Reliability and Validity of the KFORCE Sens® Inertial Sensor for Measuring Cervical Spine Proprioception in Patients with Non-Specific Chronic Neck Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Ethics
2.3. Study Design
2.4. Procedures
2.4.1. Pain Intensity Visual Analog Scale (PI-VAS)
2.4.2. Neck Disability Index—Greek Version (NDI-GR)
2.4.3. Tampa Scale of Kinesiophobia—Greek Version (TSK-GR)
2.4.4. Pain Catastrophizing Scale—Greek Version (PCS-GR)
2.4.5. Fremantle Neck Awareness Questionnaire—Greek Version (FreNAQ-GR)
2.4.6. Cervical Spine Range of Motion (CS-ROM) and Proprioception Measurements
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Within-Day Intra-Rater Reliability of CS Proprioception Acuity
3.3. Construct Validity of CS Proprioception Acuity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hurwitz, E.L.; Randhawa, K.; Yu, H.; Côté, P.; Haldeman, S. The Global Spine Care Initiative: A summary of the global burden of low back and neck pain studies. Eur. Spine J. 2018, 27, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W.; Shin, J.I.; Koyanagi, A.; Jacob, L.; Smith, L.; Lee, H.; Chang, Y.; Song, T.J. Global, regional, and national neck pain burden in the general population, 1990-2019: An analysis of the global burden of disease study 2019. Front. Neurol. 2022, 13, 955367. [Google Scholar] [CrossRef] [PubMed]
- Blanpied, P.R.; Gross, A.R.; Elliott, J.M.; Devaney, L.L.; Clewley, D.; Walton, D.M.; Sparks, C.; Robertson, E.K. Neck Pain: Revision 2017. J. Orthop. Sports Phys. Ther. 2017, 47, A1–A83. [Google Scholar] [CrossRef]
- de Zoete, R.M.J. Exercise Therapy for Chronic Neck Pain: Tailoring Person-Centred Approaches within Contemporary Management. J. Clin. Med. 2023, 12, 7108. [Google Scholar] [CrossRef]
- Sterud, T.; Johannessen, H.A.; Tynes, T. Work-related psychosocial and mechanical risk factors for neck/shoulder pain: A 3-year follow-up study of the general working population in Norway. Int. Arch. Occup. Environ. Health 2014, 87, 471–481. [Google Scholar] [CrossRef]
- Kim, R.; Wiest, C.; Clark, K.; Cook, C.; Horn, M. Identifying risk factors for first-episode neck pain: A systematic review. Musculoskelet. Sci. Pract. 2018, 33, 77–83. [Google Scholar] [CrossRef]
- Xie, Y.; Jun, D.; Thomas, L.; Coombes, B.K.; Johnston, V. Comparing Central Pain Processing in Individuals with Non-Traumatic Neck Pain and Healthy Individuals: A Systematic Review and Meta-Analysis. J. Pain 2020, 21, 1101–1124. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Yang, L.; Li, Y.; Liu, T.; Liu, Y. Cervical Proprioception Impairment in Neck Pain-Pathophysiology, Clinical Evaluation, and Management: A Narrative Review. Pain Ther. 2021, 10, 143–164. [Google Scholar] [CrossRef]
- de Zoete, R.M.J.; Stanwell, P.; Weber, K.A.; Snodgrass, S.J. Differences in Structural Brain Characteristics Between Individuals with Chronic Nonspecific Neck Pain and Asymptomatic Controls: A Case-Control Study. J. Pain Res. 2022, 15, 521–531. [Google Scholar] [CrossRef]
- Han, J.; Waddington, G.; Adams, R.; Anson, J.; Liu, Y. Assessing proprioception: A critical review of methods. J. Sport. Health Sci. 2016, 5, 80–90. [Google Scholar] [CrossRef]
