Relationship Between DWI-Based Acute Ischemic Stroke Volume, Location and Severity of Dysphagia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functional Evaluation of Dysphagia
2.2. MRI Parameters
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACA | anterior cerebral artery |
ADC | apparent diffusion coefficient |
ASPECTS | Alberta stroke program early CT score |
DOSS | Dysphagia Outcome and Severity Scale |
DWI | diffusion-weighted imaging |
FEES | fiberoptic endoscopic assessment of swallowing |
MCA | middle cerebral artery |
MRI | magnetic resonance imaging |
PAS | Penetration–Aspiration Scale |
PCA | posterior cerebral artery |
P-score | Pooling score |
ROIs | regions of interest |
References
- Warnecke, T.; Ritter, M.A.; Kröger, B.; Oelenberg, S.; Teismann, I.; Heuschmann, P.U.; Ringelstein, E.B.; Nabavi, D.G.; Dziewas, R. Fiberoptic Endoscopic Dysphagia Severity Scale Predicts Outcome after Acute Stroke. Cerebrovasc. Dis. 2009, 28, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.K.; Brailey, K.; Priestly, D.H.; Herrington, L.R.; Weisberg, L.A.; Foundas, A.L. Aspiration in patients with acute stroke. Arch. Phys. Med. Rehabil. 1998, 79, 14–19. [Google Scholar] [CrossRef]
- Kidd, D.; Lawson, J.; Nesbitt, R.; MacMahon, J. The natural history and clinical consequences of aspiration in acute stroke. QJM Int. J. Med. 1995, 88, 409–413. [Google Scholar]
- Chang, M.C.; Choo, Y.J.; Seo, K.C.; Yang, S. The Relationship Between Dysphagia and Pneumonia in Acute Stroke Patients: A Systematic Review and Meta-Analysis. Front. Neurol. 2022, 13, 834240. [Google Scholar] [CrossRef] [PubMed]
- D’Netto, P.; Rumbach, A.; Dunn, K.; Finch, E. Clinical Predictors of Dysphagia Recovery After Stroke: A Systematic Review. Dysphagia 2023, 38, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Labeit, B.; Michou, E.; Hamdy, S.; Trapl-Grundschober, M.; Suntrup-Krueger, S.; Muhle, P.; Bath, P.M.; Dziewas, R. The assessment of dysphagia after stroke: State of the art and future directions. Lancet Neurol. 2023, 22, 858–870. [Google Scholar] [CrossRef]
- Jones, C.A.; Colletti, C.M.; Ding, M.-C. Post-stroke Dysphagia: Recent Insights and Unanswered Questions. Curr. Neurol. Neurosci. Rep. 2020, 20, 61. [Google Scholar] [CrossRef]
- Mallio, C.A.; Parillo, M.; Zobel, B.B.; Parizel, P.M.; Quattrocchi, C.C. Effect of Exposure to Gadodiamide and Brain Irradiation on T1-Weighted Images and ADC Maps of the Dentate Nucleus. J. Magn. Reson. Imaging 2020, 52, 1525–1530. [Google Scholar] [CrossRef]
- Edlow, B.L.; Hurwitz, S.; Edlow, J.A. Diagnosis of DWI-negative acute ischemic stroke. Neurology 2017, 89, 256–262. [Google Scholar] [CrossRef]
- Qin, Y.; Tang, Y.; Liu, X.; Qiu, S. Neural basis of dysphagia in stroke: A systematic review and meta-analysis. Front. Hum. Neurosci. 2023, 17, 1077234. [Google Scholar] [CrossRef]
