Effectiveness of the Use of Virtual Reality Rehabilitation in Children with Dyslexia: Follow-Up after One Year
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neuropsychological Assessment
2.2. Decription of Treatments
2.3. Statistical Analysis
3. Results
4. Discussion
“Furthermore, we hypothesize that rehabilitation with virtual reality systems will increase the child’s interest in treatment adherence, return immediate feedback, and emphasize the playful aspect. Children often experience frustration with the required task, and therefore, personalizing an ad hoc program strengthens self-esteem and cognitive performance”.
Strengths and limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phillips, S.; Kelly, K. Assessment of Learners with Dyslexic-Type Difficulties; Sage: Washington, DC, USA, 2018. [Google Scholar]
- Vellutino, F.R.; Fletcher, J.M.; Snowling, M.J.; Scanlon, D.M. Specific reading disability (dyslexia): What have we learned in the past four decades? J. Child Psychol. Psychiatry 2004, 45, 2–40. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.K.; Zirps, F.A.; Edwards, A.A.; Wood, S.G.; Joyner, R.E.; Becker, B.J.; Liu, G.; Beal, B. The Prevalence of Dyslexia: A New Approach to Its Estimation. J. Learn. Disabil. 2020, 53, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, C.; Li, X.; Zhai, M.; An, Q.; Zhang, Y.; Zhao, J.; Weng, X. Prevalence of Developmental Dyslexia in Primary School Children: A Systematic Review and Meta-Analysis. Brain Sci. 2022, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Willcutt, E.G.; Pennington, B.F. Psychiatric comorbidity in children and adolescents with reading disability. J. Child. Psychol. Psychiatry 2000, 41, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Ramus, F. A neurological model of dyslexia and other domain-specific developmental disorders with an associated sensorimotor syndrome. In The Dyslexic Brain: New Pathways in Neuroscience; Rosen, G.D., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2006; pp. 75–101. [Google Scholar]
- Démonet, J.F.; Taylor, M.J.; Chaix, Y. Developmental dyslexia. Lancet 2004, 363, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Serrano, F.; Delfior, S. Dyslexia in Spanish: The state of the matter. Electron. J. Res. Educ. Psycol. 2004, 2, 13–34. [Google Scholar]
- Corallo, F.; Bonanno, L.; Cardile, D.; Luvarà, F.; Giliberto, S.; Di Cara, M.; Leonardi, S.; Quartarone, A.; Rao, G.; Pidalà, A. Improvement of Self-Esteem in Children with Specific Learning Disorders after Donkey-Assisted Therapy. Children 2023, 10, 425. [Google Scholar] [CrossRef]
- Pennington, B.F. Diagnosing Learning Disorders: A Neuropsychological Framework, 2nd ed.; Guilford Press: New York, NY, USA, 2009. [Google Scholar]
- Fletcher, J.M.; Lyon, G.R.; Fuchs, L.S.; Barnes, M.A. Learning Disabilities: From Identification to Intervention, 2nd ed.; Guilford Press: New York, NY, USA, 2019. [Google Scholar]
- Vender, M.; Melloni, C.; Delfitto, D. The effectiveness of reading intervention in adults with dyslexia: A systematic review. Ital. J. Linguist. 2022, 189–232. [Google Scholar]
- Anis, M.Y.N.; Normah, C.D.; Mahadir, A.; Norhayati, I.; Rogayah, A.R.; Dzalani, H. Interventions for Children with Dyslexia: A Review on Current Intervention Methods. Med. J. 2018, 73, 311–320. [Google Scholar]
- Snowling, M.J.; Hulme, C. Evidence-based interventions for reading and language difficulties: Creating a virtuous circle. Br. J. Educ. Psychol. 2011, 81 Pt 1, 1–23. [Google Scholar] [CrossRef]
- Lorusso, M.L.; Borasio, F.; Da Rold, M.; Martinuzzi, A. Towards consensus on good practices for the use of new technologies for intervention and support in Developmental Dyslexia: A Delphi study conducted among Italian specialized professionals. Children 2021, 8, 1126. [Google Scholar] [CrossRef] [PubMed]