- Hillier, S.; Immink, M.; Thewlis, D. Assessing Proprioception: A Systematic Review of Possibilities. Neurorehabil. Neural. Repair. 2015, 29, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, M.A.; Giannaki, C.D.; Roupa, Z.; Hadjisavvas, S.; Stefanakis, M. Evidence of distorted proprioception and postural control in studies of experimentally induced pain: A critical review of the literature. Scand. J. Pain 2022, 22, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Särkilahti, N.; Hirvonen, M.; Lavapuro, J.; Takatalo, J.; Löyttyniemi, E.; Tenovuo, O. Sensorimotor tests in patients with neck pain and its associated disorders: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 12764. [Google Scholar] [CrossRef]
- Qu, N.; Tian, H.; De Martino, E.; Zhang, B. Neck Pain: Do We Know Enough About the Sensorimotor Control System? Front. Comput. Neurosci. 2022, 16, 946514. [Google Scholar] [CrossRef]
- Elsig, S.; Allet, L.; Bastiaenen, C.H.G.; de Bie, R.; Hilfiker, R. Reliability and measurement error of sensorimotor tests in patients with neck pain: A systematic review. Arch. Physiother. 2023, 13, 15. [Google Scholar] [CrossRef]
- AlDahas, A.; Heneghan, N.R.; Althobaiti, S.; Deane, J.A.; Rushton, A.; Falla, D. Measurement properties of cervical joint position error in people with and without neck pain: A systematic review and narrative synthesis. BMC Musculoskelet. Disord. 2024, 25, 44. [Google Scholar] [CrossRef]
- English, D.J.; Zacharias, A.; Green, R.A.; Weerakkody, N. Reliability of Cervicocephalic Proprioception Assessment: A Systematic Review. J. Manip. Physiol. Ther. 2022, 45, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Stanton, T.R.; Leake, H.B.; Chalmers, K.J.; Moseley, G.L. Evidence of Impaired Proprioception in Chronic, Idiopathic Neck Pain: Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 876–887. [Google Scholar] [CrossRef]
- de Vries, J.; Ischebeck, B.K.; Voogt, L.P.; van der Geest, J.N.; Janssen, M.; Frens, M.A.; Kleinrensink, G.J. Joint position sense error in people with neck pain: A systematic review. Man. Ther. 2015, 20, 736–744. [Google Scholar] [CrossRef]
- Andias, R.; Silva, A.G. A systematic review with meta-analysis on functional changes associated with neck pain in adolescents. Musculoskelet. Care 2019, 17, 23–36. [Google Scholar] [CrossRef]
- Revel, M.; Andre-Deshays, C.; Minguet, M. Cervicocephalic kinesthetic sensibility in patients with cervical pain. Arch. Phys. Med. Rehabil. 1991, 72, 288–291. [Google Scholar]
- de Zoete, R.M.J.; Osmotherly, P.G.; Rivett, D.A.; Farrell, S.F.; Snodgrass, S.J. Sensorimotor Control in Individuals with Idiopathic Neck Pain and Healthy Individuals: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 98, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Hesby, B.B.; Hartvigsen, J.; Rasmussen, H.; Kjaer, P. Electronic measures of movement impairment, repositioning, and posture in people with and without neck pain-a systematic review. Syst. Rev. 2019, 8, 220. [Google Scholar] [CrossRef]
- AlDahas, A.; Devecchi, V.; Deane, J.A.; Falla, D. Measurement properties of cervical joint position error in people with and without chronic neck pain. PLoS ONE 2023, 18, e0292798. [Google Scholar] [CrossRef]
- Ntenezakos, N.; Makrogkikas, M.; Dimitriadis, Z.; Koumantakis, G.A. Neck proprioception assessment with a laser beam device: Reliability in participants without neck pain and differences between participants with and without neck pain. Bull. Fac. Phys. Ther. 2021, 26, 36. [Google Scholar] [CrossRef]
