A Review of Childhood Developmental Changes in Attention as Indexed in the Electrical Activity of the Brain
Abstract
:1. Introduction
2. Stages of Attentional Processing
2.1. Early Attentional Selectivity, Filter Tasks and Cognitive Correlates
2.2. Late Attentional Selectivity, Selective-Set Tasks, and Cognitive Correlates
3. Age-Related Childhood Changes in ERP Components and Attentional Processing
3.1. Early Stage of Attentional Processing: Filtering
3.2. Late Stage of Attentional Processing: Formation of Selective Sets
3.2.1. Findings on Active Deviance Detection
3.2.2. Findings on Passive Deviance Detection
4. A Bidirectional Serial Processing: Bottom-Up with Top-Down Processing
5. Age-Related Childhood Changes in EEG and ERO Components of Attentional Processing
5.1. Oscillatory Dynamics, Principles, and Theories
5.2. Attentional Processing and Resting-State EEG Components in TDC and a Clinical Model
5.3. Attentional Processing and EROs in TDC and ADHD
5.3.1. Event-Related Gamma Oscillation: Findings and Theory
5.3.2. Event-Related Theta Oscillation: Findings and Theory
6. Conclusions
- -
- The task that the experiment uses determines the type and stage of attentional processing. Early attentional selectivity is studied with the filter tasks (between-channel selection, channel selectivity) and late attentional selectivity with the selective-set tasks (active deviance detection, passive deviance detection, target search, attention priming, shifting).
- -
- Attention has an independent and differential effect on all other aspects of information processing. Thus, it deserves scientific interest as a cognitive phenomenon that must be explained and a confounding variable that must be controlled.
- -
- Typical development of attention is quantitatively represented in latency variations of ERP components. However, attention is qualitatively represented when a task is difficult. Late attentional processing becomes operational, late ERP components appear, and components vary in amplitudes.
- -
- The resting EEG quantitatively represents the typical development of attention, where a transition from a dominance of the slower oscillations to the faster ones occurs.
- -
- ADHD is a useful clinical model for studying attention since the basic and most frequent symptom of the disorder is inattention.
- -
- In ADHD, the resting EEG development follows the TDC trend, albeit at later ages. Such a delay also applies to neuroanatomical development and age-related changes in neuropsychological test scores. These findings support the maturational lag model.
- -
- Some of the ADHD findings indicate atypical and relatively permanent organization of attentional processes and the respective brain areas. These findings support the maturational deviance model.
- -
- ADHD is also a result of deviant connectivity patterns between brain areas. The structural and functional impairment is associated with a nodal redistribution of the default network that involves high local clustering and low global integrity. Findings indicate four types of EEG clusters and the accompanying behavioral patterns resembling the inattention, impulsivity, and hyperactivity symptoms of ADHD.
- -
- According to the MUM, attentional processing is represented by variations in the gamma oscillation within the context of a wholistically functioning brain.
- -
- Studies on clinical models (e.g., ADHD) may produce groundbreaking findings and formulations on the nature of attention.
Funding
Conflicts of Interest
References
- Banich, M.T.; Compton, R.J. Cognitive Neuroscience, 3rd ed.; Wadsworth Cengage Learning: Belmont, CA, USA, 2011. [Google Scholar]
- Goldstein, B. Cognitive Psychology, 4th ed.; Cengage Learning: Stamford, CT, USA, 2011; pp. 84–117. [Google Scholar]
- Wickens, C.D. Processing resources of attention. In Varieties in Attention; Parasuraman, R., Davies, R., Eds.; Academic Press: New York, NY, USA, 1984; pp. 120–142. [Google Scholar]
- Plude, D.; Enns, J.T.; Brodeur, D. The development of selective attention: A lifespan overview. Acta Psychol. 1994, 86, 227–272. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; van der Stelt, O. Attention and selection in the growing child: Views derived from developmental psychophysiology. Biol. Psychol. 2000, 54, 55–106. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, D.E. Perception and Communication. Pergamon: London, UK, 1958. [Google Scholar]
- Karakas, S. A descriptive framework for information processing: An integrative approach. Int. J. Psychophysiol. 1997, 26, 353–368. [Google Scholar] [CrossRef]