- DOGAN, S.; Delialioğlu, Ö. A systematic review on the use of technology in learning disabilities. Ank. Üniversitesi Eğitim Bilim. Fakültesi Özel Eğitim Derg. 2020, 21, 611–638. [Google Scholar] [CrossRef]
- Lerga, R.; Candrlic, S.; Jakupovic, A. A Review on Assistive Technologies for Students with Dyslexia. In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021), Online, 23–25 April 2021; pp. 64–72. [Google Scholar]
- Konerding, M.; Bergstroem, K.; Lachmann, T.; Klatte, M. Effects of the Computer-Based Grapho-Phonological Training Lautarium in Children with Developmental Dyslexia. Prax. Kinderpsychol. Kinderpsychiatr. 2021, 70, 333–355. [Google Scholar] [CrossRef] [PubMed]
- Garzón Hernández, N. Improving Spelling in Students with Dyslexia: A Teaching Proposal; Jaume I University: Castelló, Spain, 2021. [Google Scholar]
- Maresca, G.; Leonardi, S.; De Cola, M.C.; Giliberto, S.; Di Cara, M.; Corallo, F.; Quartarone, A.; Pidalà, A. Use of Virtual Reality in Children with Dyslexia. Children 2022, 9, 1621. [Google Scholar] [CrossRef]
- Bediou, B.; Adams, D.M.; Mayer, R.E.; Tipton, E.; Green, C.S.; Bavelier, D. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 2018, 144, 77. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, S.; Franceschini, S.; Puccio, G.; Mancarella, M.; Gori, S.; Facoetti, A. Action video games enhance attentional control and phonological decoding in children with developmental dyslexia. Brain Sci. 2021, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, S.; Trevisan, P.; Ronconi, L.; Bertoni, S.; Colmar, S.; Double, K.; Facoetti, A.; Gori, S. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia. Sci. Rep. 2017, 7, 5863. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; Crewther, S.G.; Murphy, M.J.; Bavin, E.L. Action video game training improves text reading accuracy, rate and comprehension in children with dyslexia: A randomized controlled trial. Sci. Rep. 2021, 11, 18584. [Google Scholar] [CrossRef] [PubMed]
- Massetti, T.; Da Silva, T.D.; Crocetta, T.B.; Guarnieri, R.; De Freitas, B.L.; Bianchi Lopes, P.; de Mello Monteiro, C.B. The clinical utility of virtual reality in neurorehabilitation: A systematic review. J. Cent. Nerv. Syst. Dis. 2018, 10, 1179573518813541. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 10, 14651858. [Google Scholar] [CrossRef]
- Turolla, A.; Dam, M.; Ventura, L.; Tonin, P.; Agostini, M.; Zucconi, C.; Kiper, P.; Cagnin, A.; Piron, L. Virtual reality for the rehabilitation of the upper limb motor function after stroke: A prospective controlled trial. J. Neuroeng. Rehabil. 2013, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Cacciante, L.; Kiper, P.; Garzon, M.; Baldan, F.; Federico, S.; Turolla, A.; Agostini, M. Telerehabilitation for people with aphasia: A systematic review and meta-analysis. J. Commun. Disord. 2021, 92, 106111. [Google Scholar] [CrossRef] [PubMed]
- Maresca, G.; Maggio, M.G.; De Luca, R.; Manuli, A.; Tonin, P.; Pignolo, L.; Calabrò, R.S. Tele-Neuro-Rehabilitation in Italy: State of the Art and Future Perspectives. Front. Neurol. 2020, 11, 563375. [Google Scholar] [CrossRef] [PubMed]
- Tucci, R.; Savoia, V.; Bertolo, L.; Vio, C.; Tressoldi, P.E. Efficacy and efficiency outcomes of a training to ameliorate developmental dyslexia using the online software Reading Trainer®. BPA Appl. Psychol. Bull. 2015, 63, 53–60. [Google Scholar]
- Olofsson, Å.; Taube, K.; Ahl, A. Academic Achievement of University Students with Dyslexia. Dyslexia 2015, 21, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Pecini, C.; Spoglianti, S.; Bonetti, S.; Di Lieto, M.C.; Guaran, F.; Martinelli, A.; Gasperini, F.; Cristofani, P.; Casalini, C.; Mazzotti, S.; et al. Training RAN or reading? A telerehabilitation study on developmental dyslexia. Dyslexia 2019, 25, 318–331. [Google Scholar] [CrossRef]