- López-de-Uralde-Villanueva, I.; Tostado-Haro, I.; Noval-Granda, B.; Ferrer-Peña, R.; Del Corral, T. Widespread impairment of tactile spatial acuity and sensory-motor control in patients with chronic nonspecific neck pain with neuropathic features. Musculoskelet. Sci. Pract. 2020, 47, 102138. [Google Scholar] [CrossRef] [PubMed]
- Asiri, F.; Reddy, R.S.; Tedla, J.S.; ALMohiza, M.A.; Alshahrani, M.S.; Govindappa, S.C.; Sangadala, D.R. Kinesiophobia and its correlations with pain, proprioception, and functional performance among individuals with chronic neck pain. PLoS ONE 2021, 16, e0254262. [Google Scholar] [CrossRef] [PubMed]
- Amiri Arimi, S.; Ghamkhar, L.; Kahlaee, A.H. The Relevance of Proprioception to Chronic Neck Pain: A Correlational Analysis of Flexor Muscle Size and Endurance, Clinical Neck Pain Characteristics, and Proprioception. Pain Med. 2018, 19, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Silva, A.G. Reliability, measurement error and construct validity of four proprioceptive tests in patients with chronic idiopathic neck pain. Musculoskelet. Sci. Pract. 2019, 43, 103–109. [Google Scholar] [CrossRef]
- Reddy, R.S.; Meziat-Filho, N.; Ferreira, A.S.; Tedla, J.S.; Kandakurti, P.K.; Kakaraparthi, V.N. Comparison of neck extensor muscle endurance and cervical proprioception between asymptomatic individuals and patients with chronic neck pain. J. Bodyw. Mov. Ther. 2021, 26, 180–186. [Google Scholar] [CrossRef]
- de Zoete, R.M.J.; Osmotherly, P.G.; Rivett, D.A.; Snodgrass, S.J. No Differences Between Individuals with Chronic Idiopathic Neck Pain and Asymptomatic Individuals on Seven Cervical Sensorimotor Control Tests: A Cross-Sectional Study. J. Orthop. Sports Phys. Ther. 2020, 50, 33–43. [Google Scholar] [CrossRef] [PubMed]
- de Zoete, R.M.J.; Osmotherly, P.G.; Rivett, D.A.; Snodgrass, S.J. Cervical Sensorimotor Control Does Not Change Over Time and Is Not Related to Chronic Idiopathic Neck Pain Characteristics: A 6-Month Longitudinal Observational Study. Phys. Ther. 2020, 100, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Dugailly, P.M.; De Santis, R.; Tits, M.; Sobczak, S.; Vigne, A.; Feipel, V. Head repositioning accuracy in patients with neck pain and asymptomatic subjects: Concurrent validity, influence of motion speed, motion direction and target distance. Eur. Spine J. 2015, 24, 2885–2891. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Treleaven, J. The effect of neck torsion on joint position error in subjects with chronic neck pain. Man. Ther. 2013, 18, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.S.; Tedla, J.S.; Dixit, S.; Abohashrh, M. Cervical proprioception and its relationship with neck pain intensity in subjects with cervical spondylosis. BMC Musculoskelet. Disord. 2019, 20, 447. [Google Scholar] [CrossRef] [PubMed]
- Moggioli, F.; Pérez-Fernández, T.; Liébana, S.; Corredor, E.B.; Armijo-Olivo, S.; Fernandez-Carnero, J.; Raya, R.; Conde, P.; Rodríguez-López, O.; Sánchez, C.; et al. Analysis of sensorimotor control in people with and without neck pain using inertial sensor technology: Study protocol for a 1-year longitudinal prospective observational study. BMJ Open 2022, 12, e058190. [Google Scholar] [CrossRef] [PubMed]