- Guanyabens, N.; Cabib, C.; Ungueti, A.; Duh, M.; Arreola, V.; Palomeras, E.; Fernández, M.T.; Nascimento, W.; Clavé, P.; Ortega, O. The Impact of Periventricular Leukoaraiosis in Post-stroke Oropharyngeal Dysphagia: A Swallowing Biomechanics and MRI-Based Study. Dysphagia 2023, 38, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Flowers, H.L.; Skoretz, S.A.; Streiner, D.L.; Silver, F.L.; Martino, R. MRI-Based Neuroanatomical Predictors of Dysphagia after Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2011, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pilato, F.; Verdolotti, T.; Calandrelli, R.; Valente, I.; Monelli, E.; Cottonaro, S.; Capone, F.; Motolese, F.; Iaccarino, G.; Rossi, S.S.; et al. Color-coded multiphase computed tomography angiography may predict outcome in anterior circulation acute ischemic stroke. J. Neurol. Sci. 2021, 430, 119989. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, K.H.; Purdy, M.; Falk, J.; Gallo, L. The Dysphagia Outcome and Severity Scale. Dysphagia 1999, 14, 139–145. [Google Scholar] [CrossRef]
- Farneti, D.; Fattori, B.; Nacci, A.; Mancini, V.; Simonelli, M.; Ruoppolo, G.; Genovese, E. The Pooling-score (P-score): Inter-and intra-rater reliability in endoscopic assessment of the severity of dysphagia. Acta Otorhinolaryngol. Ital. 2014, 34, 105–110. [Google Scholar]
- Alkhuwaiter, M.; Davidson, K.; Hopkins-Rossabi, T.; Martin-Harris, B. Scoring the Penetration–Aspiration Scale (PAS) in Two Conditions: A Reliability Study. Dysphagia 2022, 37, 407–416. [Google Scholar] [CrossRef]
- Quattrocchi, C.C.; Errante, Y.; Mallio, C.A.; Santini, D.; Tonini, G.; Zobel, B.B. Brain metastatic volume and white matter lesions in advanced cancer patients. J. Neuro-Oncol. 2013, 113, 451–458. [Google Scholar] [CrossRef]
- Mallio, C.A.; Vullo, G.L.; Messina, L.; Zobel, B.B.; Parizel, P.M.; Quattrocchi, C.C. Increased T1 Signal Intensity of the Anterior Pituitary Gland on Unenhanced Magnetic Resonance Images After Chronic Exposure to Gadodiamide. Investig. Radiol. 2020, 55, 25–29. [Google Scholar] [CrossRef]
- Brunelli, N.; Altamura, C.; Mallio, C.A.; Vullo, G.L.; Marcosano, M.; Bach-Pages, M.; Zobel, B.B.; Quattrocchi, C.C.; Vernieri, F. Cerebral Hemodynamics, Right-to-Left Shunt and White Matter Hyperintensities in Patients with Migraine with Aura, Young Stroke Patients and Controls. Int. J. Environ. Res. Public Health 2022, 19, 8575. [Google Scholar] [CrossRef]
- Hajipour, M.; Sobhani-Rad, D.; Zainaee, S.; Farzadfar, M.T.; Khaniki, S.H. Dysphagia following cerebellar stroke: Analyzing the contribution of the cerebellum to swallowing function. Front. Neurol. 2023, 14, 1276243. [Google Scholar] [CrossRef] [PubMed]
- Sasegbon, A.; Hamdy, S. The Role of the Cerebellum in Swallowing. Dysphagia 2023, 38, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Pilato, F.; Valente, I.; Calandrelli, R.; Alexandre, A.; Arena, V.; Dell’Aquila, M.; Broccolini, A.; Della Marca, G.; Morosetti, R.; Frisullo, G.; et al. Clot evaluation and distal embolization risk during mechanical thrombectomy in anterior circulation stroke. J. Neurol. Sci. 2022, 432, 120087. [Google Scholar] [CrossRef]
