Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks
Abstract
:1. Background
2. Methods
2.1. Participants
2.2. Written Picture Description Task
2.3. Machine Learning Process
2.4. Analysis of Narrative Speech
2.5. Semantic Measures from BERT
2.6. Addressing Imbalance and Cross-Validation
2.7. Model Evaluation and Selection
2.8. Hyperparameter Tuning and Model Comparison
3. Results
- Accuracy (0.90 for most models) reflects the ML model’s overall correctness in classifying the MCI type.
- F1 score balances precision and recall, with values around 0.70–0.72, indicating a good balance between false positives and false negatives.
- Precision (0.74–0.75) measures the proportion of correctly identified positive cases among all positive calls made by the model.
- Recall (ranging from 0.66 to 0.70) indicates the model’s ability to identify all actual positive cases.
- ROC/AUC (between 0.97 and 0.98) reflects the model’s ability to distinguish between the two classes across various thresholds, with values close to 1 indicating excellent performance.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2019, 15, 321–387. [Google Scholar] [CrossRef]
- Ong, S.C.; Tay, L.J.; Ng, T.; Parumasivam, T. Economic Burden of Alzheimer’s Disease: A Systematic Review. Value Health Reg. Issues 2024, 40, 1–12. [Google Scholar]
- Zissimopoulos, J.; Crimmins, E.; St Clair, P. The value of delaying Alzheimer’s disease onset. Forum Health Econ. Policy 2015, 18, 25–39. [Google Scholar]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- López-Sanz, D.; Bruña, R.; Garcés, P.; Martín-Buro, M.C.; Walter, S.; Delgado, M.L.; Montenegro, M.; López Higes, R.; Marcos, A.; Maestú, F. Functional connectivity disruption in subjective cognitive decline and mild cognitive impairment: A common pattern of alterations. Front. Aging Neurosci. 2017, 9, 109. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Chételat, G. Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res. Rev. 2016, 30, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei-Jafari, H.; Shaw, M.E.; Cherbuin, N. Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015, 1, 487–504. [Google Scholar] [CrossRef]
- Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; et al. Mild cognitive impairment. Lancet 2006, 367, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment–beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef]
- Ansart, M.; Epelbaum, S.; Bassignana, G.; Bône, A.; Bottani, S.; Cattai, T.; Couronné, R.; Faouzi, J.; Koval, I.; Louis, M. Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review. Med. Image Anal. 2021, 67, 101848. [Google Scholar] [CrossRef]
- Iraniparast, M.; Shi, Y.; Wu, Y.; Zeng, L.; Maxwell, C.J.; Kryscio, R.J.; St John, P.D.; SantaCruz, K.S.; Tyas, S.L. Cognitive reserve and mild cognitive impairment: Predictors and rates of reversion to intact cognition vs. progression to dementia. Neurology 2022, 98, e1114–e1123. [Google Scholar] [CrossRef]
- Giau, V.V.; Bagyinszky, E.; An, S.S.A. Potential fluid biomarkers for the diagnosis of mild cognitive impairment. Int. J. Mol. Sci. 2019, 20, 4149. [Google Scholar] [CrossRef]