- Cerina, V.; Tesio, L.; Malloggi, C.; Rota, V.; Caronni, A.; Scarano, S. Cervical Proprioception Assessed through Targeted Head Repositioning: Validation of a Clinical Test Based on Optoelectronic Measures. Brain Sci. 2023, 13, 604. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, X.Y.; Fu, S.Y.; Li, D.F.; Zhao, G.N.; Huang, A.B. Reliability and Validity of A Novel Device for Evaluating the Cervical Proprioception. Pain Ther. 2023, 12, 671–682. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Zhao, P.; Han, T.; Cui, X.; He, Y.; Li, M. The reliability and validity of a novel wearable inertial sensor to measure the cervical proprioception. Med. Eng. Phys. 2024, 125, 104125. [Google Scholar] [CrossRef]
- Modarresi, S.; Lukacs, M.J.; Ghodrati, M.; Salim, S.; MacDermid, J.C.; Walton, D.M. A Systematic Review and Synthesis of Psychometric Properties of the Numeric Pain Rating Scale and the Visual Analog Scale for Use in People with Neck Pain. Clin. J. Pain 2021, 38, 132–148. [Google Scholar] [CrossRef]
- Dimitriadis, Z.; Kapreli, E.; Strimpakos, N.; Oldham, J. Do psychological states associate with pain and disability in chronic neck pain patients? J. Back. Musculoskelet. Rehabil. 2015, 28, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H. The Neck Disability Index: State-of-the-art, 1991–2008. J. Manip. Physiol. Ther. 2008, 31, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Trouli, M.N.; Vernon, H.T.; Kakavelakis, K.N.; Antonopoulou, M.D.; Paganas, A.N.; Lionis, C.D. Translation of the Neck Disability Index and validation of the Greek version in a sample of neck pain patients. BMC Musculoskelet. Disord. 2008, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Kori, S.H.; Miller, R.P.; Todd, D.D. Kinesiophobia: A new view of chronic pain behavior. Pain Manag. 1990, 3, 35–43. [Google Scholar] [CrossRef]
- Georgoudis, G.; Raptis, K.; Koutserimpas, C. Cognitive Assessment of Musculoskeletal Pain: Validity and Reliability of the Greek Version of the Tampa Scale of Kinesiophobia in Patients Suffering from Chronic Low Back Pain. Maedica 2022, 17, 826–832. [Google Scholar] [CrossRef]
- Sullivan, M.J.L.; Bishop, S.R.; Pivik, J. The Pain Catastrophizing Scale: Development and validation. Psychol. Assess. 1995, 7, 524–532. [Google Scholar] [CrossRef]
- Christakou, A. Cross-cultural adaptation of the Pain Catastrophizing Scale in Greek clinical population. Hong Kong Physiother. J. 2021, 41, 89–98. [Google Scholar] [CrossRef]
- Onan, D.; Gokmen, D.; Ulger, O. The Fremantle Neck Awareness Questionnaire in Chronic Neck Pain Patients: Turkish Version, Validity and Reliability Study. Spine 2020, 45, E163–E169. [Google Scholar] [CrossRef]
- Yamashita, Y.; Nishigami, T.; Mibu, A.; Tanaka, K.; Wand, B.M.; Catley, M.J.; Higashi, T. Development and Psychometric Testing of the Japanese Version of the Fremantle Neck Awareness Questionnaire: A Cross-Sectional Study. J. Pain Res. 2021, 14, 311–324. [Google Scholar] [CrossRef]
- Koumantakis, G.A.; Nikolaki, F.; Kefalaki, F.; Tatsios, P.I.; Paraskevopoulos, E.; Vrouva, S. Cross-Cultural Adaptation, Reliability, and Validity of the Greek Version of the Fremantle Neck Awareness Questionnaire (FreNAQ-GR) in Patients with Chronic Neck Pain. Healthcare 2024, 12, 1985. [Google Scholar] [CrossRef]
- KINVENT. KFORCE User’s Manual; KINVENT: Montpellier, France, 2020; Volume 25, Available online: https://k-invent.com/wp-content/uploads/2020/09/K-FORCE-manual.En21_04_20.pdf (accessed on 18 November 2024).