- Lapa, S.; Foerch, C.; Singer, O.C.; Hattingen, E.; Luger, S. Ischemic Lesion Location Based on the ASPECT Score for Risk Assessment of Neurogenic Dysphagia. Dysphagia 2021, 36, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Galovic, M.; Leisi, N.; Müller, M.; Weber, J.; Tettenborn, B.; Brugger, F.; Abela, E.; Weder, B.; Kägi, G. Neuroanatomical correlates of tube dependency and impaired oral intake after hemispheric stroke. Eur. J. Neurol. 2016, 23, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Mosier, K.M.; Liu, W.C.; Maldjian, J.A.; Shah, R.; Modi, B. Lateralization of cortical function in swallowing: A functional MR imaging study. Am. J. Neuroradiol. 1999, 20, 1520–1526. [Google Scholar]
- Hamdy, S.; Rothwell, J.C.; Brooks, D.J.; Bailey, D.; Aziz, Q.; Thompson, D.G. Identification of the Cerebral Loci Processing Human Swallowing with H2 15O PET Activation. J. Neurophysiol. 1999, 81, 1917–1926. [Google Scholar] [CrossRef]
- Dziewas, R.; Sörös, P.; Ishii, R.; Chau, W.; Henningsen, H.; Ringelstein, E.B.; Knecht, S.; Pantev, C. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage 2003, 20, 135–144. [Google Scholar] [CrossRef]
- Mihai, P.G.; Otto, M.; Domin, M.; Platz, T.; Hamdy, S.; Lotze, M. Brain imaging correlates of recovered swallowing after dysphagic stroke: A fMRI and DWI study. Neuroimage Clin. 2016, 12, 1013–1021. [Google Scholar] [CrossRef]
- Bonkhoff, A.K.; Grefkes, C. Precision medicine in stroke: Towards personalized outcome predictions using artificial intelligence Brain 2022, 145, 457–475. 145. [CrossRef]
- Nakamori, M.; Shimizu, Y.; Takahashi, T.; Toko, M.; Yamada, H.; Hayashi, Y.; Ushio, K.; Yoshikawa, K.; Hiraoka, A.; Yoshikawa, M.; et al. Swallowing sound index analysis using electronic stethoscope and artificial intelligence for patients with Parkinson’s disease. J. Neurol. Sci. 2023, 454, 120831. [Google Scholar] [CrossRef]
- Nakamori, M.; Ishikawa, R.; Watanabe, T.; Toko, M.; Naito, H.; Takahashi, T.; Simizu, Y.; Yamazaki, Y.; Maruyama, H. Swallowing sound evaluation using an electronic stethoscope and artificial intelligence analysis for patients with amyotrophic lateral sclerosis. Front. Neurol. 2023, 14, 1212024. [Google Scholar] [CrossRef] [PubMed]
- Helmy, E.; Elnakib, A.; ElNakieb, Y.; Khudri, M.; Abdelrahim, M.; Yousaf, J.; Ghazal, M.; Contractor, S.; Barnes, G.N.; El-Baz, A. Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey. Biomedicines 2023, 11, 1858. [Google Scholar] [CrossRef] [PubMed]
- Mallio, C.A.; Piervincenzi, C.; Carducci, F.; Quintiliani, L.; Parizel, P.M.; Pantano, P.; Quattrocchi, C.C. Within-network brain connectivity in Crohn’s disease patients with gadolinium deposition in the cerebellum. Neuroradiology 2020, 62, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Supekar, K.; Menon, V.; Dougherty, R.F. Resting-State Functional Connectivity Reflects Structural Connectivity in the Default Mode Network. Cereb. Cortex 2009, 19, 72–78. [Google Scholar] [CrossRef]