- Karakas, S. A comparative review of the psychophysiology of attention in children with and without attention deficit hyperactivity disorder. Int. J. Psychophysiol. 2022, 177, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, J.A.; Deutsch, D. Attention: Some theoretical considerations. Psychol. Rev. 1963, 70, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Karakas, S.; Basar, E. Models and theories of brain function within a framework of behavioral cognitive psychology. Int. J. Psychophysiol. 2006, 60, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Courchesne, E. Neurophysiological correlates of cognitive development: Changes in long-latency event-related potentials from childhood to adulthood. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.M.; Nelson, C.A. Age-related changes in the electrophysiological response to visual stimulus novelty: A topographical approach. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Ridderinkhof, K.R.; Bashore, T.R.; van der Molen, M.W.; Band, G.P.H. The speed of information processing: Qualitative versus quantitative changes with age. In Cognitive Changes Due to Aging and Fatigue as Revealed in the Electric Brain Activity; Falkenstein, M., Hohnsbein, J., Ullsperger, P., Eds.; Bundesanstalt fuer Arbeitsschutz und Arbeitsmedizin: Dortmund, Germany, 1999; pp. 172–182. [Google Scholar]
- Sokolov, E.N. Higher nervous functions: The orienting reflex. Annu. Rev. Physiol. 1963, 25, 545–580. [Google Scholar] [CrossRef]
- Naatanen, R.; Paavilainen, P.; Rinne, T.; Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin. Neurophysiol. 2008, 118, 2544–2590. [Google Scholar] [CrossRef]
- Davis, P.A. Effects of acoustic stimuli on the waking human brain. J. Neurophysiol. 1939, 2, 494–499. [Google Scholar] [CrossRef]
- Dawson, G.D. A summation technique for detecting small signals in a large irregular background. J. Physiol. Lond. 1951, 115, 2–3. [Google Scholar]
- Sutton, S.; Braren, M.; Zubin, J.; John, E.R. Evoked-potential correlates of stimulus uncertainty. Science 1965, 150, 1187–1188. [Google Scholar] [CrossRef] [PubMed]
- Karakas, S.; Barry, R. A brief historical perspective on the advent of brain oscillations in the biological and psychological disciplines. Neurosci. Biobehav. Rev. 2017, 73, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.; Clarke, R.L.; Johnstone, S.J. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. qualitative and quantitative electroencephalography. Clin. Neurophysiol. 2003, 114, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.; Johnstone, S.J.; Clarke, A.R. A review of electrophysiology in attention-deficit/hyperactivity disorder II: Event-related potentials. Clin. Neurophysiol. 2003, 114, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Naatanen, R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav. Brain Sci. 1990, 13, 201–288. [Google Scholar] [CrossRef]
- Verhaeghen, P.; De Meersman, L. Aging and the Stroop effect: A meta-analysis. Psychol. Aging 1998, 13, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Comalli, P.E.; Wapner, S.; Werner, H. Interference of Stroop color-word test in childhood, adulthood, and aging. J. Genet. Psychol. 1962, 100, 47–53. [Google Scholar] [CrossRef]
- Erdogan Bakar, E.; Karakas, S. Spontaneous age-related changes of attention in unmedicated boys with attention deficit hyperactivity disorder. Clin. Neuropsychol. 2020, 20, 664–698. [Google Scholar] [CrossRef]
- Shepp, B.E.; Barrett, S.E. The development of perceived structure and attention: Evidence from divided and selective attention tasks. J. Exp. Child Psychol. 1991, 51, 434–458. [Google Scholar] [CrossRef]
- Akhtar, N.; Enns, J.T. Relations between covert orienting and filtering in the development of visual attention. J. Exp. Child Psychol. 1989, 48, 315–334. [Google Scholar] [CrossRef] [PubMed]
- Ridderinkhof, K.R.; van der Molen, M.W.; Band, G.P.H.; Bashore, T.R. Sources of interference from irrelevant information: A developmental study. J. Exp. Child Psychol. 1997, 65, 315–341. [Google Scholar] [CrossRef] [PubMed]
- Ridderinkhof, K.R.; van der Molen, M.W. A psychophysiological analysis of developmental differences in the ability to resist interference. Child Dev. 1995, 66, 1040–1056. [Google Scholar] [CrossRef]
- Van der Molen, M.W. Developmental changes in inhibitory ability evidence from psychophysiological measures. Biol. Psychol. 2000, 54, 207–239. [Google Scholar] [CrossRef] [PubMed]