- Tekin, F.; Can-Akman, T.; Kitiş, A. Evaluation of the validity and reliability of the KFORCE Sens® electrogoniometer in evaluation of wrist proprioception. Hand Surg. Rehabil. 2022, 41, 183–188. [Google Scholar] [CrossRef]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd International ed.; Pearson Education Ltd.: Harlow, UK, 2014. [Google Scholar]
- Schmidt, R.A. Methodology for studying motor performance. In Motor Control and Learning: A Behavioral Emphasis, 6th ed.; Schmidt, R.A., Lee, T.D., Winstein, C.J., Wulf, G., Zelaznik, H.N., Eds.; Human Kinetics: Champaign, IL, USA, 2019; pp. 23–56. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Wright, C. Validity, reliability and allied concepts. In Research in Health Care. Concepts, Designs and Methods; Stanley Thornes: Cheltenham, UK, 2000; pp. 123–139. [Google Scholar]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Hulley, S.B.; Cummings, S.R.; Browner, W.S.; Grady, D.; Newman, T.B. Designing Clinical Research: An Epidemiologic Approach, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; p. 79. [Google Scholar]
- Alahmari, K.; Reddy, R.S.; Silvian, P.; Ahmad, I.; Nagaraj, V.; Mahtab, M. Intra- and inter-rater reliability of neutral head position and target head position tests in patients with and without neck pain. Braz. J. Phys. Ther. 2017, 21, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Sá, S.; Silva, A.G. Repositioning error, pressure pain threshold, catastrophizing and anxiety in adolescents with chronic idiopathic neck pain. Musculoskelet. Sci. Pract. 2017, 30, 18–24. [Google Scholar] [CrossRef]
- Nagai, T.; Abt, J.P.; Sell, T.C.; Clark, N.C.; Smalley, B.W.; Wirt, M.D.; Lephart, S.M. Neck proprioception, strength, flexibility, and posture in pilots with and without neck pain history. Aviat. Space Environ. Med. 2014, 85, 529–535. [Google Scholar] [CrossRef]
- Portelli, A.; Reid, S.A. Cervical Proprioception in a Young Population Who Spend Long Periods on Mobile Devices: A 2-Group Comparative Observational Study. J. Manip. Physiol. Ther. 2018, 41, 123–128. [Google Scholar] [CrossRef]
- Espí-López, G.V.; Aguilar-Rodríguez, M.; Zarzoso, M.; Serra-Añó, P.; Martínez, D.E.L.A.F.J.M.; Inglés, M.; Marques-Sule, E. Efficacy of a proprioceptive exercise program in patients with nonspecific neck pain: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2021, 57, 397–405. [Google Scholar] [CrossRef]
- Swait, G.; Rushton, A.B.; Miall, R.C.; Newell, D. Evaluation of cervical proprioceptive function: Optimizing protocols and comparison between tests in normal subjects. Spine 2007, 32, E692–E701. [Google Scholar] [CrossRef]
- Röijezon, U.; Jull, G.; Blandford, C.; Daniels, A.; Michaelson, P.; Karvelis, P.; Treleaven, J. Proprioceptive Disturbance in Chronic Neck Pain: Discriminate Validity and Reliability of Performance of the Clinical Cervical Movement Sense Test. Front. Pain Res. 2022, 3, 908414. [Google Scholar] [CrossRef] [PubMed]