- Busse, A.; Angermeyer, M.C.; Riedel-Heller, S.G. Progression of mild cognitive impairment to dementia: A challenge to current thinking. Br. J. Psychiatry 2006, 189, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Korman, D.; Baker, S.L.; Landau, S.M.; Jagust, W.J. Longitudinal Cognitive and Biomarker Measurements Support a Unidirectional Pathway in Alzheimer’s Disease Pathophysiology. Biol. Psychiatry 2021, 89, 786–794. [Google Scholar] [CrossRef]
- Roberts, R.O.; Knopman, D.S.; Mielke, M.M.; Cha, R.H.; Pankratz, V.S.; Christianson, T.J.H.; Geda, Y.E.; Boeve, B.F.; Ivnik, R.J.; Tangalos, E.G.; et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology 2014, 82, 317–325. [Google Scholar] [CrossRef]
- Glynn, K.; O’Callaghan, M.; Hannigan, O.; Bruce, I.; Gibb, M.; Coen, R.; Green, E.; ALawlor, B.; Robinson, D. Clinical utility of mild cognitive impairment subtypes and number of impaired cognitive domains at predicting progression to dementia: A 20-year retrospective study. Int. J. Geriatr. Psychiatry 2021, 36, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Pelka, O.; Friedrich, C.M.; Nensa, F.; Mönninghoff, C.; Bloch, L.; Jöckel, K.-H.; Schramm, S.; Sanchez Hoffmann, S.; Winkler, A.; Weimar, C. Sociodemographic data and APOE-ε4 augmentation for MRI-based detection of amnestic mild cognitive impairment using deep learning systems. PLoS ONE 2020, 15, e0236868. [Google Scholar] [CrossRef]
- Yeung, M.K.; Chau, A.K.-Y.; Chiu, J.Y.-C.; Shek, J.T.-L.; Leung, J.P.-Y.; Wong, T.C.-H. Differential and subtype-specific neuroimaging abnormalities in amnestic and nonamnestic mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 80, 101675. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Ma, Y.-H.; Huang, Y.-Y.; Ou, Y.-N.; Shen, X.-N.; Chen, S.-D.; Dong, Q.; Tan, L.; Yu, J.-T. Blood biomarkers for the diagnosis of amnestic mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 128, 479–486. [Google Scholar] [CrossRef]
- van Maurik, I.S.; Zwan, M.D.; Tijms, B.M.; Bouwman, F.H.; Teunissen, C.E.; Scheltens, P.; Wattjes, M.P.; Barkhof, F.; Berkhof, J.; van der Flier, W.M.; et al. Interpreting biomarker results in individual patients with mild cognitive impairment in the Alzheimer’s biomarkers in daily practice (ABIDE) project. JAMA Neurol. 2017, 74, 1481–1491. [Google Scholar] [CrossRef]
- Handels, R.L.H.; Vos, S.J.B.; Kramberger, M.G.; Jelic, V.; Blennow, K.; van Buchem, M.; van der Flier, W.; Freund-Levi, Y.; Hampel, H.; Rikkert, M.O. Predicting progression to dementia in persons with mild cognitive impairment using cerebrospinal fluid markers. Alzheimer’s Dement. 2017, 13, 903–912. [Google Scholar] [CrossRef] [PubMed]
- van Harten, A.C.; Visser, P.J.; Pijnenburg, Y.A.L.; Teunissen, C.E.; Blankenstein, M.A.; Scheltens, P.; van der Flier, W.M. Cerebrospinal fluid Aβ42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimer’s Dement. 2013, 9, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Davatzikos, C.; Bhatt, P.; Shaw, L.M.; Batmanghelich, K.N.; Trojanowski, J.Q. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging 2011, 32, 2322-e19. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J.; Lim, Y.Y.; Schindler, R.; Ott, B.R.; Salloway, S.; Daiello, L.; Getter, C.; Gordon, C.M.; Maruff, P. Microdosing of scopolamine as a “cognitive stress test”: Rationale and test of a very low dose in an at-risk cohort of older adults. Alzheimer’s Dement. 2014, 10, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Fleming, V.B.; Harris, J.L. Complex discourse production in mild cognitive impairment: Detecting subtle changes. Aphasiology 2008, 22, 729–740. [Google Scholar] [CrossRef]
- Hayes, J.; Flower, L. Identifying the Organization of Writing Processes. In Cognitive Processes in Writing; Gregg, L.W., Steinberg, E.R., Eds.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1980; pp. 3–30. [Google Scholar]
- Kim, H.; Walker, A.; Shea, J.; Hillis, A.E. Written Discourse Task Helps to Identify Progression from Mild Cognitive Impairment to Dementia. Dement. Geriatr. Cogn. Disord. 2021, 50, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Obermeyer, J.; Wiley, R.W. Written discourse in diagnosis for acquired neurogenic communication disorders: Current evidence and future directions. Front. Hum. Neurosci. 2024, 17, 1264582. [Google Scholar] [CrossRef] [PubMed]
- Ulatowska, H.K.; Olness, G.S.; Williams, L.J. Coherence of narratives in aphasia. Brain Lang. 2004, 91, 42–43. [Google Scholar] [CrossRef]
- Ulatowska, H.K.; Streit Olness, G.; Samson, A.M.; Keebler, M.W.; Goins, K.E. On the nature of personal narratives of high quality. Adv. Speech Lang. Pathol. 2004, 6, 3–14. [Google Scholar] [CrossRef]
- Goodglass, H.; Kaplan, E.; Barresi, B. BDAE-3: Boston Diagnostic Aphasia Examination, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Themistocleous, C.; Neophytou, K.; Rapp, B.; Tsapkini, K. A tool for automatic scoring of spelling performance. J. Speech Lang. Hear. Res. 2020, 63, 4179–4192. [Google Scholar] [CrossRef]
- Themistocleous, C.; Eckerström, M.; Kokkinakis, D. Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls. PLoS ONE 2020, 15, e0236009. [Google Scholar] [CrossRef] [PubMed]
- Themistocleous, C.; Eckerström, M.; Kokkinakis, D. Identification of Mild Cognitive Impairment From Speech in Swedish Using Deep Sequential Neural Networks. Front. Neurol. 2018, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.C.; Lundholm Fors, K.; Kokkinakis, D. Multilingual word embeddings for the assessment of narrative speech in mild cognitive impairment. Comput. Speech Lang. 2019, 53, 121–139. [Google Scholar] [CrossRef]
- Hernández-Domínguez, L.; Ratté, S.; Sierra-Martínez, G.; Roche-Bergua, A. Computer-based evaluation of Alzheimer’s disease and mild cognitive impairment patients during a picture description task. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.C.; Lundholm Fors, K.; Eckerström, M.; Themistocleous, C.; Kokkinakis, D. Improving the Sensitivity and Specificity of MCI Screening with Linguistic Information. In Proceedings of the LREC 2018 Workshop “Resources and ProcessIng of Linguistic, Para-Linguistic and Extra-Linguistic Data from People with Various Forms of Cognitive/Psychiatric Impairments (RaPID-2)”, Miyazaki, Japan, 8 May 2018; pp. 19–26. [Google Scholar]