- Wijker, W. ERP Ontogenesis in Childhood. In Unpublished Doctoral Dissertation; University of Amsterdam: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Berman, S.; Friedman, D. The development of selective attention as reflected by event-related potentials. xp. Child Psychol. 1995, 59, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Courchesne, E. Event-related brain potentials: Comparison between children and adults. Science 1977, 197, 589–592. [Google Scholar] [CrossRef]
- Hillyard, S.A.; Picton, T.W. Event-related brain potentials and selective information processing in man. In Progress in Clinical Neurophysiology, Cognitive Components in Cerebral Event-related Potentials and Selective Attention; Desmedt, J.E., Ed.; Karger: Basle, Switzerland, 1979; Volume 6, pp. 1–52. [Google Scholar]
- Naatanen, R. Attention and Brain Function; Lawrence Erlbaum Assoc: London, UK, 1992. [Google Scholar]
- Van der Stelt, O.; Kok, A.; Smulders, F.T.Y.; Snel, J.; Gunning, W.B. Cerebral event-related.potentials associated with selective attention to color: Developmental changes from childhood to adulthood. Psychophysiology 1998, 35, 227–239. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 128–2148. [Google Scholar] [CrossRef]
- Pritchard, W.S. Psychophysiology of P300. Psychol. Bull. 1981, 89, 306–540. [Google Scholar] [CrossRef]
- Naatanen, R.; Schröger, E.; Karakas, S.; Tervaniemi, M.; Paavilainen, P. Development of a memory trace for a complex sound in the human brain. Neuroreport 1993, 4, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Kok, A.; Rooijakkers, J.A.J. Comparison of event-related potentials of young children and adults in a visual recognition and word reading task. Psychophysiology 1985, 22, 11–23. [Google Scholar] [CrossRef]
- Taylor, M.J.; Eals, M. An event-related potential study of development using visual semantic tasks. J. Psychophysiol. 1996, 10, 125–139. [Google Scholar]
- Squires, N.K.; Squires, K.C.; Hillyard, S.A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 1975, 38, 387–401. [Google Scholar] [CrossRef]
- Polich, J.; Criado, J.R. Neuropsychology and neuropharmacology of P3a and P3b. Int. J. Psychophysiol 2006, 60, 172–185. [Google Scholar] [CrossRef]
- Courchesne, E.; Ganz, L.; Norcia, A.M. Event-related brain potentials to human faces in infants. Child Dev. 1981, 52, 804–811. [Google Scholar] [CrossRef]
- Schulman-Galambos, C.; Galambos, R. Cortical responses from adults and infants to complex visual stimuli. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 425–435. [Google Scholar] [CrossRef]
- Stige, S.; Fjell, A.M.; Smith, L.; Lindgren, M.; Walhovd, K.B. The development of visual P3a and P3b. Dev. Neuropsychol. 2007, 32, 563–584. [Google Scholar] [CrossRef]
- Van Dinteren, R.; Arns, M.; Jongsma, M.L.A.; Kessels, R.P.C. P300 development across the lifespan: A systematic review and meta-analysis. PLoS ONE 2014, 9, e87347. [Google Scholar] [CrossRef]
- Riggins, T.; Scott, L.S. P300 development from infancy to adolescence. Psychophysiology 2019, 57, e13346. [Google Scholar] [CrossRef]
- Courchesne, E. Chronology of Postnatal Human Brain Development: Event-Related Potential, Positron Emission Tomography, Myelinogenesis, and Synaptogenesis Studies in Event-Related Brain Potentials: Basic Issues and Applications; Rohrbaugh, J.W., Parasuraman, R., Johnson, R., Jr., Eds.; Oxford University Press: Oxford, UK, 1990; pp. 210–241. [Google Scholar]
- Wienke, A.S.; Başar-Eroğlu, C.; Schmiedt-Fehr, C.; Mathes, B. Novelty N2-P3a complex and theta oscillations reflect improving neural coordination within frontal brain networks during adolescence. Front. Behav. Neurosci. 2018, 12, 218. [Google Scholar] [CrossRef]
- Mathes, B.; Khalaidovski, K.; Wienke, A.S.; Schmiedt-Fehr, C.; Basar-Eroglu, C. Maturation of the P3 and concurrent oscillatory processes during adolescence. Clin. Neurophysiol. 2016, 127, 2599–2609. [Google Scholar] [CrossRef]
- Alho, K.; Sainio, K.; Sajaniemi, N.; Reinikainen, K.; Naatanen, R. Electrical brain response of human newborns to pitch change of an acoustic stimulus. Electroencephalogr. Clin. Neurophysiol. 1990, 77, 151–155. [Google Scholar] [CrossRef]
- Lang, A.H.; Earola, O.; Korpilahti, P.; Holopainen, I.; Salo, S.; Aaltonen, O. Practical issues in the clinical application of mismatch negativity. Ear Hear. 1995, 16, 118–130. [Google Scholar] [CrossRef]
- Kraus, N.; McGee, T.; Micco, A.; Carrell, T.; Sharma, A.; Nicol, T. Mismatch negativity in school-age children to speech stimuli that are just perceptibly different. Electroencephalogr. Clin. Neurophysiol. 1993, 88, 123–130. [Google Scholar] [CrossRef]