- Burke, S.; Lynch, K.; Moghul, Z.; Young, C.; Saviola, K.; Schenk, R. The reliability of the cervical relocation test on people with and without a history of neck pain. J. Man. Manip. Ther. 2016, 24, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.R.; Schreiber, K.L.; Dworkin, R.H.; Turk, D.C.; Baron, R.; Freeman, R.; Jensen, T.S.; Latremoliere, A.; Markman, J.D.; Rice, A.S.C.; et al. Optimizing and Accelerating the Development of Precision Pain Treatments for Chronic Pain: IMMPACT Review and Recommendations. J. Pain 2023, 24, 204–225. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) | Min–Max | |
---|---|---|
Age (y) | 46.32 (11.93) | 25–65 |
Height (m) | 1.71 (0.09) | 1.55–1.90 |
Body Mass (kg) | 74.66 (14.36) | 50–112 |
Body Mass Index (kg/m2) | 25.22 (3.64) | 18.14–35.80 |
Pain Duration (months) | 25.05 (29.71) | 3–122 |
Mean (SD) | Min-Max | |
---|---|---|
Clinical Status Questionnaires | ||
PI-VAS mean (0–10) | 3.98 (1.92) | 0–8 |
PI-VAS max (0–10) | 5.63 (2.32) | 1–10 |
NDI-GR (0–100) | 26.74 (10.38) | 10–52 |
TSK-GR (17–68) | 39.93 (7.06) | 26–55 |
PCS-GR (0–52) | 22.91 (9.86) | 6–48 |
FreNAQ-GR (0–36) | 15.24 (6.58) | 3–30 |
CS-ROM | ||
Flexion (°) | 45.39 (12.65) | 19.60–71.60 |
Extension (°) | 58.03 (13.58) | 26.40–86.60 |
R Side Flexion (°) | 39.10 (9.14) | 14.8–59.9 |
L Side Flexion (°) | 37.16 (7.86) | 17.0–60.2 |
R Rotation (°) | 66.96 (9.80) | 30.8–94.2 |
L Rotation (°) | 64.95 (11.21) | 18.2–80.6 |
Proprioception acuity | ||
Flexion AE (°) | 8.20 (5.79) | 0.45–31.75 |
Extension AE (°) | 7.63 (5.59) | 0.10–30.30 |
R Side Flexion AE (°) | 6.50 (4.21) | 0.40–20.30 |
L Side Flexion AE (°) | 6.52 (4.09) | 1.10–19.45 |
R Rotation AE (°) | 10.76 (7.10) | 0.50–27.85 |
L Rotation AE (°) | 8.41 (6.29) | 0.60–31.35 |
Mean (SD) 1 | Mean (SD) 2 | Mean (SD) 3 | ICC2,1 (95% CI) | SEM (°) | MDC95% (°) |
---|---|---|---|---|---|
Flexion AE | |||||
6.45 (5.48) | 8.32 (6.69) | 8.10 (5.61) | 0.76 (0.65–0.84) | 2.81 | 7.77 |
_ | 8.32 (6.69) | 8.10 (5.61) | 0.76 (0.63–0.85) | 3.02 | 8.38 |
Extension AE | |||||
5.84 (4.56) | 7.89 (5.75) | 7.38 (5.80) | 0.77 (0.66–0.86) | 2.40 | 6.66 |
_ | 7.89 (5.75) | 7.38 (5.80) | 0.87 (0.79–0.92) | 2.06 | 5.72 |
R Side Flexion AE | |||||
5.52 (3.63) | 6.18 (4.18) | 6.82 (4.46) | 0.75 (0.65–0.84) | 1.97 | 5.45 |
_ | 6.18 (4.18) | 6.82 (4.46) | 0.89 (0.81–0.93) | 1.38 | 3.83 |
L Side Flexion AE | |||||
5.71 (3.68) | 6.19 (4.00) | 6.85 (4.50) | 0.79 (0.69–0.86) | 1.82 | 5.05 |
_ | 6.19 (4.00) | 6.85 (4.50) | 0.84 (0.74–0.90) | 1.68 | 4.65 |
R Rotation AE | |||||
8.28 (5.48) | 9.91 (6.53) | 11.60 (7.99) | 0.77 (0.61–0.86) | 2.94 | 8.14 |
_ | 9.91 (6.53) | 11.60 (7.99) | 0.87 (0.74–0.93) | 2.39 | 6.62 |
L Rotation AE | |||||
7.83 (5.10) | 8.57 (6.17) | 8.26 (6.82) | 0.79 (0.69–0.86) | 2.80 | 7.77 |
_ | 8.57 (6.17) | 8.26 (6.82) | 0.87 (0.79–0.92) | 2.36 | 6.54 |
CS Proprioception | PI-VAS Mean | PI-VAS Max | NDI-GR | TSK-GR | PCS-GR | FreNAQ-GR | |