- König, A.; Satt, A.; Sorin, A.; Hoory, R.; Toledo-Ronen, O.; Derreumaux, A.; Manera, V.; Verhey, F.; Aalten, P.; Robert, P.H.; et al. Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015, 1, 112–124. [Google Scholar] [CrossRef]
- Calzà, L.; Gagliardi, G.; Rossini Favretti, R.; Tamburini, F. Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia. Comput. Speech Lang. 2021, 65, 101113. [Google Scholar] [CrossRef]
- López-de-Ipiña, K.; Solé-Casals, J.; Eguiraun, H.; Alonso, J.B.; Travieso, C.M.; Ezeiza, A.; Barroso, N.; Ecay-Torres, M.; Martinez-Lage, P.; Beitia, B. Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approach. Comput. Speech Lang. 2015, 30, 43–60. [Google Scholar] [CrossRef]
- Toledo, C.M.; Aluísio, S.M.; Dos Santos, L.B.; Brucki, S.M.D.; Trés, E.S.; de Oliveira, M.O.; Mansur, L.L. Analysis of macrolinguistic aspects of narratives from individuals with Alzheimer’s disease, mild cognitive impairment, and no cognitive impairment. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2018, 10, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.; Barrick, T.R.; Garrard, P. A comparison of connected speech tasks for detecting early Alzheimer’s disease and mild cognitive impairment using natural language processing and machine learning. Front. Comput. Sci. 2021, 3, 634360. [Google Scholar] [CrossRef]
- Fraser, K.C.; Meltzer, J.A.; Graham, N.L.; Leonard, C.; Hirst, G.; Black, S.E.; Rochon, E. Automated classification of primary progressive aphasia subtypes from narrative speech transcripts. Cortex 2014, 55, 43–60. [Google Scholar] [CrossRef]
- Themistocleous, C.; Ficek, B.; Webster, K.; den Ouden, D.-B.; Hillis, A.E.; Tsapkini, K. Automatic subtyping of individuals with Primary Progressive Aphasia. bioRxiv 2020. bioRxiv:2020.04.04.025593. [Google Scholar] [CrossRef]
- Yan, J.H.; Rountree, S.; Massman, P.; Doody, R.S.; Li, H. Alzheimer’s disease and mild cognitive impairment deteriorate fine movement control. J. Psychiatr. Res. 2008, 42, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J. Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. WAIS-III: Wechsler Adult Intelligence Scale, 3rd ed.; The Psychological Corporation: Harcourt Brace & Company San Antonio: San Antonio, TX, USA, 1997. [Google Scholar]
- Rey, A. L’examen psychologique dans les cas d’encephalopathie traumatique. (Les problems.) The psychological examination in cases of traumatic encepholopathy. (Problem.). Arch. Psychol. 2014, 28, 215–285. [Google Scholar]
- Reitan, R.M.; Wolfson, D. A selective and critical review of neuropsychological deficits and the frontal lobes. Neuropsychol. Rev. 1994, 4, 161–198. [Google Scholar] [CrossRef] [PubMed]
- Trenerry, M.R.; Crosson, B.A.; DeBoe, J.; Leber, W.R. Stroop Neuropsychological Screening Test; Psychological Assessment Resources: Lutz, FL, USA, 1989. [Google Scholar]
- Themistocleous, C. Open Brain AI: An AI Research Platform. In Proceedings of the Huminfra Conference, Gothenburg, Sweden, 10–11 January 2024; Volodina, E., Bouma, G., Forsberg, M., Kokkinakis, D., Alfter, D., Fridlund, M., Eds.; Linköping Electronic Conference Proceedings: Gothenburg, Sweden, 2024; Volume 205, pp. 1–9. [Google Scholar]
