Evaluation of the Relation between Ictal EEG Features and XAI Explanations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Data Pre-Processing
- They did not contain ictal activity;
- The channel list was different from that of the rest of the recordings;
- The sampling frequency was different from that of the rest of the recordings;
- There was only a single recording for each patient.
2.3. Dataset Segmentation, Training, and Testing
2.4. Deep Learning Models
- Papers were included in PubMed and Clarivate;
- Papers were published after 2015;
- Papers were available via open access;
- Papers described bi-class classification (ictal and non-ictal);
- Papers described the use of raw EEG data;
- Papers described the implementation of a deep learning model;
- Papers described patient-specific models;
- Papers described the use of performance metrics.
2.5. Model Evaluation
2.6. Feature Computation
2.7. Explainable Artificial Intelligence
2.7.1. Shapley Additive Explanations
2.7.2. Local Interpretable Model-Agnostic Explanations
2.8. Correlation Computation
2.9. Computing Hardware
3. Results
3.1. Model Performance
3.2. Correlation between Importance Values and EEG Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5, a022426. [Google Scholar] [CrossRef]
- Kammerman, S.; Wasserman, L. Seizure disorders: Part 1. Classification and diagnosis. West. J. Med. 2001, 175, 99–103. [Google Scholar] [CrossRef]
- WHO. Epilepsy. 2022. Available online: https://www.who.int/en/news-room/fact-sheets/detail/epilepsy (accessed on 21 November 2022).
- Zack, M.M.; Kobau, R. National and State Estimates of the Numbers of Adults and Children with Active Epilepsy—United States, 2015. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 821–825. [Google Scholar] [CrossRef]
- IMSS. Hasta Siete de Cada 10 Derechohabientes con Epilepsia Logran el Control de su Enfermedad: IMSS. 2020. Available online: https://www.imss.gob.mx/prensa/archivo/202002/072#:~:text=Entre%20seis%20y%20siete%20de,convulsivas%20que%20caracterizan%20este%20padecimiento (accessed on 31 October 2021).
- Noriega-Morales, G.; Shkurovich-Bialik, P. Situación de la epilepsia en México y América Latina. An. Médi. Asoc. Médica Cent. Méd. ABC 2020, 65, 224–232. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Qadir, J.; Sivathamboo, S.; Kwan, P.; Kuhlmann, L.; O’Brien, T.; Razi, A. Machine learning for predicting epileptic seizures using EEG signals: A review. IEEE Rev. Biomed. Eng. 2020, 14, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Kader, M.F.; Islam, S.R.; Rahman, A.B.; Kamal, M.S.; Toha, M.U.; Kwak, K.S. Machine learning and deep learning approaches for brain disease diagnosis: Principles and recent advances. IEEE Access 2021, 9, 37622–37655. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Jia, Z.; Ma, Y.; Wang, J. Representation based on ordinal patterns for seizure detection in EEG signals. Comput. Biol. Med. 2020, 126, 104033. Available online: https://www.sciencedirect.com/science/article/pii/S0010482520303644 (accessed on 21 November 2023). [CrossRef]
- Veeranki, Y.R.; McNaboe, R.; Posada-Quintero, H.F. EEG-Based Seizure Detection Using Variable-Frequency Complex Demodulation and Convolutional Neural Networks. Signals 2023, 4, 816–835. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4793–4813. [Google Scholar] [CrossRef] [PubMed]
- Rojat, T.; Puget, R.; Filliat, D.; Del Ser, J.; Gelin, R.; Díaz-Rodríguez, N. Explainable artificial intelligence (xai) on timeseries data: A survey. arXiv 2021, arXiv:2104.00950. [Google Scholar]
- Zhang, X.; Yao, L.; Dong, M.; Liu, Z.; Zhang, Y.; Li, Y. Adversarial representation learning for robust patient-independent epileptic seizure detection. IEEE J. Biomed. Health Inform. 2020, 24, 2852–2859. [Google Scholar] [CrossRef]
- Mansour, M.; Khnaisser, F.; Partamian, H. An explainable model for EEG seizure detection based on connectivity features. arXiv 2020, arXiv:2009.12566. [Google Scholar]
- Gschwandtner, L. Deep Learning for Detecting Interictal EEG Biomarkers to Assist Differential Epilepsy Diagnosis. Master’s Thesis, Comenius University Bratislavia, Bratislava, Slovakia, 2020. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, arXiv:1705.0787430. [Google Scholar] [CrossRef]