---|---|---|---|---|---|---|---|
Flexion | R | −0.09 | 0.00 | −0.07 | −0.14 | −0.02 | −0.03 |
p | 0.51 | 0.98 | 0.58 | 0.30 | 0.90 | 0.80 | |
Extension | R | 0.02 | 0.03 | 0.03 | 0.14 | 0.04 | 0.23 |
p | 0.85 | 0.80 | 0.82 | 0.30 | 0.77 | 0.08 | |
R Side Flexion | R | 0.16 | −0.01 | −0.28 | −0.31 | −0.27 | −0.27 |
p | 0.21 | 0.92 | 0.03 | 0.02 | 0.04 | 0.04 | |
L Side Flexion | R | 0.16 | 0.15 | −0.22 | −0.19 | −0.12 | 0.04 |
p | 0.232 | 0.27 | 0.09 | 0.14 | 0.37 | 0.77 | |
R Rotation | R | 0.133 | 0.05 | −0.06 | −0.03 | 0.10 | −0.22 |
p | 0.315 | 0.69 | 0.67 | 0.80 | 0.47 | 0.10 | |
L Rotation | R | −0.02 | −0.03 | −0.17 | −0.14 | 0.02 | −0.04 |
p | 0.87 | 0.81 | 0.19 | 0.27 | 0.85 | 0.74 |
CS-ROM | PI-VAS Mean | PI-VAS Max | NDI-GR | TSK-GR | PCS-GR | FreNAQ-GR | |
---|---|---|---|---|---|---|---|
Flexion | R | −0.074 | −0.003 | −0.211 | −0.104 | −0.221 | −0.133 |
p | 0.578 | 0.981 | 0.108 | 0.432 | 0.093 | 0.314 | |
Extension | R | −0.265 | −0.031 | −0.197 | −0.063 | −0.218 | −0.056 |
p | 0.043 | 0.814 | 0.136 | 0.638 | 0.097 | 0.674 | |
R Side Flexion | R | −0.176 | 0.010 | 0.040 | 0.167 | −0.185 | 0.254 |
p | 0.182 | 0.943 | 0.761 | 0.205 | 0.160 | 0.052 | |
L Side Flexion | R | −0.126 | 0.039 | 0.093 | 0.066 | −0.116 | 0.216 |
p | 0.342 | 0.767 | 0.482 | 0.621 | 0.381 | 0.101 | |
R Rotation | R | −0.272 | −0.197 | −0.189 | −0.054 | −0.271 | 0.013 |
p | 0.037 | 0.135 | 0.152 | 0.684 | 0.038 | 0.924 | |
L Rotation | R | −0.066 | −0.029 | −0.035 | 0.010 | −0.082 | −0.006 |
p | 0.617 | 0.827 | 0.792 | 0.943 | 0.539 | 0.966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumantakis, G.A.; Gkouma, S.; Floka, C.; Tatsios, P.I.; Moutzouri, M.; Sakellari, V. Reliability and Validity of the KFORCE Sens® Inertial Sensor for Measuring Cervical Spine Proprioception in Patients with Non-Specific Chronic Neck Pain. Brain Sci. 2024, 14, 1165. https://doi.org/10.3390/brainsci14121165
Koumantakis GA, Gkouma S, Floka C, Tatsios PI, Moutzouri M, Sakellari V. Reliability and Validity of the KFORCE Sens® Inertial Sensor for Measuring Cervical Spine Proprioception in Patients with Non-Specific Chronic Neck Pain. Brain Sciences. 2024; 14(12):1165. https://doi.org/10.3390/brainsci14121165
Chicago/Turabian StyleKoumantakis, George A., Stamatina Gkouma, Christina Floka, Petros I. Tatsios, Maria Moutzouri, and Vasiliki Sakellari. 2024. "Reliability and Validity of the KFORCE Sens® Inertial Sensor for Measuring Cervical Spine Proprioception in Patients with Non-Specific Chronic Neck Pain" Brain Sciences 14, no. 12: 1165. https://doi.org/10.3390/brainsci14121165
APA StyleKoumantakis, G. A., Gkouma, S., Floka, C., Tatsios, P. I., Moutzouri, M., & Sakellari, V. (2024). Reliability and Validity of the KFORCE Sens® Inertial Sensor for Measuring Cervical Spine Proprioception in Patients with Non-Specific Chronic Neck Pain. Brain Sciences, 14(12), 1165. https://doi.org/10.3390/brainsci14121165