- Themistocleous, C.; Webster, K.; Afthinos, A.; Tsapkini, K. Part of Speech Production in Patients With Primary Progressive Aphasia: An Analysis Based on Natural Language Processing. Am. J. Speech-Lang. Pathol. 2020, 30, 1–15. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:181004805. [Google Scholar]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Torres, V.L.; Rosselli, M.; Loewenstein, D.A.; Curiel, R.E.; Uribe, I.V.; Lang, M.; Arruda, F.; Penate, A.; Vaillancourt, D.E.; Greig, M.T.; et al. Types of Errors on a Semantic Interference Task in Mild Cognitive Impairment and Dementia. Neuropsychology 2019, 33, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Buschke, H.; Mowrey, W.B.; Ramratan, W.S.; Zimmerman, M.E.; Loewenstein, D.A.; Katz, M.J.; Lipton, R.B. Memory Binding Test Distinguishes Amnestic Mild Cognitive Impairment and Dementia from Cognitively Normal Elderly. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2017, 32, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Jester, D.J.; Andel, R.; Cechov, K. Cognitive phenotypes of older adults with subjective cognitive decline and amnestic mild cognitive impairment: The Czech Brain Aging Study. J. Int. Neuropsychol. Soc. 2021, 27, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.; Giovanello, K.S.; Bozoki, A.; Styner, M.; Dayan, E. Subtyping of mild cognitive impairment using a deep learning model based on brain atrophy patterns. Cell Rep. Med. 2021, 2, 100467. [Google Scholar] [CrossRef]
- McLane, H.C.; Berkowitz, A.L.; Patenaude, B.N.; McKenzie, E.D.; Wolper, E.; Wahlster, S.; Mateen, F.J. Availability, accessibility, and affordability of neurodiagnostic tests in 37 countries. Neurology 2015, 85, 1614–1622. [Google Scholar] [CrossRef]
- Beeson, P.; Rapcsak, S. Clinical Diagnosis and Treatment of Spelling Disorders. In The Handbook of Adult Language Disorders; Hillis, A., Ed.; Psychological Press: London, UK, 2015; pp. 145–170. [Google Scholar]
- He, R.; Chapin, K.; Al-Tamimi, J.; Bel, N.; Marqui, M. Automated classification of cognitive decline and probable Alzheimer’s dementia across multiple speech and language domains. Am. J. Speech-Lang. Pathol. 2023, 32, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Love, T.; Oster, E. On the categorization of aphasic typologies: The SOAP (a test of syntactic complexity). J. Psycholinguist Res. 2002, 31, 503–529. [Google Scholar] [CrossRef] [PubMed]
- Pekkala, S.; Wiener, D.; Himali, J.; Beiser, A.; Obler, L.; Liu, Y. Lexical retrieval in discourse: An early indicator of Alzheimer’s dementia. Clin. Linguist. Phon. 2013, 27, 905–921. [Google Scholar] [CrossRef] [PubMed]
- Forbes-McKay, K.; Shanks, M.; Venneri, A. Charting the decline in spontaneous writing in Alzheimer’s disease: A longitudinal study. Acta Neuropsychiatr. 2014, 26, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Chang, H.T.; Chiu, M.J.; Chen, T.F.; Liu, M.Y.; Fan, W.C.; Cheng, T.W.; Hua, M.S. Deterioration and predictive values of semantic networks in mild cognitive impairment. J. Neurolinguistics 2022, 61, 101025. [Google Scholar] [CrossRef]