- Cs´epe, V. On the origin and development of the mismatch negativity. Ear Hear. 1995, 16, 91–104. [Google Scholar] [CrossRef]
- Jansson-Verkasalo, E.; Cheour, M.; Ceponiene, R.; Boyd, S.; Kushnerenko, H.; Tervaniemi, H. Maturation of MMN. In Abstracts of the First International Workshop on Mismatch Negativity and Its Clinical Applications; Tervaniemi, M., Escera, C., Eds.; University of Helsinki: Helsinki, Finland, 1998; p. 60. [Google Scholar]
- Ridderinkhof, K.R.; Bashore, T.R. Using event-related brain potentials to draw inferences about human information processing. In Age Differences in Word and Language Processing; Allen, P.A., Bashore, T.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 294–313. [Google Scholar]
- Neisser, U. Cognitive Psychology; Appleton-Century-Crofts: New York, NY, USA, 1967. [Google Scholar]
- Özdemir, A.K.; Karakaş, S.; Çakmak, E.D.; Tüfekçi, D.İ.; Arıkan, O. Time-frequency component analyzer and its application to brain oscillatory activity. J. Neurosci. Methods 2005, 145, 107–125. [Google Scholar] [CrossRef]
- Berger, H. Uber des elektroenkephalogram. Arch. Psychiatry Nervenkr. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Adrian, E.D. Olfactory reactions in the brain of the hedgehog. J. Physiol. 1942, 101, 459–473. [Google Scholar] [CrossRef]
- Mountcastle, V.B. Preface. In Induced Rhythms in the Brain; Basar, E., Bullock, T.H., Eds.; Birkhauser: Boston, MA, USA, 1992; pp. 217–231. [Google Scholar]
- Başar, E. (Ed.) Dynamics of Sensory and Cognitive Processing by the Brain; Springer: London, UK, 1988. [Google Scholar]
- Başar, E. Brain function and oscillations I. Brain oscillations. In Principles and Approaches; Springer: Berlin, Germany, 1998. [Google Scholar]
- Başar, E. Brain function and oscillations II. Integrative brain function. In Neurophysiology and Cognitive Processes; Springer: Berlin, Germany, 1999. [Google Scholar]
- Karakas, S. A review of theta oscillation and its functional correlates. Int. J. Psychophysiol. 2020, 159, 82–99. [Google Scholar] [CrossRef]
- Karakas, S.; Basar, E. Special issue on models and theories of brain function with special emphasis on cognitive processing. Int. J. Psychophysiol. 2006, 60, 97–101. [Google Scholar] [CrossRef]
- Karakas, S.; Basar, E. Preface: Quiet revolutions in neuroscience. Int. J. Psychophysiol. 2006, 60, 98–100. [Google Scholar] [CrossRef]
- Başar, E. The theory of the whole-brain-work. Int. J. Psychophysiol. 2006, 60, 133–138. [Google Scholar] [CrossRef]
- Johnstone, S.J.; Barry, J.R.; Clarke, A.R. Ten years on: A follow-up of review of ERP research inattention deficit hyperactivity disorder. Clin. Neurophysiol. 2013, 124, 644–657r. [Google Scholar] [CrossRef]
- Benninger, C.; Matthis, P.; Scheffner, D. EEG development of healthy boys and girls: Results of a longitudinal study. Electroencephalogr. Clin. Neurophysiol. 1984, 57, 1–12. [Google Scholar] [CrossRef]
- Clarke, A.; Barry, R.; McCarthy, R.; Selikowitz, M.; Brown, C.R. EEG evidence for a new conceptualization of attention deficit hyperactivity disorder. Clin. Neurophysiol. 2002, 113, 1036–1044. [Google Scholar] [CrossRef]
- Matthis, P.; Scheffner, D.; Benninger, C.; Lipinski, C.; Stolzis, L. Changes in the background activity of the electroencephalogram according to age. Electroenceph. Clin. Neurophysiol. 1980, 49, 626–635. [Google Scholar] [CrossRef]
- Matousek, M.; Petersen, I. Frequency analysis of the EEG in normal children and normal adolescents. In Automation of Clinical Electroencephalography; Kellaway, P., Petersen, I., Eds.; Raven: New York, NY, USA, 1973; pp. 75–102. [Google Scholar]
- Clarke, A.; Barry, R.; McCarthy, R.; Selikowitz, M. EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 2001, 112, 2098–2105. [Google Scholar] [CrossRef]
- Klimesch, W.; Schimke, H.; Schwaiger, J. Episodic and semantic memory: An analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 428–441. [Google Scholar] [CrossRef]
- Klimesch, W.; Schack, B.; Schabus, M.; Doppelmayr, M.; Gruber, W.; Sauseng, P. Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance. Brain Res. 2004, 19, 302–316. [Google Scholar] [CrossRef]
- Karakas, S.; Bekçi, B.; Çakmak, E.D.; Erzengin, O.U.; Aydın, H.A. Information processing in sleep based on the event-related activity of the brain. Sleep Biol. Rhythms. 2007, 5, 28–39. [Google Scholar] [CrossRef]
- Rechtschaffen, A.; Kales, A. Manual of Standardised Terminology Techniques and Scoring System for Sleep Stages of Human Subjects; National Institutes of Health Publication No.204; Government Printing Office: Washington, DC, USA, 1968; pp. 1–12.