Overall | Mild Dysphagia | Moderate–Severe Dysphagia | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | IQR | Median | IQR | Median | IQR | |||||
Total ischemic volume | 2.08 | 0.38 | 12.28 | 1.55 | 0.54 | 6.01 | 2.81 | 0.30 | 21.34 | 0.32 |
Right frontal lobe | 0.51 | 0.21 | 4.80 | 1.37 | 0.38 | 2.24 | 0.21 | 0.12 | 10.10 | 0.53 |
Right parietal lobe | 3.83 | 1.06 | 6.00 | 3.43 | 2.57 | 4.92 | 4.03 | 0.56 | 32.89 | 1 |
Right occipital lobe | 1.00 | 0.16 | 21 | 0.06 | 0.06 | 0.06 | 11 | 0.58 | 30.96 | 0.40 |
Right temporal lobe | 0.46 | 0.20 | 16.34 | 8.27 | 0.20 | 16.34 | 0.46 | 0.33 | 13.89 | 1 |
Right basal ganglia | 0.54 | 0.22 | 1.56 | 0.55 | 0.31 | 3 | 0.19 | 0.16 | 0.22 | 0.22 |
Right cerbellum | 1.05 | 0.83 | 1.55 | 1.19 | 0.83 | 1.55 | 1.05 | 0.16 | 2.67 | 1 |
Left frontal lobe | 4.46 | 0.26 | 11.13 | 6.14 | 0.65 | 9.67 | 2.96 | 0.16 | 13.20 | 0.64 |
Left parietal lobe | 3.23 | 1.07 | 17.49 | 2.09 | 1.78 | 4.56 | 4.37 | 0.16 | 21.34 | 0.56 |
Left occipital lobe | 1.28 | 0.16 | 3.20 | 0.79 | 0.30 | 1.28 | 1.66 | 0.14 | 18.10 | 0.89 |
Left temporal lobe | 5.31 | 1.45 | 15 | 3.54 | 3.54 | 3.54 | 7.08 | 1.45 | 15 | 1 |
Left basal ganglia | 0.37 | 0.23 | 0.85 | 0.50 | 0.37 | 0.59 | 0.26 | 0.16 | 1.59 | 0.52 |
Left cerebellum | 0.35 | 0.2 | 10.94 | 0.43 | 0.43 | 0.43 | 0.27 | 0.13 | 21.45 | 1 |
Brainstem | 0.27 | 0.13 | 0.38 | 1.13 | 0.16 | 2.09 | 0.25 | 0.09 | 0.38 | 0.53 |
Right ACA | 24.39 | 16.18 | 32.60 | 24.39 | 16.18 | 32.60 | ||||
Right MCA | 1.19 | 0.42 | 5.63 | 2.24 | 0.38 | 5.25 | 1.06 | 0.46 | 8.83 | 1 |
Right PCA | 0.15 | 0.06 | 40.91 | 0.06 | 0.06 | 0.06 | 20.53 | 0.15 | 40.91 | 0.67 |
Right vertebrobasilar | 0.61 | 0.16 | 1.55 | 1.19 | 0.50 | 1.82 | 0.31 | 0.13 | 1.05 | 0.48 |
Left ACA | 0.73 | 0.20 | 1.27 | 0.20 | 0.20 | 0.20 | 1.27 | 1.27 | 1.27 | 1 |
Left MCA | 4.42 | 0.37 | 12.60 | 4.56 | 0.60 | 11.97 | 4.35 | 0.23 | 19.39 | 0.73 |
Left PCA | 6.61 | 0.15 | 21.40 | 6.61 | 0.15 | 21.40 | ||||
Left vertebrobasilar | 0.34 | 0.19 | 10.94 | 0.43 | 0.43 | 0.43 | 0.24 | 0.13 | 21.45 | 1 |
Right sovra-tentorial | 1.32 | 0.38 | 8.83 | 1.48 | 0.37 | 4.54 | 1.32 | 0.46 | 40.91 | 0.37 |
Left sovra-tentorial | 4.56 | 0.30 | 16.88 | 4.56 | 0.80 | 11.97 | 3.35 | 0.19 | 20.36 | 0.73 |
Cerebellum | 0.94 | 0.43 | 2.11 | 0.83 | 0.43 | 1.55 | 1.05 | 0.43 | 2.67 | 1 |
Brainstem | 0.27 | 0.13 | 0.38 | 1.13 | 0.16 | 2.09 | 0.25 | 0.09 | 0.38 | 0.53 |
Anterior circulation | 2.62 | 0.38 | 14.39 | 2.24 | 0.54 | 6.60 | 5.62 | 0.28 | 21.34 | 0.40 |
Posterior circulation | 0.51 | 0.37 | 1.55 | 0.83 | 0.43 | 1.55 | 0.47 | 0.25 | 1.86 | 0.72 |
DOSS | P-Score | PAS | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Total | −0.441 | 0.0003 * | 0.305 | 0.0328 * | −0.048 | 0.7481 |
Right frontal lobe | −0.504 | 0.0789 | −0.190 | 0.6527 | −0.509 | 0.1979 |
Right parietal lobe | −0.605 | 0.0488 * | 0.560 | 0.1492 | 0.296 | 0.4771 |
Right occipital lobe | −0.450 | 0.4469 | 0.757 | 0.453 | −0.988 | 0.1008 |
Right temporal lobe | −0.595 | 0.1589 | 0.089 | 0.867 | −0.131 | 0.8043 |