- Dissanayake, T.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Deep learning for patient-independent epileptic seizure prediction using scalp EEG signals. IEEE Sens. J. 2021, 21, 9377–9388. [Google Scholar] [CrossRef]
- Rashed-Al-Mahfuz, M.; Moni, M.A.; Uddin, S.; Alyami, S.A.; Summers, M.A.; Eapen, V. A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic electroencephalogram (EEG) data. IEEE J. Transl. Eng. Health Med. 2021, 9, 2000112. [Google Scholar] [CrossRef] [PubMed]
- Rathod, P.; Bhalodiya, J.; Naik, S. Epilepsy Detection using Bi-LSTM with Explainable Artificial Intelligence. In Proceedings of the 2022 IEEE 19th India Council International Conference (INDICON), Kochi, India, 24–26 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Raab, D.; Theissler, A.; Spiliopoulou, M. XAI4EEG: Spectral and spatio-temporal explanation of deep learning-based seizure detection in EEG time series. Neural Comput. Appl. 2023, 35, 10051–10068. [Google Scholar] [CrossRef]
- Ahmad, I.; Yao, C.; Li, L.; Chen, Y.; Liu, Z.; Ullah, I.; Shabaz, M.; Wang, X.; Huang, K.; Li, G.; et al. An efficient feature selection and explainable classification method for EEG-based epileptic seizure detection. J. Inf. Secur. Appl. 2024, 80, 103654. [Google Scholar] [CrossRef]
- Shoeb, A.H. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Shoeb, A. CHB-MIT Scalp EEG Database. 2010. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 26 January 2023).
- Detti, P.; Vatti, G.; Zabalo Manrique de Lara, G. EEG synchronization analysis for seizure prediction: A study on data of noninvasive recordings. Processes 2020, 8, 846. [Google Scholar] [CrossRef]
- Detti, P. Siena Scalp EEG Database. 2020. Available online: https://physionet.org/content/siena-scalp-eeg/1.0.0/ (accessed on 26 January 2023).
- Shah, V.; Von Weltin, E.; Lopez, S.; McHugh, J.R.; Veloso, L.; Golmohammadi, M.; Obeid, I.; Picone, J. The temple university hospital seizure detection corpus. Front. Neuroinform. 2018, 12, 83. [Google Scholar] [CrossRef]
- Obeid, I.; Picone, J. The temple university hospital EEG data corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef]
- Shoeb, A.; Guttag, J. Application of Machine Learning to Epileptic Seizure Detection. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Omnipress, Haifa, Israel, 21–24 June 2010; pp. 975–982. [Google Scholar]
- Wang, X.; Wang, X.; Liu, W.; Chang, Z.; Kärkkäinen, T.; Cong, F. One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG. Neurocomputing 2021, 459, 212–222. [Google Scholar] [CrossRef]
- Sánchez-Hernández, S.E.; Salido-Ruiz, R.A.; Torres-Ramos, S.; Román-Godínez, I. Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals. Sensors 2022, 22, 3066. [Google Scholar] [CrossRef]
- Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The Usefulness of Mean and Median Frequencies in Electromyography Analysis. In Computational Intelligence in Electromyography Analysis—A Perspective on Current Applications and Future Challenges; IntechOpen: London, UK, 2012; pp. 195–220. [Google Scholar] [CrossRef]
- Bergil, E.; Bozkurt, M.R.; Oral, C. An Evaluation of the Channel Effect on Detecting the Preictal Stage in Patients With Epilepsy. Clin. EEG Neurosci. 2020, 52, 376–385. [Google Scholar] [CrossRef]
- Kokoska, S.; Zwillinger, D. CRC Standard Probability and Statistics Tables and Formulae; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Aarabi, A.; Fazel-Rezai, R.; Aghakhani, Y. A fuzzy rule-based system for epileptic seizure detection in intracranial EEG. Clin. Neurophysiol. 2009, 120, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.; Bruce, A. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S. shap.explainers.Partition. 2018. Available online: https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html (accessed on 21 November 2022).
- Owen, G. Values of games with a priori unions. In Mathematical Economics and Game Theory; Springer: Berlin/Heidelberg, Germany, 1977; pp. 76–88. [Google Scholar] [CrossRef]
- Ribeiro, M.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, San Diego, CA, USA, 12–17 June 2016; Association for Computational Linguistics: Stroudsburg, PA, USA, 2016; pp. 97–101. [Google Scholar] [CrossRef]
- Sheskin, D.J. Parametric and Nonparametric Statistical Procedures; CRC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Python Software Foundation. Python. 2018. Available online: https://www.python.org/ (accessed on 10 June 2023).