- Orsini, A.; Pezzuti, L.; Picone, L. WISC-IV: Contributo alla Taratura Italiana (WISC-IV Italian); Giunti OS: Florence, Italy, 2012. [Google Scholar]
- Sartori, G.; Job, R. DDE-2: Batteria per la Valutazione della Dislessia e della Disortografia Evolutiva-2 [Assessment Battery for Developmental Reading and Spelling Disorders]; Giunti OS: Florence, Italy, 2007. [Google Scholar]
- Denckla, M.B.; Rudel, R.G. Rapid “automatized” naming (RAN): Dyslexia differentiated from other learning disabilities. Neuropsychologia 1976, 14, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Poblano, A.; Valadéz-Tepec, T.; Arias, M.D.L.; García-Pedroza, F. Phonological and visuo-spatial working memory alterations in dyslexic children. Arch. Med. Res. 2000, 31, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Rose, F.D.; Brooks, B.M.; Rizzo, A. A Virtual reality in brain damage rehabilitation: Review. Cyberpsychol. Behav. 2005, 8, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Kiper, P.; Szczudlik, A.; Mirek, E.; Nowobilski, R.; Opara, J.; Agostini, M.; Tonin, P.; Turolla, A. The application of virtual reality in neuro-rehabilitation: Motor re-learning supported by innovative technologies. Med. Rehabil. 2013, 17, 29–36. [Google Scholar] [CrossRef]
- Pedroli, E.; Padula, P.; Guala, A.; Meardi, M.T.; Riva, G.; Albani, G. A Psychometric Tool for a Virtual Reality Rehabilitation Approach for Dyslexia. Comput. Math. Methods Med. 2017, 2017, 7048676. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.K.; Torgesen, J.K. The nature of phonological processing and its causal role in the acquisition of reading skills. Psychol. Bull. 1987, 101, 192–212. [Google Scholar] [CrossRef]
- Alemanno, F.; Houdayer, E.; Emedoli, D.; Locatelli, M.; Mortini, P.; Mandelli, C.; Raggi, A.; Iannaccone, S. Efficacy of virtual reality to reduce chronic low back pain: Proof-of-concept of a non-pharmacological approach on pain, quality of life, neuropsychological and functional outcome. PLoS ONE 2019, 14, e0216858. [Google Scholar] [CrossRef] [PubMed]
- Cappadona, I.; Ielo, A.; La Fauci, M.; Tresoldi, M.; Settimo, C.; De Cola, M.C.; Muratore, R.; De Domenico, C.; Di Cara, M.; Corallo, F.; et al. Feasibility and Effectiveness of Speech Intervention Implemented with a Virtual Reality System in Children with Developmental Language Disorders: A Pilot Randomized Control Trial. Children 2023, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Štromberga, Z.; Raikos, A.; Stirling, A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat. Sci. Educ. 2017, 10, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Karamians, R.; Proffitt, R.; Kline, D.; Gauthier, L.V. Effectiveness of virtual reality-and gaming-based interventions for upper extremity rehabilitation poststroke: A meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 885–896. [Google Scholar] [CrossRef]
- Giachero, A.; Calati, M.; Pia, L.; La Vista, L.; Molo, M.; Rugiero, C.; Fornaro, C.; Marangolo, P. Conversational therapy through semi-immersive virtual reality environments for language recovery and psychological well-being in post stroke aphasia. Behav. Neurol. 2020, 2020, 2846046. [Google Scholar] [CrossRef]
All | EG | CG | p-Value | |
---|---|---|---|---|
Participants | 24 | 12 (50.0) | 12 (50.0) | - |
Male | 12 (50.0) | 7 (58.3) | 7 (58.3) | 1.00 |
Age (years) | 10.2 (1.9) | 10.1 (1.9) | 10.3 (2.1) | 0.88 |
Education (years) | 5.2 (1.9) | 5.0 (1.7) | 5.3 (2.1) | 0.84 |
Clinical Assessment | EG | CG | p-Value |
---|---|---|---|
DDE | |||
Word Reading Test (CORRECTNESS) Word Reading Test (SPEED) | 1.5 [1.0–5.5] 2.0 [1.0–3.0] | 1.0 [1.0–2.7] 2.0 [1.0–5.2] | 0.605 0.952 |