- Juncos-Rabadn, O.; Facal, D.; Lojo-Seoane, C.; Pereiro, A.X. Tip-of-the-tongue for proper names in non-amnestic mild cognitive impairment. J. Neurolinguistics 2013, 26, 409–420. [Google Scholar] [CrossRef]
- Mueller, K.D.; Hermann, B.; Mecollari, J.; Turkstra, L.S. Connected speech and language in mild cognitive impairment and Alzheimer’s disease: A review of picture description tasks. J. Clin. Exp. Neuropsychol. 2018, 40, 917–939. [Google Scholar] [CrossRef]
Variant | Gender | N | Mean | SD | Median | Mode | |
---|---|---|---|---|---|---|---|
Age | Amnestic | F | 71 | 67.4 | 12.99 | 70 | 53 |
M | 53 | 69.7 | 15.28 | 74 | 69 | ||
Non Amnestic | F | 21 | 54.2 | 13.48 | 52 | 48 | |
M | 25 | 65.6 | 12.04 | 66 | 65 | ||
Education | Amnestic | F | 70 | 16.1 | 3.19 | 16 | 16 |
M | 52 | 17.5 | 3.42 | 18 | 16 | ||
Non Amnestic | F | 21 | 15.5 | 3.53 | 16 | 16 | |
M | 24 | 16 | 3.06 | 16.5 | 12 |
Variant | Mean | Median | Mode | SD | |
---|---|---|---|---|---|
MMSE | Amnestic | 27.5081 | 28 | 28 | 1.746 |
Non-amnestic | 28.0476 | 29 | 29 | 1.821 | |
WMS | Amnestic | 13.25 | 14 | 14 | 0.942 |
Non-amnestic | 13.6804 | 14 | 14 | 0.592 | |
Digit forward | Amnestic | 6.7016 | 7 | 7 | 1.169 |
Non-amnestic | 6.7391 | 7 | 6 | 1.437 | |
Digit backward | Amnestic | 4.2984 | 4 | 4 | 1.044 |
Non-amnestic | 4.4565 | 4 | 4 | 1.187 | |
RAVLT (total) | Amnestic | 29.2177 | 29 | 30 | 9.373 |
Non-amnestic | 37.8587 | 37 | 37 | 11.187 | |
RAVLT (delayed) | Amnestic | 3.5081 | 3 | 3 | 2.95 |
Non-amnestic | 6.8333 | 7 | 7 | 3.151 | |
RCF (immediate) | Amnestic | 7.8487 | 7 | 0 | 5.934 |
Non-amnestic | 14.5435 | 12 | 6 | 8.989 | |
RCF (delayed) | Amnestic | 6.2391 | 5 | 0 | 5.25 |
Non-amnestic | 13.1739 | 12.25 | 0 | 8.568 | |
BNT | Amnestic | 49.2033 | 52 | 56 | 10.265 |
Non-amnestic | 52.2826 | 54 | 56 | 7.12 | |
Verbal fluency (FAS) | Amnestic | 35.5772 | 35 | 32 | 13.073 |
Non-amnestic | 34.3261 | 32.5 | 23 | 12.994 | |
BDAE writing | Amnestic | 4.1441 | 4 | 4 | 3.733 |
Non-amnestic | 3.7778 | 4 | 4 | 0.56 | |
TMT A | Amnestic | 55.2218 | 48.5 | 30 | 31.634 |
Non-amnestic | 45.5993 | 36.5 | 25 | 24.149 | |
TMT A error | Amnestic | 0.042 | 0 | 0 | 0.302 |
Non-amnestic | 0.087 | 0 | 0 | 0.354 | |
TMT B | Amnestic | 132.8319 | 113 | 110 | 99.71 |
Non-amnestic | 121.9254 | 96 | 57 | 75.288 | |
TMT B error | Amnestic | 0.5439 | 0 | 0 | 1.863 |
Non-amnestic | 0.3696 | 0 | 0 | 0.878 | |
Color | Amnestic | 111.7168 | 112 | 112 | 2.647 |
Non-amnestic | 110.55 | 112 | 112 | 8.852 | |
Color(Word) | Amnestic | 67.2 | 66 | 112 | 29.593 |
Non-amnestic | 68.8158 | 64.5 | 112 | 25.877 |
Non-Amnestic | Amnestic | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Adjectival clause | 0.021 | 0.054 | 0.014 | 0.031 |
Adjectival complement | 0.007 | 0.016 | 0.009 | 0.017 |
Adjective | 0.022 | 0.032 | 0.028 | 0.033 |
Adposition | 0.097 | 0.054 | 0.113 | 0.058 |
Adverb | 0.013 | 0.022 | 0.015 | 0.025 |
Adverbial clause | 0.022 | 0.030 | 0.021 | 0.031 |
Adverbial modifier | 0.012 | 0.021 | 0.014 | 0.024 |
Agent | 0.000 | 0.004 | 0.000 | 0.002 |
Adjectival modifier | 0.021 | 0.031 | 0.017 | 0.033 |
Apposition | 0.004 | 0.016 | 0.003 | 0.013 |