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Burrello, A.; Cavigelli, L.; Schindler, K.; Benini, L.; Rahimi, A. Laelaps: An energy-efficient seizure detection algorithm from long-term human iEEG recordings without false alarms. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy, 25–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 752–757. [Google Scholar] [CrossRef]
- Liu, X.; Richardson, A.G. Edge deep learning for neural implants: A case study of seizure detection and prediction. J. Neural Eng. 2021, 18, 046034. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Amin, S.U.; Alsulaiman, M.; Muhammad, G. Applying deep learning for epilepsy seizure detection and brain mapping visualization. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2019, 15, 1–17. [Google Scholar] [CrossRef]
- Bahr, A.; Schneider, M.; Francis, M.A.; Lehmann, H.M.; Barg, I.; Buschhoff, A.S.; Wulff, P.; Strunskus, T.; Faupel, F. Epileptic seizure detection on an ultra-low-power embedded RISC-V processor using a convolutional neural network. Biosensors 2021, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Boonyakitanont, P.; Lek-Uthai, A.; Songsiri, J. ScoreNet: A Neural network-based post-processing model for identifying epileptic seizure onset and offset in EEGs. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2474–2483. [Google Scholar] [CrossRef]
- Qayyum, A.; Qadir, J.; Bilal, M.; Al-Fuqaha, A. Secure and robust machine learning for healthcare: A survey. IEEE Rev. Biomed. Eng. 2020, 14, 156–180. [Google Scholar] [CrossRef] [PubMed]
- Theissler, A.; Spinnato, F.; Schlegel, U.; Guidotti, R. Explainable AI for Time Series Classification: A review, taxonomy and research directions. IEEE Access 2022, 10, 100700–100724. [Google Scholar] [CrossRef]
- Cui, S.; Duan, L.; Qiao, Y.; Xiao, Y. Learning EEG synchronization patterns for epileptic seizure prediction using bag-of-wave features. J. Ambient. Intell. Humaniz. Comput. 2018, 14, 15557–15572. [Google Scholar] [CrossRef]
- Cho, S.; Lee, G.; Chang, W.; Choi, J. Interpretation of Deep Temporal Representations by Selective Visualization of Internally Activated Nodes. arXiv 2020, arXiv:2004.12538. [Google Scholar]
- Bennett, J.D.; John, S.E.; Grayden, D.B.; Burkitt, A.N. Universal neurophysiological interpretation of EEG brain-computer interfaces. In Proceedings of the 2021 9th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 22–24 February 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Gabeff, V.; Teijeiro, T.; Zapater, M.; Cammoun, L.; Rheims, S.; Ryvlin, P.; Atienza, D. Interpreting deep learning models for epileptic seizure detection on EEG signals. Artif. Intell. Med. 2021, 117, 102084. [Google Scholar] [CrossRef]
- Upadhyaya, D.P.; Prantzalos, K.; Thyagaraj, S.; Shafiabadi, N.; Fernandez-BacaVaca, G.; Sivagnanam, S.; Majumdar, A.; Sahoo, S.S. Machine Learning Interpretability Methods to Characterize Brain Network Dynamics in Epilepsy. medRxiv 2023. [Google Scholar] [CrossRef]
- Alshaya, H.; Hussain, M. EEG-Based Classification of Epileptic Seizure Types Using Deep Network Model. Mathematics 2023, 11, 2286. [Google Scholar] [CrossRef]
- Pinto, M.F.; Batista, J.; Leal, A.; Lopes, F.; Oliveira, A.; Dourado, A.; Abuhaiba, S.I.; Sales, F.; Martins, P.; Teixeira, C.A. The goal of explaining black boxes in EEG seizure prediction is not to explain models’ decisions. Epilepsia Open 2023, 8, 285–297. [Google Scholar] [CrossRef]
Database | Patients | Seizure Types | Source Montage Category | Channels after Pre-Processing |
