1799836; DBH: rs1611115, rs1108580, rs5320, rs4531, rs129882; TH: rs6356, rs28934579; DDC: rs3829897, rs6593010, rs11575542, rs11575553 | Backwards Binary Logistic Regression Analysis | 430: 215 patients (112 M, 103 F); 215 controls (130 M, 86 F) | 6 S *** C- E *** | COMT rs362204 × TH rs6356 |
7. Genetic polymorphisms in the dopamine-2 receptor (DRD2), dopamine-3 receptor (DRD3), and dopamine transporter (SLC6A3) genes in schizophrenia: Data from an association study | Saiz [101], 2010 | DRD2: rs1799732; DRD3: rs6280; DAT: uVNTR | Logistic Regression (multivariate), Wald statistic for significance | 707: 286 patients (172 M, 114 F); 421 controls (216 M, 205 F) | 7 S *** C- E *** | DRD3 rs6280 × DAT uVNTR |
8. Genetic risks of schizophrenia identified in a matched case-control study | Oishi [102], 2021 | DRD2: rs1800497; COMT: rs4680; TH: rs10770141 | Multiple Logistic Regression | 2544: 1272 patients (574 M, 698 F); 1272 controls (603 M, 669 F) | 8 S *** C ** E *** | COMT rs4680 × DRD2 rs1800497, DRD2 rs1800497 × TH rs10770141 |
9. Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms | Gupta [103], 2009 | DRD2: rs1799732, rs4274224, rs12808482, rs11608185, rs2075652, rs1801028, rs6275, rs6277; COMT: rs3788319, rs737865, rs6269, rs4633, rs4818, rs4680, rs165599 | MDR (multifactor dimensionality reduction) | 422: 243 patients (147 M, 96 F); 179 controls (115 M, 64 F) | 7 S ** C ** E *** | DRD2 rs6275 × COMT rs4680; DRD2 rs6275 × DRD2 rs4274224 × COMT rs4680 × COMT rs3788319 (trend-level) |
10. Interaction of multiple gene variants and their effects on schizophrenia phenotypes | Cheah [104], 2016 | DRD2: rs1800499, rs2734839, rs6277; DRD3: rs1800828, rs324035; COMT: rs165774, rs4646316, rs4680; DDC: rs1966839, rs2329371; DAT: rs11133767, rs40184, rs4975646, rs6347 | Binary Logistic Regression | 460: 235 patients (165 M, 70 F); 225 controls (104 M, 121 F) | 8 S **** C * E *** | DRD2 rs2734839 × COMT rs4680 × DAT rs6347 × DDC rs1966839 (delusional symptom cluster); DDC rs2329371 × DDC rs1966839 × DAT rs11133767 × COMT rs4646316 |
11. Lack of association between schizophrenia and polymorphisms in dopamine metabolism and transport genes | Alvarez [105], 2010 | MAOA: rs6323, 30-bp VNTR; DAT: rs2975226, 40-bp VNTR | MDR (multifactor dimensionality reduction) | 532: 242 patients (132 M, 110 F); 290 controls (111 M, 179 F) | 7 S *** C * E *** | DAT rs2975226 × MAOA uVNTR (trend-level) |
12. No association between SLC6A2, SLC6A3, DRD2 polymorphisms and schizophrenia in the Han Chinese population | Bi [96], 2017 | DRD2: rs2234689, rs7131056; DAT: rs3863145, rs2550956 | MDR (multifactor dimensionality reduction), Line Regression | 2068: 1034 patients (588 M, 446 F); 1034 controls (625 M, 409 F) | 5 S ** C- E *** | No association |
13. Polymorphisms of dopamine D2-like (D2, D3, and D4) receptors in schizophrenia | Ohara [106], 1996 | DRD2: rs1801028; DRD3: rs6280; DRD4: 12-bp VNTR, 48-bp VNTR | Chi-square/Fisher’s Exact Test | 274: 153 patients (77 M, 76 F); 121 controls (51 M, 70 F) | 8 S **** C * E *** | No association |
14. Potential genetic variants in schizophrenia: a Bayesian analysis | Hall [107], 2007 | DRD2: rs1801028, rs1800496; DRD3: rs6280; MAOA: rs1800466; DBH: SNP000007898 | Bayesian statistical models | 192: 103 patients (64 M, 39 F); 89 controls (60 M, 29 F) | 8 S **** C * E *** | No relevant associations |
15. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory regions of the ADRA2A, DRD3 and SNAP-25 genes | Lochman [108], 2013 | DRD1: rs4532, rs265981; DRD3: rs6280; DBH: rs2519152 | GENECOUNTING (Likelihood-ratio test) | 405: 192 patients (192 M); 213 controls (213 M) | 7 S *** C * E *** | No relevant associations |
16. Schizophrenia and functional polymorphisms in the MAOA and COMT genes: No evidence for association or epistasis | Norton [109], 2002 | COMT: rs4680, rs2075507; MAOA: 30-bp VNTR, rs6323 | Chi-square | 486: 248 patients (248 M); 238 controls (238 M) | 8 S *** C ** E *** | No association |
17. Sexually dimorphic interaction between the DRD1 and COMT genes in schizophrenia | Hoenicka [110], 2010 | DRD1: rs11746641, rs11749676, rs251937, rs12518222, rs4867798; COMT: rs4680 | Stepwise Logistic Regression | 701: 337 patients (226 M, 111 F); 364 controls (171 M, 193 F) | 6 S *** C- E *** | COMT rs4680 × DRD1 rs11746641, COMT rs4680 × DRD1 rs11749676 |
18. The role of intergenic interactions of neurotrophic and neurotransmitter system genes in the development of susceptibility to paranoid schizophrenia | Gareeva [111], 2020 | DRD2: rs1800497, rs6275; DRD3: rs6280; DRD4: rs747302, 12-bp VNTR; COMT: rs4680, rs4818 | MDR (multifactor dimensionality reduction) | 606: 257 patients (137 M, 120 F); 349 controls | 7 S ** C ** E *** | COMT rs4680 × DRD2 rs1800497 |
Gene | Interaction | Gene Variant |
---|---|---|
DRD1 | COMT | rs11749676, rs11746641 |
DRD2 | COMT, DDC, DAT, TH | rs1800497, rs6275, rs2734839, rs2283265 |
DRD3 | DRD4, DAT, VMAT2 | rs6280, rs1800828, rs10934256 |
DRD4 | DRD3 | 12 bp VNTR (D4E1) |
DRD5 | - | - |
COMT | DRD1, DRD2, MAOA, TH, DDC, DAT | rs4680, rs362204, rs4646316, rs165815, rs174696 |
MAOA | COMT, DAT | 30 bp VNTR (promoter) |
MAOB | - | - |
DBH | - | - |
TH | DRD2, COMT | rs10770141, rs6356 |
DDC | DRD2, COMT, DAT | rs1966839, rs2329371 |
DAT | DRD2, DRD3, COMT, MAOA, DDC, VMAT2 | rs6347, 40 bp VNTR, rs11133767, rs463379, rs12516948, rs456082, rs464049, rs456082 |
VMAT1 | - | - |
VMAT2 | DRD3, DAT | rs363227, rs363338, rs929493 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosun, A.; Albu-Kalinovic, R.; Neda-Stepan, O.; Bosun, I.; Farcas, S.S.; Enatescu, V.-R.; Andreescu, N.I. Dopaminergic Epistases in Schizophrenia. Brain Sci. 2024, 14, 1089. https://doi.org/10.3390/brainsci14111089
Bosun A, Albu-Kalinovic R, Neda-Stepan O, Bosun I, Farcas SS, Enatescu V-R, Andreescu NI. Dopaminergic Epistases in Schizophrenia. Brain Sciences. 2024; 14(11):1089. https://doi.org/10.3390/brainsci14111089
Chicago/Turabian StyleBosun, Adela, Raluka Albu-Kalinovic, Oana Neda-Stepan, Ileana Bosun, Simona Sorina Farcas, Virgil-Radu Enatescu, and Nicoleta Ioana Andreescu. 2024. "Dopaminergic Epistases in Schizophrenia" Brain Sciences 14, no. 11: 1089. https://doi.org/10.3390/brainsci14111089
APA StyleBosun, A., Albu-Kalinovic, R., Neda-Stepan, O., Bosun, I., Farcas, S. S., Enatescu, V.-R., & Andreescu, N. I. (2024). Dopaminergic Epistases in Schizophrenia. Brain Sciences, 14(11), 1089. https://doi.org/10.3390/brainsci14111089