Attribute | 0.003 | 0.007 | 0.002 | 0.007 |
Auxiliary | 0.080 | 0.060 | 0.075 | 0.065 |
Auxiliary (passive) | 0.001 | 0.005 | 0.002 | 0.007 |
Case marking | 0.002 | 0.008 | 0.002 | 0.007 |
Coordinating conjunction | 0.019 | 0.026 | 0.018 | 0.026 |
Clausal complement | 0.020 | 0.033 | 0.021 | 0.035 |
Coordinating conjunction | 0.019 | 0.026 | 0.018 | 0.026 |
Character–word ratio | 5.244 | 0.410 | 5.256 | 0.517 |
Compound | 0.032 | 0.044 | 0.034 | 0.057 |
Conjunction | 0.020 | 0.028 | 0.020 | 0.028 |
Dative case | 0.002 | 0.008 | 0.004 | 0.013 |
Dependent | 0.046 | 0.095 | 0.032 | 0.056 |
Determiner | 0.125 | 0.086 | 0.110 | 0.088 |
Direct object | 0.086 | 0.045 | 0.084 | 0.067 |
Expletive | 0.003 | 0.007 | 0.001 | 0.006 |
Interjection | 0.001 | 0.008 | 0.001 | 0.006 |
Marker | 0.018 | 0.028 | 0.007 | 0.016 |
Meta data | 0.000 | 0.004 | 0.010 | 0.056 |
Negation modifier | 0.005 | 0.012 | 0.004 | 0.012 |
Noun | 0.362 | 0.109 | 0.376 | 0.119 |
Nominal subject | 0.137 | 0.055 | 0.142 | 0.057 |
Nominal subject (passive) | 0.001 | 0.005 | 0.002 | 0.007 |
Numeral | 0.004 | 0.012 | 0.004 | 0.013 |
Numeric modifier | 0.003 | 0.011 | 0.004 | 0.012 |
Object predicate | 0 | 0 | 0.001 | 0.009 |
Parataxis | 0 | 0 | 0.000 | 0.002 |
Particle | 0.026 | 0.026 | 0.025 | 0.029 |
Prepositional complement | 0.000 | 0.002 | 0.002 | 0.008 |
Prepositional object | 0.078 | 0.052 | 0.096 | 0.052 |
Possessive modifier | 0.011 | 0.021 | 0.011 | 0.021 |
Preposition | 0.083 | 0.057 | 0.099 | 0.058 |
Pronoun | 0.037 | 0.041 | 0.027 | 0.033 |
Proper noun | 0.003 | 0.014 | 0.003 | 0.012 |
Particle | 0.012 | 0.017 | 0.011 | 0.018 |
Punctuation | 0.111 | 0.073 | 0.104 | 0.081 |
Relative clause | 0.004 | 0.010 | 0.004 | 0.010 |
Root | 0.105 | 0.056 | 0.099 | 0.061 |
Subordinating conjunction | 0.018 | 0.028 | 0.008 | 0.017 |
Symbol | 0.000 | 0.003 | 0.001 | 0.007 |
Verb | 0.196 | 0.071 | 0.192 | 0.057 |
Other | 0.002 | 0.013 | 0.010 | 0.051 |
Open clausal complement | 0.015 | 0.021 | 0.018 | 0.024 |
Words [count] 1 | 31.943 | 15.318 | 29.650 | 14.205 |
Characters [counts] 1 | 170.927 | 78.647 | 158.829 | 70.947 |
RF | GB | HGB | XGB | LGBM | |
---|---|---|---|---|---|
Accuracy | 0.90 | 0.90 | 0.89 | 0.89 | 0.89 |
F1 | 0.71 | 0.72 | 0.70 | 0.71 | 0.70 |
Precision | 0.74 | 0.75 | 0.75 | 0.75 | 0.75 |
Recall | 0.68 | 0.70 | 0.67 | 0.68 | 0.66 |
ROC/AUC | 0.98 | 0.97 | 0.98 | 0.97 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Hillis, A.E.; Themistocleous, C. Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks. Brain Sci. 2024, 14, 652. https://doi.org/10.3390/brainsci14070652
Kim H, Hillis AE, Themistocleous C. Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks. Brain Sciences. 2024; 14(7):652. https://doi.org/10.3390/brainsci14070652
Chicago/Turabian StyleKim, Hana, Argye E. Hillis, and Charalambos Themistocleous. 2024. "Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks" Brain Sciences 14, no. 7: 652. https://doi.org/10.3390/brainsci14070652
APA StyleKim, H., Hillis, A. E., & Themistocleous, C. (2024). Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks. Brain Sciences, 14(7), 652. https://doi.org/10.3390/brainsci14070652