No Word Reading Test (CORRECTNESS) | 1.5 [1.0–4.0] | 2.5 [1.0–5.7] | 0.503 |
No Word Reading Test (SPEED) | 3.0 [2.0–6.2] | 2.0 [1.7–7.2] | 0.882 |
Text Reading Test (CORRECTNESS) | 3.0 [1.7–6.2] | 7.0 [3.0–8.0] | 0.198 |
Text Reading Test (SPEED) | 2.5 [2.0–4.2] | 4.5 [2.0–6.0] | 0.181 |
Word Writing Test (CORRECTNESS) | 2.0 [1.0–3.0] | 1.0 [1.0–2.7] | 0.399 |
No Word Writing Test (CORRECTNESS) | 2.5 [1.0–3.7] | 2.0 [1.7–4.2] | 0.882 |
Homophone Word Writing Test (CORRECTNESS) | 2.5 [1.7–6.0] | 1.0 [1.0–2.2] | 0.195 |
WISC-IV | |||
Verbal Comprehension Index | 101.5 [94.2–109.0] | 96.0 [85.5–104.5] | 0.452 |
Visual–Perceptual Reasoning Index | 93.0 [86.5–98.0] | 96.0 [84.7–102.5] | 0.602 |
Working Memory Index | 84.5 [81.7–97.7] | 86.5 [80.5–95.5] | 0.999 |
Processing Speed Index | 93.5 [84.2–103.0] | 91.0 [83.5–97.0] | 0.816 |
Global Intelligence Quotient | 92.5 [85.0–98.0] | 91.0 [85.0–98.7] | 0.999 |
Clinical Assessment | One-Way Repeated-Measures Analysis | Post Hoc Analysis | |||
---|---|---|---|---|---|
Test Value | p-Value | Significant Differences | p-Value | ||
EXPERIMENTAL GROUP | Word Reading Test (CORRECTNESS) | 18.15 | <0.001 | T2-T0 T1-T0 | <0.001 <0.001 |
No Word Reading Test (CORRECTNESS) | 21.26 | <0.001 | T2-T0 T1-T0 | <0.001 <0.01 | |
Text Reading Test (CORRECTNESS) | 17.61 | <0.001 | T2-T0 T1-T0 | <0.05 <0.001 | |
Word Writing Test (CORRECTNESS) | 14.33 | <0.001 | T2-T0 T1-T0 | <0.05 <0.001 | |
No Word Writing Test (CORRECTNESS) | 21.26 | <0.001 | T2-T0 T1-T0 | <0.001 <0.01 | |
Homophone Word Writing Test (CORRECTNESS) | 15.27 | <0.001 | T2-T0 T1-T0 | <0.05 <0.001 | |
Word Reading Test (SPEED) | 16.97 | <0.001 | T2-T0 T1-T0 | <0.01 <0.001 | |
No Word Writing Test (SPEED) | 18.20 | <0.001 | T2-T0 T1-T0 | <0.001 <0.01 | |
Text Reading Test (SPEED) | 17.90 | <0.001 | T2-T0 T1-T0 | <0.001 <0.01 | |
CONTROL GROUP | Word Reading Test (CORRECTNESS) | 6.22 | 0.044 | T2-T0 | <0.05 |
No Word Reading Test (CORRECTNESS) | 4.54 | 0.103 | - | - | |
Text Reading Test (CORRECTNESS) | 14.06 | <0.001 | T2-T0 | <0.001 | |
Word Writing Test (CORRECTNESS) | 20.60 | <0.001 | T2-T0 T1-T0 | <0.05 <0.001 | |
No Word Writing Test (CORRECTNESS) | 19.63 | <0.001 | T2-T0 T1-T0 | <0.05 <0.001 | |
Homophone Word Writing Test (CORRECTNESS) | 10.34 | 0.006 | T2-T0 | <0.01 | |
Word Reading Test (SPEED) | 9.17 | 0.010 | T2-T0 | <0.01 | |
No Word Writing Test (SPEED) | 10.50 | 0.005 | T2-T0 | <0.01 | |
Text Reading Test (SPEED) | 5.89 | 0.052 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maresca, G.; Corallo, F.; De Cola, M.C.; Formica, C.; Giliberto, S.; Rao, G.; Crupi, M.F.; Quartarone, A.; Pidalà, A. Effectiveness of the Use of Virtual Reality Rehabilitation in Children with Dyslexia: Follow-Up after One Year. Brain Sci. 2024, 14, 655. https://doi.org/10.3390/brainsci14070655
Maresca G, Corallo F, De Cola MC, Formica C, Giliberto S, Rao G, Crupi MF, Quartarone A, Pidalà A. Effectiveness of the Use of Virtual Reality Rehabilitation in Children with Dyslexia: Follow-Up after One Year. Brain Sciences. 2024; 14(7):655. https://doi.org/10.3390/brainsci14070655
Chicago/Turabian StyleMaresca, Giuseppa, Francesco Corallo, Maria Cristina De Cola, Caterina Formica, Silvia Giliberto, Giuseppe Rao, Maria Felicita Crupi, Angelo Quartarone, and Alessandra Pidalà. 2024. "Effectiveness of the Use of Virtual Reality Rehabilitation in Children with Dyslexia: Follow-Up after One Year" Brain Sciences 14, no. 7: 655. https://doi.org/10.3390/brainsci14070655
APA StyleMaresca, G., Corallo, F., De Cola, M. C., Formica, C., Giliberto, S., Rao, G., Crupi, M. F., Quartarone, A., & Pidalà, A. (2024). Effectiveness of the Use of Virtual Reality Rehabilitation in Children with Dyslexia: Follow-Up after One Year. Brain Sciences, 14(7), 655. https://doi.org/10.3390/brainsci14070655