---|---|---|---|---|
CHB-MIT Scalp EEG Database | 24 | Not specified | Bipolar | Fp1-F7, F7-T7, T7-P7, P7-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, T7-FT9, FT9-FT10, FT10-T8 |
Siena Scalp EEG Database | 10 | Focal onset impaired awareness (IAS), focal onset without impaired awareness (WIAS), focal to bilateral tonic–clonic (FBTC) | Referential | Fp1-F7, F7-T3, T3-T5, T5-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T4, T4-T6, T6-O2, Fz-Cz, Cz-Pz |
TUH EEG Seizure Corpus | 21 | Tonic–clonic (tcsz), focal non-specific (fnsz), generalized non-specific (gnsz), absence seizure (absz), complex-partial seizure (cpsz) | Referential | Fp1-F7, F7-T3, T3-T5, T5-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T4, T4-T6, T6-O2, Fz-Cz, Cz-Pz |
Characteristic | Value |
---|---|
Model | CNN |
Training type | Patient-specific |
Accuracy (CHB-MIT) | |
Sensitivity (CHB-MIT) | |
Specificity (CHB-MIT) |
Feature Name |
---|
Median Frequency (MedFreq) [32] |
Complexity [33] |
Skewness [34] |
Mobility [33] |
Kurtosis [34] |
Interquartile Range (IR) [34] |
Peak Frequency (PkFreq) [35] |
Median Absolute Deviation (MAD) [36] |
Root Mean Square (RMS) [34] |
Sample Entropy (SampEn) [37] |
Range [34] |
Mean [34] |
Number of Zero Crossings (ZC) [33] |
Standard Deviation (STD) [34] |
Model | Overlap (%) | Sensitivity | Specificity | Accuracy | F1-Score | AUC–ROC |
---|---|---|---|---|---|---|
CHB-MIT | ||||||
Wang_1d | 50 | |||||
70 | ||||||
80 | ||||||
Siena | ||||||
Wang_1d | 50 | |||||
70 | ||||||
80 | ||||||
TUSZ | ||||||
Wang_1d | 50 | |||||
70 | ||||||
80 |
Size of Correlation | Interpretation |
---|---|
to ( to ) | Very high positive (negative) |
to ( to ) | High positive (negative) |
to ( to ) | Moderate positive (negative) |
to ( to ) | Low positive (negative) |
to ( to ) | Negligible correlation |
Patient | Dataset | Accuracy | XAI Method | Top Correlation |
---|---|---|---|---|
PN05 | Siena | SHAP | Low/STD (, p-value ) | |
Low/MAD (, p-value ) | ||||
Low/IR (, p-value ) | ||||
1027 | TUSZ | SHAP | Full/IR (, p-value ) | |
Full/RMS (, p-value ) | ||||
Low/Range (, p-value ) | ||||
4456 | TUSZ | SHAP | Beta/IR (, p-value ) | |
Beta/RMS (, p-value ) | ||||
Beta/STD (, p-value ) | ||||
6904 | TUSZ | SHAP | Beta/IR (, p-value ) | |
Beta/MAD (, p-value ) | ||||
Beta/RMS (, p-value ) | ||||
LIME | Beta/MAD (, p-value ) | |||
Beta/RMS (, p-value ) | ||||
Beta/STD (, p-value ) | ||||
6563 | TUSZ | LIME | Beta/MAD (, p-value ) | |
Beta/RMS (, p-value ) | ||||
Beta/STD (, p-value ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hernández, S.E.; Torres-Ramos, S.; Román-Godínez, I.; Salido-Ruiz, R.A. Evaluation of the Relation between Ictal EEG Features and XAI Explanations. Brain Sci. 2024, 14, 306. https://doi.org/10.3390/brainsci14040306
Sánchez-Hernández SE, Torres-Ramos S, Román-Godínez I, Salido-Ruiz RA. Evaluation of the Relation between Ictal EEG Features and XAI Explanations. Brain Sciences. 2024; 14(4):306. https://doi.org/10.3390/brainsci14040306
Chicago/Turabian StyleSánchez-Hernández, Sergio E., Sulema Torres-Ramos, Israel Román-Godínez, and Ricardo A. Salido-Ruiz. 2024. "Evaluation of the Relation between Ictal EEG Features and XAI Explanations" Brain Sciences 14, no. 4: 306. https://doi.org/10.3390/brainsci14040306
APA StyleSánchez-Hernández, S. E., Torres-Ramos, S., Román-Godínez, I., & Salido-Ruiz, R. A. (2024). Evaluation of the Relation between Ictal EEG Features and XAI Explanations. Brain Sciences, 14(4), 306. https://doi.org/10.3390/brainsci14040306