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-V, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Kinsbourne, M. The control of attention by interaction between the hemispheres. In Attention and Performance; Kornblum, S., Ed.; Academic Press: Cambridge, MA, USA, 1973; Volume 4, pp. 239–256. [Google Scholar]
- Shaw, P.; Kabani, N.J.; Lerch, J.P.; Eckstrand, K.; Lenroot, R.; Gogtay, N.; Greenstein, D.; Clasen, L.; Evans, A.; Rapoport, J.L.; et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 2008, 28, 3586–3594. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Malek, M.; Watson, B.; Sharp, W.; Evans, A.; Greenstein, D. Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol. Psychiatry 2012, 72, 191–197. [Google Scholar] [CrossRef]
- Hervey, A.S.; Epstein, J.N.; Curry, J.F. Neuropsychology of adults with attention deficit/hyperactivity disorder: A meta-analytic review. Neuropsychology 2004, 18, 485–503. [Google Scholar] [CrossRef] [PubMed]
- Schoechlin, C.; Engel, R.R. Neuropsychological performance in adult attention deficit hyperactivity disorder: Meta-analysis of empirical data. Arch. Clin. Neuropsychol. 2005, 20, 727–744. [Google Scholar] [CrossRef]
- Klinkerfuss, G.H.; Lange, P.H.; Weinberg, W.A.; O’Leary, J.L. Electroencephalogram abnormalities of children with hyperkinetic behavior. Neurology 1965, 15, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Bresnahan, S.M.; Barry, R.J. Specificity of quantitative EEG analysis in adults with attention deficit hyperactivity disorder. Psychiatry Res. 2002, 112, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Poil, S.S.; Bollmann, S.; Ghisleni, C.; O’Gorman, R.L.; Klaver, P.; Ball, J.; Eich-Höchli, D.; Brandeis, D.; Michels, L. Age-dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin. Neurophysiol. 2014, 125, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, M.J.; Clarke, A.R.; Barry, R.J.; McCarthy, R.; Selikowitz, M. EEG abnormalities in adolescent females with AD/HD. Clin. Neurophysiol. 2007, 118, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Giertuga, K.; Zakrzewska, M.Z.; Bielecki, M.; Racicka-Pawlukiewicz, E.; Kossuth, M.; Cybulska-Klosowicz, A. Age-related changes in resting-state EEG activity in attention-deficit/hyperactivity disorder: A cross-sectional study. Front. Hum. Neurosci. 2017, 11, 285. [Google Scholar] [CrossRef]
- Chabot, R.J.; Serfontein, G. Quantitative electroencephalographic profiles of children with attention deficit disorder. Biol. Psychiatry. 1996, 40, 951–963. [Google Scholar] [CrossRef]
- Arns, M.; Conners, C.K.; Kraemer, H.C. A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. J. Atten. Disord. 2013, 17, 374–383. [Google Scholar] [CrossRef]
- Hermens, D.F.; Cooper, N.J.; Kohn, M.; Clarke, S.; Gordon, E.; Williams, L.M. Predicting stimulant medication response in ADHD: Evidence from an integrated profile of neuropsychological, psychophysiological and clinical factors. J. Integr. Neurosci. 2005, 4, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Grayson, D.S.; Ray, S.; Carpenter, S.; Iyer, S.; Dias, T.G.; Stevens, C.; Nigg, J.T.; Fair, D.A. Structural and functional rich club organization of the brain in children and adults. PLoS ONE 2014, 9, e88297. [Google Scholar] [CrossRef]
- Posner, J.; Park, C.; Wang, Z. Connecting the dots: A review of resting connectivity MRI studies in attention deficit hyperactivity disorder. Neuropsychol. Rev. 2014, 24, 3–15. [Google Scholar] [CrossRef]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Cao, M.; Shu, N.; Cao, Q.; Wang, Y.; He, Y. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol. Neurobiol. 2014, 50, 1111–1112. [Google Scholar] [CrossRef]
- Snyder, S.; Hall, J.R. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J. Clin. Neurophysiol. 2006, 23, 441–456. [Google Scholar] [CrossRef]
- Clarke, A.R.; Barry, R.J.; Dupuy, F.E.; Heckel, L.D.; McCarthy, R.; Selikowitz, M.; Johnstone, S.J. Behavioral difference between EEG-defined subgroups of children with attention-deficit hyperactivity disorder. Clin. Neurophysiol. 2011, 122, 1333–1341. [Google Scholar] [CrossRef]