Right basal ganglia | 0.203 | 0.6001 | −0.532 | 0.2195 | −0.488 | 0.2666 |
Right cerebellum | −0.162 | 0.7944 | 0.252 | 0.6821 | −0.112 | 0.8578 |
Left frontal lobe | −0.067 | 0.8066 | −0.332 | 0.3194 | −0.384 | 0.2435 |
Left parietal lobe | −0.320 | 0.2271 | 0.175 | 0.6071 | 0.258 | 0.4438 |
Left occipital lobe | −0.456 | 0.2177 | 0.517 | 0.2937 | −0.891 | 0.1089 |
Left temporal lobe | −0.500 | 0.3127 | 0.737 | 0.4725 | −1 | 1 |
Left basal ganglia | −0.581 | 0.0372 * | −0.425 | 0.2212 | −0.096 | 0.8062 |
Left cerebellum | −0.999 | 0.0001 * | 0.923 | 0.0768 | −0.946 | 0.0538 |
Brainstem | 0.293 | 0.573 | −0.463 | 0.3556 | −0.701 | 0.1868 |
Right ACA | ||||||
Right MCA | −0.582 | 0.0028 * | 0.328 | 0.1837 | 0.115 | 0.6483 |
Right PCA | −0.946 | 0.2111 | 0.757 | 0.4532 | −0.988 | 0.1006 |
Right vertebrobasilar | 0.153 | 0.6735 | −0.109 | 0.7647 | −0.345 | 0.3283 |
Left ACA | −1 | 1 | ||||
Left MCA | −0.363 | 0.0485 * | −0.043 | 0.849 | −0.074 | 0.7495 |
Left PCA | −0.734 | 0.0965 | 1 | 0.0001 * | 1 | 0 |
Left vertebrobasilar | −0.999 | 0.0001 * | 0.923 | 0.077 | −0.946 | 0.0536 |
Right supratentorial | −0.523 | 0.0051 * | 0.443 | 0.0504 | −0.036 | 0.8802 |
Left supratentorial | −0.421 | 0.0184 * | 0.110 | 0.6166 | −0.076 | 0.7356 |
Cerebellum | −0.850 | 0.0076 * | 0.884 | 0.0036 * | −0.226 | 0.5908 |
Brainstem | 0.293 | 0.573 | −0.463 | 0.3556 | −0.701 | 0.1868 |
Anterior circulation | −0.471 | 0.0002 * | 0.320 | 0.0412 * | −0.037 | 0.8194 |
Posterior circulation | −0.577 | 0.0389 * | 0.509 | 0.0758 | −0.185 | 0.565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallio, C.A.; Vertulli, D.; Di Gennaro, G.; Ascrizzi, M.T.; Capone, F.; Grattarola, C.; Luccarelli, V.; Greco, F.; Beomonte Zobel, B.; Di Lazzaro, V.; et al. Relationship Between DWI-Based Acute Ischemic Stroke Volume, Location and Severity of Dysphagia. Brain Sci. 2024, 14, 1185. https://doi.org/10.3390/brainsci14121185
Mallio CA, Vertulli D, Di Gennaro G, Ascrizzi MT, Capone F, Grattarola C, Luccarelli V, Greco F, Beomonte Zobel B, Di Lazzaro V, et al. Relationship Between DWI-Based Acute Ischemic Stroke Volume, Location and Severity of Dysphagia. Brain Sciences. 2024; 14(12):1185. https://doi.org/10.3390/brainsci14121185
Chicago/Turabian StyleMallio, Carlo A., Daniele Vertulli, Gianfranco Di Gennaro, Maria Teresa Ascrizzi, Fioravante Capone, Chiara Grattarola, Vitaliana Luccarelli, Federico Greco, Bruno Beomonte Zobel, Vincenzo Di Lazzaro, and et al. 2024. "Relationship Between DWI-Based Acute Ischemic Stroke Volume, Location and Severity of Dysphagia" Brain Sciences 14, no. 12: 1185. https://doi.org/10.3390/brainsci14121185
APA StyleMallio, C. A., Vertulli, D., Di Gennaro, G., Ascrizzi, M. T., Capone, F., Grattarola, C., Luccarelli, V., Greco, F., Beomonte Zobel, B., Di Lazzaro, V., & Pilato, F. (2024). Relationship Between DWI-Based Acute Ischemic Stroke Volume, Location and Severity of Dysphagia. Brain Sciences, 14(12), 1185. https://doi.org/10.3390/brainsci14121185