- Faraone, S.V.; Doyle, A.E.; Mick, E.; Biederman, J. Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am. J. Psychiatry 2001, 158, 1052–1057. [Google Scholar] [CrossRef]
- Karakas, S.; Basar-Eroglu, C.; Ozesmi, Ç.; Kafadar, H.; Erzengin, O.U. Gamma response of the brain: A multifunctional oscillation that represents a bottom-up with top-down processing. Int. J. Psychophysiol. 2001, 39, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Karakas, S.; Basar, E. Oscillatory responses of the brain and their cognitive correlates. In Encyclopedia of Neuroscience, 3rd ed.; Adelman, G., Smith, B.H., Eds.; Elsevier: San Diego, CA, USA, 2004. [Google Scholar]
- Karakaş, S.; Arıkan, O.; Çakmak, E.D.; Bekçi, B.; Doğutepe, E.; Tüfekçi, İ. Early gamma response of sleep is sensory/perceptual in origin. Int. J. Psychophysiol. 2006, 62, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Karakaş, S.; Tüfekçi, İ.; Bekçi, B.; Çakmak, E.D.; Doğutepe, E.; Erzengin, Ö.U.; Özkan, A.; Arıkan, O. Early time-locked gamma response and gender specificity. Int. J. Psychophysiol. 2006, 60, 225–239. [Google Scholar] [CrossRef]
- Karakaş, S.; Bekçi, B.; Erzengin, Ö.U. Early gamma response in human neuroelectric activity is correlated with neuropsychological test scores. Neurosci. Lett. 2003, 340, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Debener, S.; Herrmann, C.S.; Kranczioch, C.; Gembris, D.; Engel, A.K. Topdown attentional processing enhances auditory evoked gamma band activity. Neuroreport 2003, 14, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Landau, A.N.; Esterman, M.; Robertson, L.C.; Bentin, S.; Prinzmetal, W. Different effects of voluntary and involuntary attention on EEG activity in the gamma band. J. Neurosci. 2007, 27, 11986–11990. [Google Scholar] [CrossRef]
- Tiitinen, H.T.; Sinkkonen, J.; Reinikainen, K.; Alho, K.; Lavikainen, J.; Naatanen, R. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 1993, 364, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Gruber, W.R.; Klimesch, W.; Sauseng, P.; Doppelmayr, M. Alpha phase synchronization predicts P1 and N1 latency and amplitude size. Cereb. Cortex 2005, 15, 371–377. [Google Scholar] [CrossRef]
- Hermann, C.S.; Lenz, D.; Junge, S.; Busch, N.A.; Maess, B. Memory-matches evoke human gamma-responses. BMC Neurosci. 2004, 5, 13. [Google Scholar] [CrossRef]
- Hermann, C.S.; Munk, M.H.J.; Engel, A.K. Cognitive functions of gamma-band activity: Memory match and utilization. Trends Cogn. Sci. 2004, 8, 347–355. [Google Scholar] [CrossRef]
- Hermann, C.S.; Mecklinger, A. Gamma activity in human EEG is related to highspeed memory comparisons during object selective attention. Vis. Cogn. 2001, 8, 593–608. [Google Scholar] [CrossRef]
- Sauseng, P.; Klimesch, W.; Gruber, W.R.; Birbaumer, N. Cross-frequency phase synchronization: A brain mechanism of memory matching and attention. NeuroImage 2008, 40, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, J.; Kolev, V. Developmental changes in the event-related EEG theta response and P300. Electroencephalogr. Clin. Neurophysiol. 1997, 104, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Yordanova, J.; Kolev, V. Developmental changes in the theta response system: A single sweep analysis. J. Psychophysiol. 1998, 12, 113–126. [Google Scholar]
- Yordanova, J.; Banaschewski, T.; Kolev, V.; Woerner, W.; Rothenberger, A. Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder—Evidence from event-related gamma oscillations. Clin. Neurophysiol. 2001, 112, 1096–1108. [Google Scholar] [CrossRef] [PubMed]
- Schadow, J.; Lenz, D.; Dettler, N.; Fründ, I.; Herrmann, C.S. Early gamma band responses reflect anticipatory top-down modulation in the auditory cortex. NeuroImage 2009, 47, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Chabot, R.J.; di Michele, F.; Prichep, L. The role of quantitative electroencephalography in child and adolescent psychiatric disorders. Child Adolesc. Psychiatr. Clin. N. Am. 2005, 14, 21–53. [Google Scholar] [CrossRef]
- Martino, A.D.; Ghaffari, M.; Curchack, J.; Reiss, P.; Hyde, C.; Vannucci, M. Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2008, 64, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Weissman, D.H.; Roberts, K.C.; Visscher, K.M.; Woldorff, M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 2006, 9, 971–978. [Google Scholar] [CrossRef]
- Lenz, D.; Krauel, K.; Schadow, J.; Baving, L.; Duzel, E.; Herrmann, C.S. Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children. Brain Res. 2008, 1235, 117–132. [Google Scholar] [CrossRef]
- Lenz, D.; Karuel, K.; Flechtner, H.H.; Schadow, J.; Hinrichs, H.; Hermann, C.S. Altered evoked gamma-band responses reveal impaired early visual processing in ADHD children. Neuropsychologia 2010, 48, 1985–1993. [Google Scholar] [CrossRef]
- Satterfield, J.H.; Schell, A.M.; Nicholas, T. Preferential neural processing of attended stimuli in attention-deficit hyperactivity disorder and normal boys. Psychophysiology 1994, 31, 1–10. [Google Scholar] [CrossRef]
- Van Mourik, R.; Oosterlaan, J.; Heslenfeld, D.J.; Konig, C.E.; Sergeant, J.A. When distraction is not distracting: A behavioral and ERP study on distraction in ADHD. Clin. Neurophysiol. 2007, 118, 1855–1865. [Google Scholar] [CrossRef] [PubMed]
- Frank, Y.; Seiden, J.; Napolitano, B. Visual event-related potentials and reaction time in normal adults, normal children, and children with attention deficit hyperactivity disorder: Differences in short-term memory processing. Int. J. Neurosci. 1996, 88, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Jonkman, L.; Kenemans, J.; Kemner, C.; Verbaten, M.; van Engeland, H. Dipole source localization of event-related brain activity indicative of an early visual selective attention deficit in ADHD children. Clin. Neurophysiol. 2004, 115, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, S.J.; Barry, R.J. Auditory event-related potentials to a two-tone discrimination paradigm in attention deficit hyperactivity disorder. Psychiatry Res. 1996, 64, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Senderecka, M.; Grabowska, A.; Gerc, K.; Szewczyk, J.; Chmylak, R. Event-related potentials in children with attention deficit hyperactivity disorder: An investigation using an auditory oddball task. Int. J. Psychophysiol. 2012, 85, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.; Kornmüller, A.E. Eine methodik der ableitung lokalisierter potential schwankungenaus subcorticalen Hirngebieten. Arch Psychiatr. Nervenkr. 1938, 109, 1–30. [Google Scholar] [CrossRef]
- Grastyan, E.; Karmos, G.; Vereczkey, L.; Kellenyi, L. The hippocampal electrical correlates of the homeostatic regulation of motivation. Electroencephalogr. Clin. Neurophysiol. 1966, 21, 34–53. [Google Scholar] [CrossRef]
- Grastyan, E.; Lissak, K.; Madarasz, I.; Donhoffer, H. Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr. Clin. Neurophysiol. 1959, 11, 409–430. [Google Scholar] [CrossRef]
- Aleksanov, S.N.; Vainstein, I.I.; Preobrashenskaya, L.A. Relationship between electrical potentials of the hippocampus, amygdala, and neocortex during instrumental conditioned reflexes. Neurosci. Behav. Physiol. 1959, 16, 199–207. [Google Scholar] [CrossRef]
- Karmos, G.; Grastyan, E. Influence of hippocampal lesions on simple and delayed conditional reflexes. Acta Physiol. Acad. Sci. Hung. 1962, 21, 215–224. [Google Scholar] [PubMed]
- Karmos, G.; Grastyan, E.; Losonczy, H.; Vereczkey, L.; Grosz, J. The possible role of the hippocampus in the organization of the orientation reaction. Acta Physiol. Acad. Sci. Hung. 1965, 26, 131–141. [Google Scholar] [PubMed]
- Buzsaki, G.; Haubenreiser, J.; Grastyan, E.; Czopf, J.; Kellenyi, L. Hippocampal slow wave activity during appetitive and aversive conditioning in the cat. Electroencephalogr. Clin. Neurophysiol. 1981, 51, 276–290. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J. Hippocampal neurophysiology in the behaving animal. In The Hippocampus Book; Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 474–548. [Google Scholar]
- Miller, R. Cortico-Hippocampal Interplay and the Representation of Contexts in the Brain; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Miller, R. Discovery and General Behavioural Correlates of the Hippocampal Theta RhyCortico-Hippocampal Interplay and the Representation of Contexts in the Brain; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1991; pp. 60–86. [Google Scholar]
- Başar, E.; Basar-Eroglu, C.; Karakas, S.; Schürmann, M. Gamma, alpha, delta and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 2001, 39, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Basar-Eroglu, C.; Basar, E.; Demiralp, T.; Schürmann, M. P300-response: Possible psychophysiological correlates in delta and theta frequency channels: A review. Int. J. Psychophysiol. 1992, 13, 161–179. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha, and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Klimesch, W.; Freunberger, R.; Sauseng, P.; Gruber, W. A short review of slow phase synchronization and memory: Evidence for control processes in different memory systems? Brain Res. 2008, 1235, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.; Clark, A.; McCarthy, M.; Selikowitz, M. EEG coherence in attention-deficit/hyperactivity disorder: A comparative study of two DSM-IV types. Clin. Neurophysiol. 2002, 113, 579–585. [Google Scholar] [CrossRef]
- Demiralp, T.; Bayraktaroğlu, Z.; Lenz, D.; Junge, S.; Busch, N.A. Gamma amplitudes are coupled to EEG during the visual-to-theta phase in human perception. Int. J. Physiol. 2007, 64, 24–30. [Google Scholar] [CrossRef]
- Basar, E.; Hari, R.; Lopes Da Silva, F.H.; Schürmann, M. (Eds.) Brain alpha activity—New aspects and functional correlates. Int. J. Psychophysiol. 1997, 26, 1–482. [Google Scholar]
- Basar, E.; Schürmann, M.; Basar-Eroglu, C.; Karakas, S. Alpha oscillations in brain functioning: An integrative theory. Int. J. Psychophysiol. 1997, 26, 5–29. [Google Scholar] [CrossRef]
- Karakas, S.; Erzengin, O.U.; Basar, E. A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses. Clin. Neurophysiol. 2000, 111, 1719–1732. [Google Scholar] [CrossRef]
- Schack, B.; Klimesch, W.; Sauseng, P. Phase synchronization between theta and upper alpha oscillations in a working memory task. Int. J. Psychophysiol. 2005, 57, 105–114. [Google Scholar] [CrossRef]
Stage of Attentional Selectivity | Type of Information Processing | Relevant Experimental Tasks | Interference | Type of Attention |
---|---|---|---|---|
Early Attentional Selectivity | Filtering | Between-channel tasks | Perceptual conflict | Active/facilitatory attention |
Channel interference tasks | Perceptual conflict, response competition | Active/facilitatory and inhibitory attention | ||
Late Attentional Selectivity | Selective-Set | Active deviance detection tasks | Target detection with response competition | Active/facilitatory attention |
Passive deviance detection tasks | Passive/facilitatory attention | |||
Target search tasks | Active/facilitatory attention | |||
Attention priming tasks | Active/facilitatory attention | |||
Attention shifting tasks | Active/facilitatory and inhibitory attention |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakaş, S. A Review of Childhood Developmental Changes in Attention as Indexed in the Electrical Activity of the Brain. Brain Sci. 2024, 14, 458. https://doi.org/10.3390/brainsci14050458
Karakaş S. A Review of Childhood Developmental Changes in Attention as Indexed in the Electrical Activity of the Brain. Brain Sciences. 2024; 14(5):458. https://doi.org/10.3390/brainsci14050458
Chicago/Turabian StyleKarakaş, Sirel. 2024. "A Review of Childhood Developmental Changes in Attention as Indexed in the Electrical Activity of the Brain" Brain Sciences 14, no. 5: 458. https://doi.org/10.3390/brainsci14050458